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Abstract of the Dissertation

Optimal Design of Cluster Randomized Trials with

Binary Outcomes

by

Sheng Wu

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2015

Professor Weng Kee Wong, Co-chair

Professor Catherine Crespi-Chun, Co-chair

Cluster randomized trials (CRTs) are increasingly used in many fields including public

health and medicine. We consider two-arm CRTs with binary outcomes with possibly

unequal intraclass correlations coefficients (ICCs) in the two arms. The efficacy of the

intervention may be measured in terms of the risk difference (RD), relative risk (RR)

or odds ratio (OR). We define cost efficiency (CE) as the ratio of the precision of the

efficacy measure to the study cost and develop optimal allocations to the two arms for

maximizing CE. The optimal design, which is based on the optimal allocation, could

be different for different measures. We define relative cost efficiency (RCE) of a design

as the ratio of its CE to CE of the optimal design and use RCE to compare different

designs. Because the optimal allocation can be highly sensitive to the unknown ICCs

and anticipated success rates, we propose a Bayesian method and a maximin method to

construct an efficient and robust design. We show that the RCE of the designs based

on the Bayesian method or the maximin method is generally larger than the balanced

design. Based on the optimal allocation, we derive optimal sample size formulas which

satisfy the power requirement and minimize the total study cost. All the results above

are based on the assumption of constant cluster size. When there is extreme variation in

cluster size, the usually used sample size formula assuming a constant cluster size may

result in a design with low power. Assuming a balanced design, we develop a sample

ii



size formula for a two-arm CRT which obtains the desired power even though the cluster

sizes are very different. This formula can be modified to incorporate optimal allocation

consideration, hence it minimizes the study cost while satisfying the power requirement

for a CRT with varying cluster sizes. Simulation is used to verify that our formulas can

obtain the desired power.
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CHAPTER 1

Background and Motivation

Cluster randomized trials (CRTs) are increasingly used in many fields including cancer

control and prevention, public health and medicine [1, 2]. CRTs are experiments in

which clusters of individuals rather than independent individuals are randomly allocated

to intervention groups. CRTs are also called group randomized trials. All individuals in

a cluster receive the same treatment, assigned to that cluster at random. Clusters can

be churches, villages, medical practices, families or schools.

A key feature of CRTs is that outcomes of individuals within a cluster are correlated.

The intraclass correlation coefficient (ICC), usually denoted by ρ, provides a quantitative

measure of within-cluster correlation. The ICC is variously defined as the Pearson

correlation between responses from two members in the same cluster or the proportion

of the total variance in the outcome attributable to the variance between clusters. In

the design and analysis of CRTs, ρ is an important parameter. Since the correlation

increases the sampling error of estimating the intervention effect [3], CRTs are less

efficient than individual randomized trials (IRTs), where individuals are randomized

to study conditions. For the same total number of individuals in a study, CRTs have

lower power to detect the intervention effect than IRTs. However, CRTs may have

some advantages although they are less efficient. There are many reasons to use CRTs,

including administrative convenience, ethical considerations, to avoid treatment group

contamination and because the intervention is naturally applied at the cluster level [4].

The paper published in 1978 by Cornfield [5] attracted health professionals’ attention

to the appealing statistical features of CRTs. Since then, extensive development of

methodology in CRTs has appeared in statistical and health science journals. There is a
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lot of methodological research work on CRTs with continuous outcomes, but relatively

little when the outcome is binary. Although a two-arm CRT with a binary outcome

seems simple and its design problems have been discussed somewhat in the literature,

such as in Donner and Klar [4], Hayes and Moulton [2] and Campbell and Walters [6],

there are still design issues that need to be fully addressed.

In any study, investigators would prefer to expend minimal resources to obtain the

most accurate estimate of an intervention effect. This is even more important when

designing CRTs, because CRTs are less efficient than IRTs. In practice, investigators

often assign the same number of clusters to each arm of a two-arm CRT. We call such a

design a balanced design. Previous research in IRTs has showed that a balanced design

may not be the most efficient when the outcome is binary. More discussions can be found

in Walter [7], Meydrich [8], Morgenstern and Winn [9], Yanagawa and Bolt [10], Lubin

[11] and Brittain and Schlesselman [12]. However, current research on design problems

for CRTs largely consider equal allocation of clusters to different arms, and unequal

allocation is rarely considered. It seems that investigators have not fully realized the

possible low efficiency for a balanced design in CRTs. Hence some issues naturally arise.

What are optimal proportions of clusters in the two arms? What factors determine the

optimal allocation?

Cluster size in a CRT usually varies. However, investigators often assume the cluster

size is constant. The most commonly used sample size formula for a two-arm CRT with

binary outcomes is based on the assumption of a constant cluster size, see Donner and

Klar [4]. Guittet et al. [13] and Ahn et al. [14] investigated the impact of cluster size

variability on the power of CRTs and concluded that the desired power may not be

obtained if large variability of cluster size is overlooked. Some research such as Kerry

and Bland [15], Manatunga and Hudgens [16], Guittet et al. [13] considered sample

size calculations for a CRT with varying cluster size. However, the outcome variable

in their research is continuous. Jung et al. [17] provided a sample size formula for

binary outcomes, but their sample size formula is for one-arm CRTs. More importantly,

previous studies on sample size calculation for a two-arm CRT are based on the balanced
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design; few people have addressed the sample size calculation for unequal allocation of

clusters in the two arms. Therefore some issues naturally arise. For a two-CRT with

binary outcomes and varying cluster sizes, how should we calculate the sample size

in order to obtain the desired power? How many samples are needed in each arm to

minimize the total cost in addition to satisfying the power requirement?

The main aim of this dissertation is to address these design issues more fully for

investigators using a CRT in their research. Our focus is on applications in cancer control

and prevention trials but methodology developed in the dissertation is applicable to any

two-arm CRT with a binary response.

1.1 Terminology and Notation

1.1.1 Terminology

Here are some key terms we use in this dissertation.

Balanced design: A design that has the same number of clusters in the two arms.

Unbalanced design: A design that is not a balanced design.

Efficiency : This term refers to the precision of the estimated treatment effect in the

responses between the two arms.

Cost efficiency (CE): The ratio of precision of the estimated treatment effect in the

responses between the two arms to the study cost.

Optimal allocation: The fraction of the number of clusters in arm 1 to the total

number of clusters that maximizes the CE of a CRT.

Optimal design: A design with the optimal allocation.

Relative cost efficiency (RCE): The ratio of CE of a design to CE of the optimal

design. The design has higher efficiency if the RCE of a design is larger. The RCE is

equal to 1 for the optimal design.

Efficient design: A design with high RCE. An efficient design may not be an optimal
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design.

Robust design: A design whose RCE is not affected much by misspecified design

parameters.

Optimal sample size: The sample size associated with the lowest cost among all that

meet our power and type 1 error rate requirements.

1.1.2 Notation

Here are some key notations we use in this dissertation.

πh, h = 1, 2: success rate in the hth arm.

ρh, h = 1, 2: intraclass correlation coefficient in the hth arm.

k: total number of clusters in the two-arm study.

kh, h = 1, 2: number of clusters in the hth arm.

k0: number of clusters in either arm for a balanced design, i.e., k0 = k1 = k2. It is

used in sample size calculation.

m: cluster size when all clusters have the same size.

mhi: cluster size of the ith cluster in the hth arm.

γ: cost ratio of a cluster in arm 2 to a cluster in arm 1.

w∗x: optimal proportion of clusters in arm 1 for the measure x with constant cluster

size but without cost consideration.

wc∗x : optimal proportion of clusters in arm 1 for the measure x with constant cluster

size and cost consideration.

wv∗x : optimal proportion of clusters in arm 1 for the measure x with varying cluster

size but without cost consideration.

wvc∗x : optimal proportion of clusters in arm 1 for the measure x with varying cluster

size and cost consideration.

Xhij: the binary response of the jth individual in the ith cluster in the hth arm.
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Ψ−1
x : the variance of the estimator of the measure x.

CV: coefficient of variation of the cluster size.

1.2 Organization of this dissertation

In this dissertation, we only consider two-arm CRTs with a binary outcome. We consider

design issues when cluster size is constant in Chapters 2-4 and when cluster size is varying

in Chapter 5. We compare different analysis methods for CRTs with varying cluster sizes

in Chapter 6.

In Chapter 2, we assume that the total number of clusters k is fixed. We consider

three commonly used treatment effect measures, risk difference (RD), relative risk (RR)

and odds ratio (OR), and find optimal allocations based on these measures. First we

determine the optimal allocations which minimize the asymptotic variances of the esti-

mated measures without cost consideration. In practice, the unit cost in a control arm

may be very different from that in a treatment arm. We then define the concept of

cost efficiency (CE), which combines statistical and economic considerations and adjust

our optimal allocations to minimize CE. To compare designs, we define relative cost

efficiency (RCE) and show how different allocations affect RCE. We apply the results to

Samoan Women’s Health Study, which was a CRT designed to increase rates of mammo-

gram usage in women of Samoan ancestry. All designs in this chapter assume nominal

values for the design parameters.

Chapter 3 explores how success rates π1 and π2, ICCs ρ1 and ρ2, cost ratio and

cluster size affect the optimal allocations. When the allocation w is equal to the optimal

allocation, the RCE reaches the maximal value 1. When w diverges from the optimal

allocation, the RCE value decreases. Hence for any pre-selected value a of the RCE,

there exists an interval of w, and any w in such interval makes the RCE larger than

a. We explore the effects of different parameters on the width of this interval. To

mitigate the effects of misspecifications of the nominal values of the parameters, a more

robust design is desirable. We propose two methods to make the design less sensitive
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to misspecifications to the parameters, a Bayesian method and a maximin method. We

compare designs from the two methods with the balanced design. We end this chapter

by application of the two methods to the Samoan Women’s Health Study.

In Chapter 2 and 3 we assume the total number of clusters k is known and fixed. In

Chapter 4, we revisit the sample size calculation for a CRT to satisfy the fixed type 1

error rate α and power 1 − β requirements. The usual sample size formula for a CRT

assumes RD as the outcome measure and a balanced design, for example, see Donner

and Klar [1]. In this chapter, we first assume a balanced design and derive the sample

size formulas for the measures RR and OR. Then costs are factored in and we show that

the total cost of a balanced design is not necessarily the lowest and so we incorporate

the optimal allocation approach from Chapter 2. Accordingly we modify the sample

size formulas for the numbers of clusters in each treatment arm for different measures

that guarantee our designs satisfy the power requirement and also minimize total cost.

Finally, we consider non-inferiority CRTs and equivalence CRTs. We extend the results

of sample size calculation to non-inferiority CRTs and equivalence CRTs.

The results in Chapter 2, 3 and 4 assume a constant cluster size. In Chapter 5,

we consider varying cluster sizes and the outcome measure is RD. A common way to

determine sample size that meets the specific type 1 error rate α and power 1 − β

requirements is to calculate the cluster size using mean cluster size. Guittet et al. [13]

and Ahn et al. [14] investigated the effect of cluster size variability on the power of CRTs

and concluded that extreme variation in cluster size may affect the power of CRTs. We

review the sample size calculation formulas for a CRT with varying cluster sizes, but

most of them deal with continuous responses or binary responses in a one-arm CRT.

We focus on binary responses in a two-arm CRT. Our work in this chapter includes

discussion on how to incorporate optimal allocation and cost considerations into the

sample size calculation for CRTs with varying cluster size. At the end of this chapter,

we apply our method to redesign Samoan Women’s Health Study.

Chapter 6 discusses analysis methods for CRTs. When the outcome of a CRT is a

binary variable, analysis methods for such a CRT are not as well established as when
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the outcomes is continuous. Available analysis methods are either at the cluster level

or the individual level. We first review the commonly used analysis methods including

cluster-level t-test, weighted t-test, adjusted chi-square approach, generalized estimat-

ing equations approach (GEE) and mixed effect logistic regression model (MELR). We

seek answers to the following questions: How does varying cluster sizes affect the per-

formances of these analysis? How does having unequal ICCs in the two arms affect the

performance of those methods if a constant ICC is assumed in the analysis? We use

simulation to generate data for CRTs with a binary outcome and varying cluster sizes

and use them to compare these methods in terms of their control for type 1 and 2 errors.

We identify the methods that seem to outperform others under a broad set of scenarios.
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CHAPTER 2

Optimal allocation of clusters when the total

number of clusters is fixed and cluster sizes are equal

2.1 Introduction

When designing a two-arm CRT, investigators have to decide how many clusters or

individuals are needed and what is the proportion of clusters or individuals to allocate

to each treatment arm. More clusters or individuals per cluster in the study will detect

the differences in responses rates between the two arms with larger power and obtain

more accurate estimates of the treatment effect. However, the budget in a study is

limited and hence investigators want to have an accurate estimate of treatment effect

and save resources at the same time. This requires a carefully designed study.

In a CRT, the cluster size is the number of individuals in a cluster and this number

may vary in different clusters. When designing a CRT, investigators often assume equal

cluster size in the design stage and ignore cluster size variation. For simplicity, in this

chapter we assume that the cluster size is constant. We will consider the case when

cluster sizes are unequal in Chapter 5. In some CRTs, for example, when community or

geographical zone is the cluster, investigators may recruit a sample of individuals from a

cluster rather than all individuals in the cluster. Hence even the cluster sizes are different,

investigators may recruit the same number of individuals from different clusters. That

number is called sample size per cluster, see Hayes [2]. We don’t distinguish sample

size per cluster from cluster size in this thesis. That means cluster size can be the real

total number of a cluster, or the total number recruited from a cluster to the study. If

investigators recruit the same number of individuals from different clusters, we regard
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cluster size is equal and the methods for CRTs with equal cluster size can be applied

directly.

When the total number of cluster in a two-arm CRT is fixed, the ratio of the number

of clusters in the two arms can influence the precision of estimation and the cost of the

study. The precision is the inverse variance of an estimator of treatment effect measure.

The precision, or the variance can be used to determine the efficiency of a design. When

two designs are compared under the same measure, we say the one with higher precision

(or lower variance) is more efficient. Investigators often assign the same number of

clusters to each arm. In individual randomized trials, the design which assigns the same

number of individuals to each arm is called balanced design. We also call a CRT design

is a balanced design when the same number of clusters are assigned to each arm of a

CRT. Note that when cluster size is equal, the total individuals in the two arms are also

equal in a balanced design. For a fixed number of total clusters in a CRT, when the

outcome follows a normal distribution, a balanced design is the most efficient. However,

when the outcome is binary, a balanced design may cause the study to be less efficient.

When the randomized unit is an individual, research has showed that a balanced

design may not be the most efficient. Walter [7] found that when success rates π1 and

π2 are different, a balanced design results in some loss of efficiency. In his paper, he also

defined cost efficiency (CE), which is the ratio of precision to study cost. CE combines

statistical and cost considerations and the efficiency of a design is determined by CE. For

the same measure of treatment effects, we say a design with higher CE is more efficient

or have larger efficiency. Based on this concept of efficiency, Walter indicated that when

unit cost ratio in one arm is very different from the other, a balanced design could have

very low efficiency. The unit cost here means the cost for one individual in the study. An

optimal allocation was also given in his paper. The design with an optimal allocation

has the highest efficiency. Other authors also considered unbalanced design, such as

Meydrich [8], Morgenstern and Winn [9], Yanagwa and Bolt [10], Lubin [11], Brittain

and Schlesselman [12] and Gail et al.[18]. The discussed measures include risk difference

(RD), relative risk (RR) and odds ratio (OR). All of these authors pointed out that

9



an unbalanced design might have higher efficiency than a balanced design. Dette [19]

considered all three measures and gave different optimal allocation formulas for those

measures. In addition, he pointed out that previous optimal designs are dependent on

unknown probabilities, hence such design might not be robust when success rates are

mis-specified. In his paper, he proposed a maximin method to construct an efficient and

robust design in an individually randomized trial (IRT).

Our observation is that investigators frequently use balanced designs for CRTs and

do not seem to realize the possible low efficiency of a balanced design. In this chapter,

we extend previous work on optimal allocation in a two-arm individual randomized trials

to a two-arm CRT. For a fixed total number of clusters, we will derive optimal allocation

formulas for RD, RR and OR. The design with the optimal allocation is called optimal

design.

2.2 Optimal allocation for RD, RR and OR

Our two-arm CRTs with a binary outcome are based on the common correlation model

[20, 21]. Let Xhij denote the response of the jth individual in the ith cluster in the

hth treatment arm. Let Xhij = 1 when the outcome of interest is present (success) and

Xhij = 0 otherwise (failure). We assume the (unconditional) success rate Xhij = 1 for all

individuals in all clusters in the h-th treatment arm is the same and equal to πh, h = 1, 2.

The responses of individuals from different clusters are assumed to be independent, while

within each cluster, the correlation between any pair of responses is ρhi, the ICC, which

takes value in [-1, 1]. In the common correlation model, we also assume the ICC for all

clusters in the h-th treatment arm is the same. Hence the dependence on i in ρhi can

be suppressed and the ICC in the hth arm is ρh. This ICC can be expressed as [22]:

ρh =
Cov(Xhij, Xhil)√
V ar(Xhij)V ar(Xhil)

=
Pr(Xhij = 1, Xhil = 1)− π2

h

πh(1− πh)
,∀j 6= l, h = 1, 2 (2.1)

Although many investigators assume a constant ρ = ρ1 = ρ2 across all the clusters,
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ρ1 is not necessarily equal to ρ2 in real studies, especially when the outcome is binary.

For example, in the Samoan Women’s Health Study reported by Mishra et al. [23], the

observed ICC in the control arm is much lower than that in the treatment arm. Through

Chapter 2 to 4, we let m be constant cluster size in the trial.

To compare the success rates in the two arms, we consider three different measures

RD, RR and OR. RD, RR and OR are defined as follows:

RD = π1 − π2 ∈ (−1, 1),

RR = π1/π2 ∈ (0,∞),

and OR = π1/(1−π1)
π2/(1−π2)

∈ (0,∞).

RD is the most used measure when investigators design a CRT. RR is often used in

randomized controlled trials and cohort studies and OR is suited for cross-sectional and

case-control studies, see Sistrom et al. [24]. However, OR is also used in randomized

controlled trials, see Knol [25]. Previous research on CRTs usually consider the measure

RD. Since RR and OR can be used in randomized controlled trials, we discuss them too.

We consider the following CRT design problem. Suppose that the total number of

clusters in the trial is predetermined and is equal to k. For a given measure, our goal is

to determine the optimal proportion of clusters allocated to treatment arm 1, i.e. w = k1
k

where k1 and k2 are the numbers of clusters in arm 1 and arm 2 such that k = k1 + k2.

Our criterion for the optimal allocation w ∈ (0, 1) is that the asymptotic variance of

our estimated outcome measure is minimized. Note that minimizing the asymptotic

variance is equal to maximizing the precision. The design with the optimal allocation

is called optimal design. The three outcome measures of interest here are RD, RR and

OR. We expect that they will have different optimal designs.

Recalling that m is the constant cluster size. Our derivations are based on the

approximate normal distribution of the maximum-likelihood estimator (MLE) (π̂1, π̂2) :

√
k


π̂1

π̂2

−
π1

π2

 D→ N


0

0

π1(1−π1)[1+(m−1)ρ1]
wm

0

0 π2(1−π2)[1+(m−1)ρ2]
(1−w)m

 .

From the above result, we derive asymptotic approximations of the distributions of

11



the estimates R̂D = π̂1 − π̂2, R̂R = π̂1/π̂2 and ÔR = π̂1(1−π̂2)
π̂2(1−π̂1)

. Using the delta method,

we obtain the following formulas for the asymptotic variances:

For RD:

Ψ−1
RD ∝

[
1

w
+

π2(1− π2)(1 + (m− 1)ρ2)

π1(1− π1)(1 + (m− 1)ρ1)(1− w)

]
(2.2)

For RR:

Ψ−1
RR ∝

[
1

w
+

π1(1− π2)(1 + (m− 1)ρ2)

π2(1− π1)(1 + (m− 1)ρ1)(1− w)

]
(2.3)

For OR:

Ψ−1
OR ∝

[
1

w
+

π1(1− π1)(1 + (m− 1)ρ2)

π2(1− π2)(1 + (m− 1)ρ1)(1− w)

]
. (2.4)

For each of the above variances, we may treat the parameters π1, π2, ρ1, ρ2 and

m as fixed and known so that the righthand side can be regarded as a function f(w),

where w is the only unknown variable. Different values of w result in different values

of f(w). The minimal value of f(w) is f(w∗) if the first derivative f
′
(w∗) = 0 and the

second derivative f
′′
(w∗) > 0 . Using this approach, we obtain the optimal allocation

w∗x(x = RD,RR,OR) for each measure to arm 1 as:

For RD:

w∗RD =

√
π1(1− π1)(1 + (m− 1)ρ1)√

π1(1− π1)(1 + (m− 1)ρ1) +
√
π2(1− π2)(1 + (m− 1)ρ2)

(2.5)

For RR:

w∗RR =

√
π2(1− π1)(1 + (m− 1)ρ1)√

π2(1− π1)(1 + (m− 1)ρ1) +
√
π1(1− π2)(1 + (m− 1)ρ2)

(2.6)

For OR:

w∗OR =

√
π2(1− π2)(1 + (m− 1)ρ2)√

π2(1− π2)(1 + (m− 1)ρ2) +
√
π1(1− π1)(1 + (m− 1)ρ1)

. (2.7)

Note that for the different measures, the optimal allocation w∗xs are different. Also

we note that w∗RD = 1 − w∗OR. Hence when investigators design a study, they should
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consider which measure they plan to use to estimate the treatment difference between

the two arms. One value of w may be the best for one measure, but not for the others.

In practice, we observe that RR and OR have skewed distributions, and the log

transformation is often used to transform the measures to make them less skewed.

However, the approximate variances of log(RR) and log(OR) are proportional to the

corresponding variances of RR and OR. For example, by the delta method, we have

V ar(log(RR)) ∝ 1
RR
V ar(RR). The term 1

RR
does not involve w and so the value of w∗RR

will be the same, whether a log transformation is used or not. Hence, these optimal

allocations apply regardless of whether or not a log transformation is used.

Table 2.1 gives the optimal allocation w∗ for RD, RR and OR under different com-

binations of π1 and π2 when ρ1 = ρ2. Note that when ρ1 = ρ2, the optimal allocation

w∗x does not depend on cluster size m and simplifies to:

For RD:

w∗RD =

√
π1(1− π1)√

π1(1− π1) +
√
π2(1− π2)

(2.8)

For RR:

w∗RR =

√
π2(1− π1)√

π2(1− π1) +
√
π1(1− π2)

(2.9)

For OR:

w∗OR =

√
π2(1− π2)√

π2(1− π2) +
√
π1(1− π1)

. (2.10)

This table shows that under different combinations of π1 and π2, the optimal allo-

cations for the different measures are different, and also w∗RD = 1− w∗OR. For example,

when π1 = 0.3 and π2 = 0.1, w∗RD = 0.60, w∗RR = 0.34, w∗OR = 0.40. When π1 = π2,

the optimal allocation for all three measures coincides and is equal to 0.5. However,

trials are usually designed under the assumption that π1 6= π2. The optimal allocations

of RD and OR are symmetric around π1 = 0.5 and π2 = 0.5, and the optimal alloca-

tions of RR is symmetric around π1 = 1 − π2. For example, when π1=0.4, π2=0.2 we
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have w∗RD=0.55 and w∗OR=0.45; and when π1=0.6, π2=0.2, we also have w∗RD=0.55 and

w∗OR=0.45. When π1=0.4, π2=0.2 we have w∗RR=0.38; and when π1=0.8, π2=0.6, we

also have w∗RR=0.38.

In this table, we let ρ1 = ρ2, so that the optimal allocation values are the same

for different cluster size m. If ρ1 6= ρ2, the optimal allocation values are different for

different cluster size m. However, the symmetric patterns shown in Table 2.1 still hold.

2.3 Optimal allocation for RD, RR and OR with cost consid-

eration

In Section2.2, we find the optimal allocation by minimizing the asymptotic variance of

the estimator of the measure RD, RR or OR. In individual randomized trials, usually

there is difference in cost per individual between the two arms in the study. For example,

in a cancer and control prevention trial designed to increase a cancer screening, there

are two intervention arms. The intervention in the first arm consists of take home print

materials, a reminder letter and a letter to participants’ providers. In the second arm,

individuals additionally receive a free fecal occult blood test kit. Hence assigning more

individuals to the second arm cost more money. Walter [7], Miettinen [26], Meydrich

[8], Morgenstern and Winn [9] and Dette [19] considered combining cost and statistical

considerations in one optimality criterion. Similar cost concerns also arise in two-arm

CRTs but they have not been much considered. A cluster in one arm may cost more than

that in another arm. Thus we consider designs in which the goal is to minimize total

study costs while maximizing the precision of estimating when the number of clusters is

fixed.

In CRTs individuals are nested in clusters, hence the study cost consists of cost

spent on individuals and cost spent directly on clusters. Let the individual-level cost

per individual be ci and the cluster-level cost per cluster is ei in the ith arm. For a fixed
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Table 2.1: Optimal allocation w∗x for estimating RD, RR and OR with a fixed number

of clusters in the trial (ρ1 = ρ2 = 0.1)

π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a: RD

0.1 0.50 0.43 0.40 0.38 0.38 0.38 0.40 0.43 0.50

0.2 0.57 0.50 0.47 0.45 0.44 0.45 0.47 0.50 0.57

0.3 0.60 0.53 0.50 0.48 0.48 0.48 0.50 0.53 0.60

0.4 0.62 0.55 0.52 0.50 0.49 0.50 0.52 0.55 0.62

0.5 0.62 0.56 0.52 0.51 0.50 0.51 0.52 0.56 0.62

0.6 0.62 0.55 0.52 0.50 0.49 0.50 0.52 0.55 0.62

0.7 0.60 0.53 0.50 0.48 0.48 0.48 0.50 0.53 0.60

0.8 0.57 0.50 0.47 0.45 0.44 0.45 0.47 0.50 0.57

0.9 0.50 0.43 0.40 0.38 0.37 0.38 0.40 0.43 0.50

b: RR

0.1 0.50 0.60 0.66 0.71 0.75 0.79 0.82 0.86 0.90

0.2 0.40 0.50 0.57 0.62 0.67 0.71 0.75 0.80 0.86

0.3 0.34 0.43 0.50 0.56 0.60 0.65 0.70 0.75 0.82

0.4 0.29 0.38 0.44 0.50 0.55 0.60 0.65 0.71 0.79

0.5 0.25 0.33 0.40 0.45 0.50 0.55 0.60 0.67 0.75

0.6 0.21 0.29 0.35 0.40 0.45 0.50 0.56 0.62 0.71

0.7 0.18 0.25 0.30 0.35 0.40 0.44 0.50 0.57 0.66

0.8 0.14 0.20 0.25 0.29 0.33 0.38 0.43 0.50 0.60

0.9 0.10 0.14 0.18 0.21 0.25 0.29 0.34 0.40 0.50

cluster size m, the total cost function is:

k1(mc1 + e1) + k2(mc2 + e2) = k[w(mc1 + e1) + (1− w)(mc2 + e2)] (2.11)

where k1 is the number of clusters in the arm 1, k2 is the number of clusters in the arm

2 and k = k1 + k2 and w = k1/k2. Here m and k are known.
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π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

c: OR

0.1 0.50 0.57 0.60 0.62 0.62 0.62 0.60 0.57 0.50

0.2 0.43 0.50 0.53 0.55 0.56 0.55 0.53 0.50 0.43

0.3 0.40 0.47 0.50 0.52 0.52 0.52 0.50 0.47 0.40

0.4 0.38 0.45 0.48 0.50 0.51 0.50 0.48 0.45 0.38

0.5 0.38 0.44 0.48 0.49 0.50 0.49 0.48 0.44 0.37

0.6 0.38 0.45 0.48 0.50 0.51 0.50 0.48 0.45 0.38

0.7 0.40 0.47 0.50 0.52 0.52 0.52 0.50 0.47 0.40

0.8 0.43 0.50 0.53 0.55 0.56 0.55 0.53 0.50 0.43

0.9 0.50 0.57 0.60 0.62 0.62 0.62 0.60 0.57 0.50

Following Walter [7], we define cost efficiency (CE) as the ratio of the precision in

estimating the effect (RD, RR, OR) to the total study cost. This is a natural way to

combine statistical and cost considerations. The criterion for optimal allocation wc∗x is to

maximizes CE for measure x, x ∈ (RD,RR,OR). Note that without considering cost, a

design with higher efficiency often refers to the design with lower variance of estimating.

However, when cost is included, we need define a design with higher efficiency as the

design with higher CE. Hence efficiency here refers to CE when cost is considered and

we may interchange using these two terms. The CE for each measure is:

For RD:

CERD =
ΨRD

k1(mc1 + e1) + k2(mc2 + e2)
(2.12)

For RR:

CERR =
ΨRR

k1(mc1 + e1) + k2(mc2 + e2)
(2.13)

For OR:

CEOR =
ΨOR

k1(mc1 + e1) + k2(mc2 + e2)
(2.14)
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Let the cost ratio for a cluster in arm 1 versus arm 2 be defined as γ = mc1+e1
mc2+e2

. Note

that the cost for a cluster include both the cluster-level cost and the individual-level

cost. Since in CRTs the randomized unit is cluster, we call γ unit cost ratio. It should

be distinguished from unit cost in individual randomized trials, which refers to the ratio

of cost per individual. Using the same method as in last section, we obtain the optimal

allocation w∗x which maximizes CERD, CERR or CEOR for each measure:

For RD:

wc∗RD =

√
π1(1− π1)(1 + (m− 1)ρ1)√

π1(1− π1)(1 + (m− 1)ρ1) +
√
γπ2(1− π2)(1 + (m− 1)ρ2)

(2.15)

For RR:

wc∗RR =

√
π2(1− π1)(1 + (m− 1)ρ1)√

π2(1− π1)(1 + (m− 1)ρ1) +
√
γπ1(1− π2)(1 + (m− 1)ρ2)

(2.16)

For OR:

wc∗OR =

√
π2(1− π2)(1 + (m− 1)ρ2)√

π2(1− π2)(1 + (m− 1)ρ2) +
√
γπ1(1− π1)(1 + (m− 1)ρ1)

(2.17)

These formulas are similar to equations 2.5, 2.6 and 2.7 except for the presence of

γ in each denominator. The optimal allocation wc∗ is different for different measures.

When costs in the two arms are not equal, e.g.,γ 6= 1, the relationship wc∗DR = 1−wc∗OR no

longer holds, which is true for w∗ when costs are not considered. If we assume ρ1 = ρ2,

then all three wc∗s reduce to those in Dette [19]. If π1 = π2 and ρ1 = ρ2, the optimal

allocation for all three measures coincides and is equal to 1
1+
√
γ
. In addition, if unit costs

are the same (γ = 1), then wc∗x is equal to 1
2
, the balanced design.

In Table 2.2, we give the values of optimal allocation wc∗x for RD , RR and OR for

different combinations of π1 and π1 when γ = 5, assuming ρ1 = ρ2.

The table illustrates that when the unit costs are different in the two arms, the

relationship wc∗DR = 1 − wc∗OR does not hold. For example, when π1 = 0.3 and π2 = 0.1,

wc∗RD = 0.41, and wc∗OR = 0.23. When π1 = π2, all optimal allocations for RD, RR and

OR coincide, and are equal to 1
1+
√
γ

= 1
1+
√

5
= 0.31 rather than 0.5. All the optimal
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Table 2.2: Optimal allocation wc∗x for estimating RD, RR and OR with a fixed number

of clusters in the trial(γ = 5, ρ1 = ρ2 = 0.1)

π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a: RD

0.1 0.31 0.25 0.23 0.21 0.21 0.21 0.23 0.25 0.31

0.2 0.37 0.31 0.28 0.27 0.26 0.27 0.28 0.31 0.37

0.3 0.41 0.34 0.31 0.29 0.29 0.29 0.31 0.34 0.41

0.4 0.42 0.35 0.32 0.31 0.30 0.31 0.32 0.35 0.42

0.5 0.43 0.36 0.33 0.31 0.31 0.31 0.33 0.36 0.43

0.6 0.42 0.35 0.32 0.31 0.30 0.31 0.32 0.35 0.42

0.7 0.41 0.34 0.31 0.29 0.29 0.29 0.31 0.34 0.41

0.8 0.37 0.31 0.28 0.27 0.26 0.27 0.28 0.31 0.37

0.9 0.31 0.25 0.23 0.22 0.21 0.22 0.23 0.25 0.31

b: RR

0.1 0.31 0.40 0.47 0.52 0.57 0.62 0.67 0.73 0.80

0.2 0.23 0.31 0.37 0.42 0.47 0.52 0.58 0.64 0.73

0.3 0.19 0.25 0.31 0.36 0.41 0.46 0.51 0.58 0.67

0.4 0.15 0.22 0.26 0.31 0.35 0.40 0.46 0.52 0.62

0.5 0.13 0.18 0.23 0.27 0.31 0.35 0.41 0.47 0.57

0.6 0.11 0.15 0.19 0.23 0.27 0.31 0.36 0.42 0.52

0.7 0.09 0.13 0.16 0.19 0.23 0.26 0.31 0.37 0.47

0.8 0.07 0.10 0.13 0.15 0.18 0.22 0.25 0.31 0.40

0.9 0.05 0.07 0.09 0.11 0.13 0.15 0.19 0.23 0.31

allocations under the situation γ = 5 are smaller than those in Table 2.1, that is, fewer

units are allocated to the more expensive arm. Note that if ρ1 6= ρ2, then when π1 = π2,

the optimal allocations for RD and RR are same, but different from that for OR. This

can be easily observed from formulas (2.15, 2.16, 2.15).
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π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

c: OR

0.1 0.31 0.37 0.41 0.42 0.43 0.42 0.41 0.37 0.31

0.2 0.25 0.31 0.34 0.35 0.36 0.35 0.34 0.31 0.25

0.3 0.23 0.28 0.31 0.32 0.33 0.32 0.31 0.28 0.23

0.4 0.21 0.27 0.29 0.31 0.31 0.31 0.29 0.27 0.21

0.5 0.21 0.26 0.29 0.30 0.31 0.30 0.29 0.26 0.21

0.6 0.21 0.27 0.29 0.31 0.31 0.31 0.29 0.27 0.21

0.7 0.23 0.28 0.31 0.32 0.33 0.32 0.31 0.28 0.23

0.8 0.25 0.31 0.34 0.35 0.36 0.35 0.34 0.31 0.25

0.9 0.31 0.37 0.41 0.42 0.43 0.42 0.41 0.37 0.31

2.4 Comparison of optimal allocation designs and balanced de-

signs

We have seen that only under specific conditions the balanced design is the most efficient

design. If the balanced design is not the most efficient design, we may ask how good it

is? In a balanced design, we have the allocation w = 1
2
. In this section, we introduce

the idea of relative efficiency and use it to compare efficient and balanced designs.

Recall that cost efficiency CEx, x ∈ {RD,RR,OR} is a function of π1, p2, w,m, ρ1, ρ2, c1

and c2. Given w ∈ {0, 1}, we can define relative cost efficiency (call it RCFFF)as:

RCEx(π1, π2, w,m, ρ1, ρ2, c1, c2) =
CEx(π1, π2, w,m, ρ1, ρ2, c1, c2)

maxη∈{0,1}CEx(π1, π2, η,m, ρ1, ρ2, c1, c2)
(2.18)

Given π1, π2,m, ρ1, ρ2, c1, c2, RCE is a function of w:

RCEx(w) =
CEx(w)

CEx(wc∗x )
(2.19)

Different values of w result in different values of RCE. The maximal value of RCE

is 1, which is reached when w takes the optimal allocation value w∗x for measure x ∈

(RD,RR,OR). If RCE is close to 1, the design is a good design; if RCE is much lower
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than 1, the design may not be preferred. For a balanced CRT design, w = 1
2
, and the

RCE is expressed as RCEx(w = 1
2
). If RCEx(w = 1

2
) is close to 1, then the balanced

design is good. Note that for different measures x, the values of RCEx(w = 1
2
) is

different. This means a balanced design may have high RCE for one measure but not

another.

The following tables show the RCE of a balanced design for RD, RR and OR for

different combinations of π1 and π2. Note that when ρ1 and ρ2 are assumed equal, RCE

is independent of cluster size m.

Table 2.3 shows the RCE for estimating RD for different combinations of π1 and π2,

comparing equal allocation to the optimal allocation. We observe a symmetrical pattern.

The RCE is symmetrical about π1 = 0.5 and about π2 = 0.5. In Table 2.3a, the cost

ratio γ is 5. The range of RCE is between 0.67 and 0.99, and in many scenarios it is

larger than 0.8. The lowest RCE 0.67 occurs when π1 = 0.1 or 0.9 and π2 = 0.5. In

Table 2.3b, the cost ratio γ is 10. When the cost ratio γ increases from 5 to 10, for all

combinations of π1 and π2, the RCE decreases, meaning that fewer units are allocated

to the more costly arm. The range of RCE for γ = 10 is between 0.56 and 0.95. The

lowest RCE 0.56 also occurs when π1 = 0.1, 0.9 and π2 = 0.5. But in many scenarios,

the RCE is lower than 0.8. Therefore, when costs in the two arms are very different,

investigators should be careful about choosing a balanced design for estimating RD.

Table 2.4 shows the RCE for estimating RR under different combinations of π1 and

π2. The RCE is symmetrical about the diagonal line π1 = 1−π2. In Table 2.4a, the cost

ratio γ is 5. The range of RCE is between 0.26 and 1, and in many scenarios it is smaller

than 0.8. The smallest RCE, 0.26, occurs when π1 = 0.9 and π2 = 0.1. In Table 2.4b,

the cost ratio γ is 10. The same symmetrical pattern as in Table 2.4 is observed. When

the cost ratio γ increases to 10, for all combinations of π1 and π2, the RCE decreases.

The range of RCE for γ = 10 is between 0.16 and 1. The smallest RCE 0.16 also occurs

when π1 = 0.9 and π2 = 0.1. But in many other scenarios, the RCE is smaller than

0.8. Thus when cost in the two arms are very different and π1 > π2, we recommend

investigators should be careful about choosing a balanced design for estimating RR.
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Table 2.3: RCE of equal allocation w = 1
2

for estimating RD with fixed number of

clusters under different combinations of π1 and π2 (ρ1 = ρ2)

.

π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a: γ = 5

0.1 0.87 0.76 0.71 0.68 0.67 0.68 0.71 0.76 0.87

0.2 0.95 0.87 0.82 0.80 0.79 0.80 0.82 0.87 0.95

0.3 0.97 0.91 0.87 0.85 0.84 0.85 0.87 0.91 0.97

0.4 0.98 0.93 0.89 0.87 0.87 0.87 0.89 0.93 0.98

0.5 0.99 0.94 0.90 0.88 0.87 0.88 0.90 0.94 0.99

0.6 0.98 0.93 0.89 0.87 0.87 0.87 0.89 0.93 0.98

0.7 0.97 0.91 0.87 0.85 0.84 0.85 0.87 0.91 0.97

0.8 0.95 0.87 0.82 0.80 0.79 0.80 0.82 0.87 0.95

0.9 0.87 0.76 0.71 0.68 0.67 0.68 0.71 0.76 0.87

b: γ = 10

0.1 0.79 0.66 0.60 0.57 0.56 0.57 0.60 0.66 0.79

0.2 0.89 0.79 0.73 0.70 0.69 0.70 0.73 0.79 0.89

0.3 0.93 0.84 0.79 0.76 0.75 0.76 0.79 0.84 0.93

0.4 0.94 0.86 0.81 0.79 0.78 0.79 0.81 0.86 0.94

0.5 0.95 0.87 0.82 0.80 0.79 0.80 0.82 0.87 0.95

0.6 0.94 0.86 0.81 0.79 0.78 0.79 0.81 0.86 0.94

0.7 0.93 0.84 0.79 0.76 0.75 0.76 0.79 0.84 0.93

0.8 0.89 0.79 0.73 0.70 0.69 0.70 0.73 0.79 0.89

0.9 0.79 0.66 0.60 0.57 0.56 0.57 0.60 0.66 0.79

Investigators also should be aware that the lowest RCE for estimating RR is worse than

that for estimating RD.

Table 2.5 shows the RCE for estimating OR for different combinations of π1 and

π2. Compared to Tables 2.3, we can find the same symmetrical pattern. In Table 2.5a,
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Table 2.4: RCE of equal allocation w = 1
2

for estimating RR with fixed number of

clusters under different combinations of π1 and π2 (ρ1 = ρ2)

π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a: γ = 5

0.1 0.87 0.97 1.00 1.00 0.99 0.98 0.96 0.94 0.91

0.2 0.72 0.87 0.95 0.98 1.00 1.00 0.99 0.97 0.94

0.3 0.61 0.77 0.87 0.94 0.97 1.00 1.00 0.99 0.96

0.4 0.52 0.68 0.79 0.87 0.93 0.97 1.00 1.00 0.98

0.5 0.46 0.60 0.71 0.80 0.87 0.93 0.97 1.00 0.99

0.6 0.40 0.52 0.62 0.72 0.80 0.87 0.94 0.98 1.00

0.7 0.35 0.45 0.54 0.62 0.71 0.79 0.87 0.95 1.00

0.8 0.31 0.38 0.45 0.52 0.60 0.68 0.77 0.87 0.97

0.9 0.26 0.31 0.35 0.40 0.46 0.52 0.61 0.72 0.87

b: γ = 10

0.1 0.79 0.92 0.97 0.99 1.00 1.00 0.99 0.98 0.96

0.2 0.61 0.79 0.89 0.94 0.98 0.99 1.00 1.00 0.98

0.3 0.49 0.67 0.79 0.87 0.93 0.97 0.99 1.00 0.99

0.4 0.41 0.57 0.69 0.79 0.86 0.92 0.97 0.99 1.00

0.5 0.35 0.48 0.60 0.70 0.79 0.86 0.93 0.98 1.00

0.6 0.29 0.41 0.51 0.61 0.70 0.79 0.87 0.94 0.99

0.7 0.25 0.34 0.43 0.51 0.60 0.69 0.79 0.89 0.97

0.8 0.21 0.27 0.34 0.41 0.48 0.57 0.67 0.79 0.92

0.9 0.16 0.21 0.25 0.29 0.35 0.41 0.49 0.61 0.79

the range of RCE is the same as in Table 2.3a, and the same is true comparing Table

2.5b to Table 2.3b. But the lowest RCE for estimating the OR occurs when π1 = 0.5

and π2 = 0.1 or 0.9 instead. Just as when estimating RD, when costs in the two arms

are very different, investigators should be careful about choosing a balanced design for
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Table 2.5: RCE of equal allocation w = 1
2

for estimating OR with fixed number of

clusters under different combinations of π1 and π2 (ρ1 = ρ2)

π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a: γ = 5

0.1 0.87 0.95 0.97 0.98 0.99 0.98 0.97 0.95 0.87

0.2 0.76 0.87 0.91 0.93 0.94 0.93 0.91 0.87 0.76

0.3 0.71 0.82 0.87 0.89 0.90 0.89 0.87 0.82 0.71

0.4 0.68 0.80 0.85 0.87 0.88 0.87 0.85 0.80 0.68

0.5 0.67 0.79 0.84 0.87 0.87 0.87 0.84 0.79 0.67

0.6 0.68 0.80 0.85 0.87 0.88 0.87 0.85 0.80 0.68

0.7 0.71 0.82 0.87 0.89 0.90 0.89 0.87 0.82 0.71

0.8 0.76 0.87 0.91 0.93 0.94 0.93 0.91 0.87 0.76

0.9 0.87 0.95 0.97 0.98 0.99 0.98 0.97 0.95 0.87

b: γ = 10

0.1 0.79 0.89 0.93 0.94 0.95 0.94 0.93 0.89 0.79

0.2 0.66 0.79 0.84 0.86 0.87 0.86 0.84 0.79 0.66

0.3 0.60 0.73 0.79 0.81 0.82 0.81 0.79 0.73 0.60

0.4 0.57 0.70 0.76 0.79 0.80 0.79 0.76 0.70 0.57

0.5 0.56 0.69 0.75 0.78 0.79 0.78 0.75 0.69 0.56

0.6 0.57 0.70 0.76 0.79 0.80 0.79 0.76 0.70 0.57

0.7 0.60 0.73 0.79 0.81 0.82 0.81 0.79 0.73 0.60

0.8 0.66 0.79 0.84 0.86 0.87 0.86 0.84 0.79 0.66

0.9 0.79 0.89 0.93 0.94 0.95 0.94 0.93 0.89 0.79

estimating OR.
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2.5 Application

We show how to use the results in previous sections in the Samoan Women’s Health study

[23]. This study was a CRT designed to increase rates of mammogram usage in women of

Samoan ancestry. In the trial, Samoan churches in southern California were randomized

to intervention and control arms, and women at intervention churches participated in a

culturally appropriate breast cancer education program. The control arm received usual

care. The outcome was self-reported receipt of mammogram at follow-up.

Churches are clusters in this study and 55 churches were recruited. The actual cluster

size varies and the mean cluster size is 14. But for illustration purpose, in this section

we assume that the cluster size is constant and equal to 14. We suppose that the cost

for an individual in the intervention is 10 times as the cost per individual in the control

arm. The success proportions in the intervention and and control arm are 0.5 and 0.4,

respectively, and the ICCs are 0.3 and 0.1.

If investigators want to estimate RD, equation (2.15) is used and the optimal allo-

cation is w∗RD = 0.32. This means that 55x0.32 = 17.6 clusters must be assigned to the

intervention arm. Since the number of cluster should be an integer, 18 clusters should

be assigned to the intervention arm and 37 clusters should be assigned to the control

arm.

In the original design, 30 churches were assigned to the intervention arm and 25

churches were assigned to the control arm, hence w = 0.55. From the equation (2.18),

the relative efficiency of the original design is 0.876. Therefore, if the investigators assign

18 clusters to the intervention arm instead of 30, the RCE increases about 14% for the

measure of RD.

Similarly, if investigators want to estimate the RR, equation (2.16) is used and the

optimal allocation w∗RR = 0.27. Hence 15 clusters should be assigned to the intervention

arm and 40 clusters should be assigned to the control arm. The RCE of the original

design is 0.796. Therefore, if the investigators assign 15 clusters to the intervention arm

instead of 30, the RCE increases about 26%.
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Further, if the investigators want to estimate the OR, equation (2.17) is used and the

optimal allocation w∗OR = 0.18. Hence 10 clusters should be assigned to the intervention

arm and 45 clusters should be assigned to control. The RCE of the original design

is 0.940. Thus, the original design is close to the maximal RCE when the OR is the

measure of interest.

Investigators sometimes are interested in estimating the success proportion in the

intervention arm in addition to the difference of proportions between the two arms. De-

creasing the number of clusters in the intervention arm leads to a less accurate estimate

of the proportion in the intervention arm. Therefore if a large decrease of the number

of clusters in the intervention arm only brings a small increase of RCE for estimating

difference of proportions, we do not recommend making this adjustment.

Throughout we have assumed the true values of the success proportions and ICCs in

the intervention arm and the control arm are available and use them to assign clusters

to the two arms for estimating different measures. For our example, these numbers

are actually estimates from the actual data after the Samoan study is completed. The

question is how to determine the allocation when the true values of parameters are

unknown. We will give some approaches in the next chapter.

2.6 Chapter summary and discussion

In this chapter, we answer the question how should investigators assign clusters in each

arm efficiently to infer treatment effect when a fixed number of clusters is given. Without

cost consideration, the criterion is to minimize the variance of the difference estimate.

Then we consider the cost in the study. We define the CE, which is the ratio of precision

of estimating to the study cost, and the criterion is to maximize the CE. The allocation

scheme that corresponds to the maximal CE is the optimal allocation. The optimal

design is dependent on the success proportions, ICCs, cluster size and cost ratio. If the

individual-level cost and cluster-level cost in two arms are very different, the optimal

allocation may be quite different from 0.5. We define RCE which is the ratio of CE in
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two designs and it can be used to compare different designs. Current research on design

problems for CRTs largely consider balanced design, which equally allocate clusters to

different arms, and unequal allocation is rarely considered. We have shown that RCE

may be very low when the unit cost is very different in two arms.

We showed that the optimal allocation values are very different for different measures.

All of these measure, RD, RR and OR are used in randomized trials [25]. Hence all of

these measures can be used in CRTs. RD is more discussed in literature, especially

when sample size calculation is involved. Note that RD is absolute measure, but RR

and OR are relative measures. Therefore, RR and OR tend to be insensitive to baseline

risk and RD is sensitive to baseline risk. Investigators should decide which measure is

appropriate for their CRT first before finding an optimal design.

As discussed in [12] and in last section, although the main objective of a CRT is to

estimate the difference between arms, investigators may have the second objective in

the intervention arm to increase the knowledge of the intervention population. From

this perspective, assigning more clusters in the control arm is not efficient even though

optimal allocation assigning more clusters to the control arm. This is because our

optimal allocation is based on estimating the difference between two arms. If there is

no preference among RD, RR or OD, investigators may consider using the measure with

larger value of wcx which assign more clusters to the intervention arm.

In our optimal design, we assume all individuals in a cluster are recruited. We do

not consider the problem how many individuals should be sampled from a cluster. For

example, suppose the cluster in a CRT is the community with thousands of people,

investigators may not recruit all individuals in a community to the study. Instead,

investigators need to decide how many individuals recruited from a community and how

many communities are needed in the study. Without cost consideration, if the total

number of individuals is fixed, investigators may prefer to including more clusters with

small sample size per cluster rather than including less clusters with large sample size

per cluster. For example, see discussion in Donner [1]. However, if the cost is considered,

the first choice is more expensive than the second. Therefore, the sample size per cluster
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can be neither too small nor too big. Breukelen and Candel [27] answered how many

individuals should be sampled from a cluster. The optimal sample size per cluster is

given by:

m =

√
(1− ρ)e

ρc
(2.20)

where e is the cluster-level cost per cluster and c is the individual-level cost per indi-

vidual. This formula is also given in Raudenbush [28] in another form. If the total

budget is B, then the number of cluster is k = B/(e + mc). However, Breukelen and

Candel did not consider the cost difference in the two arms and assumed a balanced

design. Therefore, further research is needed to extend our optimal design to the design

of CRTs in which sub-sample of individuals in a cluster is recruited.

Our optimal design is based on no-covariate case. In fact, when investigators analyze

CRTs data to detect the difference between the two arms, they usually need adjust for

individual-level and cluster-level covariates. Raudenbush [28] used the mixed linear

regression model to explore the optimal design with covariates consideration, assuming

the outcome following a normal distribution. Basically he dealt with the problem of the

optimal sample size per cluster. Based on the mixed model, he gave a formula of the

optimal sample size per cluster incorporating covariates consideration. However, he did

not consider the cost difference in the two arms and did not consider the unbalanced

design. Further research to incorporate covariates consideration in our optimal design

is needed.

Note that in this chapter, we consider how to assign clusters to each arm when the

total number of clusters is given. We do not consider the power of the trial and the

sample size. That means, we do not answer the question how many clusters are required

to satisfy the power requirement. We will consider the power and sample size problem

in Chapter 4.
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CHAPTER 3

Robust design when the total number of clusters is

fixed and cluster sizes are equal

3.1 Introduction

In Chapter 2, we determined the optimal allocations w∗x for a particular measure. We

calculated RCE of balanced designs, the ratio of CE of balanced designs to CE of optimal

allocation designs. Optimal allocation designs are always better than balanced designs.

However, in practice true values of π1, π2, ρ1 and ρ2 in the two arms of a CRT are

generally not available before the study. Hence investigators are likely to mis-specify

the values of these parameters, and the misspecified parameters results in a design which

is not really an optimal design.

In this chapter, we first explore the effects of success rates π1 and π2, ICCs ρ1 and ρ2,

unit costs and cluster size on the optimal allocation. For an optimal design, the RCE is

1. If we set the RCE required to be at least a, then we can construct a range of values

for w that will satisfy the requirement. We call that range of values for w the allocation

interval. We next explore the effects of parameters on that interval.

In order to construct a robust design, we propose two methods: a Bayesian method

and a maximin method. We will show how to use these two methods to construct a

design when we do not know the true values of parameters. We end this chapter by

comparing designs based on these two methods with a balanced design, in which equal

number of clusters are randomly assigned to different arms.
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3.2 Effects of parameters on optimal allocation

3.2.1 Effects of π1 and π2

The optimal allocation wc∗x is dependent on the values of parameters π1, π2, ρ1, ρ2, m

and γ. In this section, we briefly discuss how these parameters affect the value of wc∗x .

If a parameter has little effect on wc∗x , even though that parameter is misspecified by

investigators, the allocation w calculated may not be far away from wc∗x , and the design

should be relatively robust.

Let λ = 1+(m−1)ρ2
1+(m−1)ρ1

. The term 1 + (m − 1)ρ is design effect, for more discussion, see

Donner and Klar [1]. Hence λ is the ratio of design effects in the two arms. Using an

idea from [19], let x ∈ {RD,RR,OR} and we define x̃:

x̃ =


π2(1−π2)
π1(1−π1)

if x = RD

π1(1−π2)
π2(1−π1)

if x = RR

π1(1−π1)
π2(1−π2)

if x = OR

.

Then the optimal allocation wc∗x for each x ∈ {RD,RR,OR} given in formulas

(2.15,2.16 and 2.17 ) can be expressed as:

wc∗x =
1

1 +
√
γx̃λ

, (3.1)

so that wc∗x is determined by the combination effects of x̃, γ and λ. For different measures,

x̃ is different even though π1 and π2 are the same. This is the reason why investigators

should assign different numbers of clusters in the two arms when they use different

measures.

Given γ and λ, we first discuss the effects of π1 and π2 on wc∗x when they are mis-

specified. Suppose π2 is fixed and we change the value of π1. Clearly, as π1 increases

from 0 to 1, 1−π1 decreases from 1 to 0. Therefore when the measure is RR, increasing

π1 makes x̃ larger, hence wc∗RR becomes smaller, and small number of clusters should be

assigned to arm 1. Note that π1/(1−π1) has no upper bound, so wc∗RR can be very small

if π1 is very large.
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When the measure is RD and OR, π1 and 1 − π1 cancel each other’s effect on x̃.

Consequently, x̃ does not increase or decrease when π1 increases. With π1 increasing

from 0 to 0.5, π1(1−π1) increases from 0 to its maximal value 0.25, and with π1 increasing

from 0.5 to 1, π1(1 − π1) decreases from 0.25 to 0. Therefore, for the measure RD,

increasing π1 from 0 to 0.5 makes x̃ smaller, hence wc∗RD becomes larger; and increasing

π1 from 0.5 to 1 makes x̃ larger, hence w∗RD becomes smaller. Correspondingly, for the

measure OR, wc∗OR becomes smaller with π1 increasing from 0 to 0.5 and becomes larger

with π1 increasing from 0.5 to 1.

The effect of π2 can be studied in a similar way, but in a reverse way. When the

measure is RR, increasing π2 makes wc∗RR larger. When the measure is RD, wc∗RD becomes

smaller when π2 increases from 0 to 0.5 and becomes larger when π2 increases from 0.5

to 1. When the measure is OR, wc∗OR becomes larger when π2 increases from 0 to 0.5 and

becomes smaller when π2 increases from 0.5 to 1.

The effects of π1 and π2 on the optimal allocation wc∗x are illustrated in Figure 3.1.

In this figure, we let ρ1 = 0.3, ρ2 = 0.1 and m = 14, which are the parameter values in

Samoan Women’s Health Study.

Figure 3.1(a) shows how the optimal allocation value changes for different values of

π1 and π2 for RD. We see that for a fixed value of π2, wc∗RD increases with π1 increasing

from 0 to 0.5 and then decreases with π1 increasing from 0.5 to 1. When π1 is close to 0

or close to 1, the change rate of wc∗RD is very large. When π1 is close to 0.5, the change

rate of wc∗RD is very small. For example, when π2 = 0.5, wc∗RD changes from 0 to about

0.23 with π1 increasing from 0 to 0.1; in contrast, wc∗RD almost does not change with π1

increasing from 0 to 0.1. We see that the change rate of wc∗RD is larger for π2 = 0.1 than

that for π2 = 0.5. It indicates that if π1 and π2 are close to 0.5, for the measure RD, the

optimal allocation value is robust. But if π1 or π2 is very close to 0 or 1, misspecifying

π1 or π2 may result in a very different allocation value.

Figure 3.1(b) shows how the optimal allocation value changes for different values

of π1 and π2 for RR. We see that for a fixed value of π2, wc∗RR keeps decreasing as π1
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(a) RD (b) RR

(c) OR

Figure 3.1: Relationship between optimal allocation and π1 for different π2 when ρ1=0.3, ρ2=0.1,

m=14, and γ=10)
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increases from 0 to 1. When π1 is close to 0 or close to 1, the change rate of wc∗RR is very

large. When π1 is close to 0.5, the change rate of wc∗RR is not small. It indicates that for

the measure of RR, even though π1 and π2 are close to 0.5, the optimal allocation value

is not very robust, and misspecifying π1 or π2 may result in a very different allocation

value.

Figure 3.1(c) shows how optimal allocation value changes for different values of π1

and π2 for OR. For a fixed value of π2, wcc∗OR decrease with π1 increasing from 0 to 0.5

and then increase with π1 increasing from 0.5 to 1. When π1 is close to 0 or close to 1,

the change rate of wc∗OR is very large. When π1 is close to 0.5, the change rate of wc∗OR is

very small. The change rate of wc∗OR is larger when π2 = 0.1 than that when π2 = 0.5.

Hence for the measure OR, if π1 and π2 are close to 0.5, the optimal allocation value is

robust. But if π1 or π2 is very close to 0 or 1, misspecifying π1 or π2 may result in a

very different allocation value. The conclusion is similar to that for the measure RD.

In summary, when RR is used, the optimal allocation value is sensitive to different

values of π1 and π2. When RD or OR is used, the optimal allocation value does not

change a lot for different values of π1 and π2 when they are both close to 0.5. However,

if π1 or π2 is close to 0 or 1, the optimal optimal allocation value can vary a lot for

different values of π1 and π2.

3.2.2 Effects of cost ratio, ICCs and cluster size

Given π1 and π2, x̃ is fixed and the optimal allocation wc∗x is determined by the product

of γλ. Recall that γ is the cost ratio and λ is the design effect ratio. As the value of γλ

increases, wc∗x decreases which means that fewer clusters need be assigned to arm 1; in

contrast, as the value of γλ decreases, wc∗x increases, and more clusters need be assigned

to arm 1.

Recall that the unit cost ratio for a cluster in arm 1 versus arm 2 is γ = mc1+e1
mc2+e2

. The

parameters c1, c2 are individual-level cost and e1, e2 are cluster-level cost. To simplify the

discussion in this chapter, we do not distinguish individual-level cost and cluster-level
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(a) m=5 (b) m=500

Figure 3.2: Relationship between optimal allocation and ICC ratio for estimating RD with different

cost ratios when π1=0.3, π2=0.1 and ρ1=0.01

cost. Hence cost ratio is reduced to γ = c1
c2

.

Given π1 and π2 we consider three more specific situations.

(1). ρ1 = ρ2: In this case, wc∗x = 1
1+
√
γx̃

. We see when ρ1 and ρ2 are equal, accurate

values of cluster size of m, ρ1 and ρ2 are not needed to determine wc∗x . The value of wc∗x

is determined by the cost ratio γ = c2
c1

.

(2). (m− 1)ρ1,(m− 1)ρ2 are very small: λ = 1+(m−1)ρ2
1+(m−1)ρ1

≈ 1 and w∗x ≈ 1
1+
√
γx̃

. We see

that even though ρ1 and ρ2 are unequal, as long as ICCs are very small and cluster size

m is small, accurate values of m, ρ1 and ρ2 are not needed to determine wc∗x . The value

of wc∗x is determined by the cost ratio γ = c1
c2

.

(3). Large cluster size m→∞: wc∗x ≈ 1

1+
√
γx̃

ρ2
ρ1

. When the cluster size is very large,

an accurate value of m is not needed to determine wc∗x . wc∗x is determined by the cost

ratio c2
c1

and the ICC ratio ρ2
ρ1

, which is independent of cluster size.

From Figure 3.2, we further explore the effects of the cost ratio γ = c1
c2

and the ICC

ratio ρ2
ρ1

on optimal allocation for different cluster size. In Figure 3.2(a) where cluster

size=5, we see that for each value of γ, with an increase of ρ2
ρ1

, the change in wc∗RD is

very small. For example, when γ = 1, with ρ2
ρ1

increasing 10-fold, wc∗RD decreases from

0.62 to 0.59 and the absolute change in wc∗RD is only about 0.03. When γ = 10, with ρ2
ρ1

increasing 10-fold, the absolute change in wc∗RD is only about 0.04. However, for fixed

33



(a) m=5 (b) m=500

Figure 3.3: Relationship between optimal allocation and ICC ratio for estimating RR with different

cost ratios when π1=0.3, π2=0.1 and ρ1=0.01

values of ρ2
ρ1

, with an increase of γ, the change in wc∗RD is large. For example, when ρ2
ρ1

= 1,

when γ changes from 1 to 10, that means cost ratio increase 10-fold, wc∗RD decrease from

0.62 to 0.34, and the absolute change in wc∗RD is about 0.28. Therefore, when cluster size

is small, wc∗RD is mainly affected by cost ratio γ.

In Figure 3.2(b) where cluster size=500, we see that for each value of γ, with an

increase of ρ2
ρ1

, the change in wc∗RD is much larger. For example, when γ = 1, with ρ2
ρ1

increasing 10-fold, wc∗RD decreases from 0.76 to 0.52 and the absolute change in wc∗RD is

about 0.24. And for fixed values of ρ2
ρ1

, with an increase in γ, the change in wc∗RD is also

much larger. For example, when ρ2
ρ1

= 1, with γ changing from 1 to 10, wc∗RD decreases

from 0.76 to 0.50, and the absolute change in w∗RD is about 0.26. Therefore, when cluster

size is large, wc∗RD is affected by both cost ratio γ and ICC ratio ρ2
ρ1

.

Figures 3.3(a) and 3.3(b) show the relationship between optimal allocation for esti-

mating RR with ICC ratio ρ2
ρ1

and cost ratio γ, and cluster size=5 in Figure 3.3(a) and

cluster size =500 in Figure 3.3(b). Although for specific values of ρ2
ρ1

and γ, the value of

wc∗RR in Figure 3.3(a) with small cluster size is different from wc∗RD in Figure 3.2(a), the

pattern of curves are similar. For each value of γ, with an increase of ρ2
ρ1

, the change in

wc∗RD is very small. Hence wc∗RR is mainly affected by the cost ratio when cluster size is

small. Further, the curves pattern in Figure 3.3(b) is similar with that in Figure 3.2(b).
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When cluster size is large, wc∗RR is affected by both cost ratio γ and ICC ratio ρ2
ρ1

.

Interestingly, given π1 and π2, the effects of cluster size m, cost ratio γ and ICC

ratio ρ2
ρ1

on optimal allocation wc∗x for all the three measures (x = RD,RR,OR) are

similar. This is not surprising. In equation (3.1), the optimal allocation wc∗x for all three

measures is determined by γ and λ = 1+(m−1)ρ2
1+(m−1)ρ1

in the same way.

In summary, suppose π1 and π2 are given, when the cluster size is small, the optimal

allocation wc∗x is mainly determined by cost ratio, and is robust to ICCs. Even though

the ICCs are mis-specified, the allocation w does not change much. Only when cluster

size is very large, misspecifying ICCs may result in a wrong allocation value. The trend

of w with ICC ratio change for the three measures are the same.

3.3 Effects of parameters on the allocation interval of w for a

fixed RCE

3.3.1 Interval of w for a fixed RCE

In this section, we discussed how different parameters affect the optimal allocation value

w for a measure. If parameters are misspecified in the study, the allocation value of w

calculated may not be the optimal allocation wc∗x . The value of w can be any number

between 0 and 1 and determines the RCEFf of a design. When the value of w is equal

to the optimal allocation wc∗x for the measure x ∈ (RD,RR,OR), the RCE for that

measure x reaches the maximal value 1. When the value of w departs from wc∗x , the

RCE decreases.

However, in practice we may not need the RCE be 1. We may only need RCE be

larger than a pre-determined value, e.g., 0.9. If we set the RCE required be at least a,

say a=0.9, then the corresponding w falls in an interval of (wc∗xl , w
c∗
xu) which depends on

a. Therefore even the parameters are mis-specified, as long as the allocation value w is

in such an interval, the requirement of the RCE is still satisfied. We define that interval

the allocation interval and we now address how parameters affect that interval.
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In order to find the lower bound wc∗xl and the upper bound wc∗xu of that interval, we

set the right hand of equation (2.19) to be a and solve the equation with respect to w.

We obtain:

w∗xl =
2a+ (1− a)(ẋ+ a) + 2

√
ẋγ − (

√
ẋ+
√
γ)
√

(1− a)[(1− a)(ẋ+ γ) + 2(1 + a)
√
ẋγ]

2[a+ (1− a)(ẋ+ γ) + 2
√
ẋγ) + aẋγ]

(3.2)

w∗xu =
2a+ (1− a)(ẋ+ a) + 2

√
ẋγ + (

√
ẋ+
√
γ)
√

(1− a)[(1− a)(ẋ+ γ) + 2(1 + a)
√
ẋγ]

2[a+ (1− a)(ẋ+ γ) + 2
√
ẋγ) + aẋγ]

(3.3)

where ẋ is a function of π1, π2, ρ1, ρ2 and m for a particular measure x ∈ (RD,RR,OR):

ẋ(π1, π2, ρ1, ρ2,m) =


π2(1−π2)
π1(1−π1)

1+(m−1)ρ2
1+(m−1)ρ1

if x = RD

π1(1−π2)
π2(1−π1)

1+(m−1)ρ2
1+(m−1)ρ1

if x = RR

π1(1−π1)
π2(1−π2)

1+(m−1)ρ2
1+(m−1)ρ1

if x = OR

If π1, π2, ρ1, ρ2 and m are given, both wc∗xl and wc∗xu are functions of a. The opti-

mal allocation wc∗x for a particular measure x is always within this allocation interval

(wc∗xl , w
c∗
xu). When a=1, both wc∗xl and wc∗xu reduce to wc∗x , the optimal allocation for mea-

sure x, and the interval reduces to one point. As a decreases, the length of the interval

(wc∗xl , w
c∗
xu) increases.

For a CRT design, as long as w is chosen from the allocation interval (wc∗xl , w
c∗
xu), the

RCE will be at least as large as a. When the length of this interval is larger, more values

of w can be chosen from the interval to satisfy the RCE requirement. In other words,

when the length of the interval is larger, the design is more robust. If investigators

choose w outside the interval, the RCE of that design is smaller than a.

If the RCE of a is given, the values of wc∗xl and wc∗xu are determined by the cost ratio

γ and ẋ. Further, ẋ is determined by the measure x ∈ (RD,RR,OR) and the values of

parameters π1, π2, ρ1, ρ2 and m. We are interested in how those parameters affect the

interval (wc∗xl , w
c∗
xu) for a particular measure x.
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3.3.2 Effects of π1 and π2

We first explore the relationship between the allocation interval of w and π1 and π2

in Figure . In Figures 3.4(a), 3.4(b) and 3.4(c), the measures are RD, RR and OR

respectively. We let ρ1 = 0.3, ρ2 = 0.1 and cluster size m = 14, which are the same

values in Samoan women’s health study. Assume that we want a CRT with at least 0.9

RCE.

Figure 3.4(a) shows that for RD, given a specific value of π2, both upper bound and

lower bound increase with π1 increasing from 0 to 0.5 and shifts the location of the

interval towards 1. The upper bound and the lower bound decrease as π1 increases from

0.5 to 1, and shifts the the interval towards 0. The length of the interval changes too.

When π1 increases from 0 to 0.5, the length of interval increases correspondingly, and

obtain the maximal length when π1 = 0.5. When π1 increases from 0.5 to 1, the length

of interval decreases. However, when π1 is close to 0.5, the change of length is very small.

However, if the measure changes from RD to RR, we observe the change in the

pattern of the behavior of the interval is different. Figure 3.4(b) shows that both the

upper bound and the lower bound continue to decrease as π1 increases from 0 to 1.

Hence the location of the interval always moves towards 0 as π1 increases from 0 to 1.

In addition, the length of the interval continues to decrease. The implication is that for

a large value of π1, the interval is less likely to maintain the desired RCE.

Figure 3.4(c) shows how the interval changes for different values of π1 and π2 for

estimating OR. In contrast to the case with RD, both the upper bound and the lower

bound decrease as π1 increases from 0 to 0.5. Hence the location of the interval moves

towards 0. When π1 increases from 0.5 to 1, both the upper bound and the lower bound

increase, and the location of the interval moves towards 1. The length of the interval

decreases as π1 increases from 0 to 0.5 and increases as π1 increases from 0.5 to 1.

Although the length of the interval achieves its smallest value at π1 = 0.5, the change

of the length of the interval is very gradual as π1 gets closer to 0.5.
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(a) RD (b) RR

(c) OR

Figure 3.4: Relationship between the allocation interval of w and π1 and π2 with at least 0.9 RCE

when ρ1 = 0.3, ρ2 = 0.1,m = 14, γ = 10.
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3.3.3 Effects of cost ratio

We continue to explore the relationship between the allocation interval of w and the cost

ratio γ. Figure 3.5 shows the patterns of the upper bound and the lower bound for all

three measures and they appear to be similar. With log10(γ) increasing from -1 to 1 (γ

increase from 0.1 to 10), both wc∗xl and wc∗xu decrease, regardless of which measure is used.

The location of interval (wc∗xl , w
c∗
xu) moves towards 0 as γ increases. This is reasonable

since larger values of γ mean more resources need to be spent on individuals in arm 1,

hence less individuals in arm 1, as expected.

When log10(γ) = 0(i.e., γ = 1), Figure 3.5(a) shows the allocation interval of w

with at least 0.9 RCE is (0.38,0.69) for estimating RD. When γ increases 10-fold, the

interval is (0.18, 0.52). If the allocation in a CRT design is w=0.6, with equal costs in

the two arms, the RCE of that design is at least 0.9, but when cost ratio γ increases

to 10, the RCE is smaller than 0.9. From Figure 3.5(b), for estimating RR, the length

of the interval slightly increases as γ increases. But from Figure 3.5(a) and 3.5(c), for

estimating RD and OR, the length of the interval increases from 0.2 to 0.34 with γ

increasing from 0.1 to 10. It indicates that when γ is larger, it is more likely to keep the

RCE as large as the value required for RD and OR, but not for RR.

3.3.4 Effects of cluster size

We next explore the relationship between the interval of w and the cluster size m. We

continue to assume that the true design parameters values are π1=0.5, π2=0.4, ρ1=0.3

and ρ2=0.1, the same parameter values in Samoan Women’s Health Study. The cost

ratio is γ = 1. In Samoan Women’s Health Study, the mean cluster size is 14. To explore

the relationship between the interval of w and cluster size m, we let m change from 1 to

200.

In Figures 3.6(a), 3.6(b) and 3.6(c), the patterns of the upper and lower bounds

are similar. As m increases from 1 to 20, both wc∗xl and wc∗xu increase a bit, but as m

increases from 20 to 200, there is little change in w∗xl and w∗xu. Therefore, the location of
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(a) RD (b) RR

(c) OR

Figure 3.5: Relationship between the allocation interval of w and cost ratio γ with at least 0.9 RCE

when π1 = 0.5, π2 = 0.4, ρ1 = 0.3, ρ2 = 0.1,m = 14.

40



(a) RD (b) RR

(c) OR

Figure 3.6: Relationship between the allocation interval of w and cluster size m with at least 0.9 RCE

when π1 = 0.5, π2 = 0.4, ρ1 = 0.3, ρ2 = 0.1, γ = 1.

interval (wc∗xl , w
c∗
xu) moves toward 1 a bit as m increases from 1 to 20, and then remains

approximately the same after that. From Figure 3.6(a) where RD is estimated, with

m = 1, the interval with at least 0.9 RCE is (0.35,0.67); as m increases to 20, the

interval is (0.44,0.75); as m increases from 20 to 200, there is almost no change of the

interval. From Figure 3.6(a), 3.6(b) and 3.6(c), if allocation w = 0.5 in a CRT design,

the RCE of that design which is the balance design stays at least 0.9, no matter how m

changes. The length of the interval stays about 0.3, no matter how m changes.

In summary, the allocation interval of w is insensitive to cluster size. The length

of the interval is almost the same as cluster size increases. The location of the interval

has little change with cluster size increasing when cluster size is larger than 20. This

conclusion is the same for all three measures. Therefore, it seams reasonable to use the
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(a) RD (b) RR

(c) OR

Figure 3.7: Relationship between the allocation interval of w and ICC ratio with at least 0.9 RCE

when π1 = 0.5, π2 = 0.4, ρ1 = 0.3, ρ2 = 0.1, γ = 1.

mean of cluster size to calculate the allocation value when cluster size is varying.

3.3.5 Effects of ICCs

In this subsection, we explore the relationship between the interval of w and the ICC

ratio ρ1
ρ2

. We choose ρ1
ρ2

rather than ρ1−ρ2 is because the former may approximate design

effect ratio. Suppose we have π1=0.5, π2=0.4, ρ2=0.1, m=14, the same as in Samoan

Women’s Health Study and γ = 1. To explore the relationship between the interval of

w and the ICC ratio, we let ρ1 changes from 0.01 to 1 and fix ρ2 as 0.1. In addition, we

also consider the situation in which m = 200, which stands for the case when we have a

large cluster size.

In Figures 3.7(a), 3.7(b) and 3.7(c), the patterns of upper and lower bounds are
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similar. As log10(ρ1/ρ2) increases from -1 to 1 (ρ1/ρ2 increase from 0.1 to 10), both wc∗xl

and wc∗xu increase. Therefore, the location of interval (wc∗xl , w
c∗
xu) moves toward 1 as ICC

ratio ρ1/ρ2 increases. The rates of increase in wc∗xl and wc∗xu when m = 200 are faster than

the rates of increase when m = 14. Hence the location of the interval is more robust to

ICC ratio changes when the cluster size is small. In addition, the lengths of the interval

for all three measures stay about 0.3 as the ICC ratio increases. That means ICC change

may affect the location of the interval, but has little effects on the length of the interval.

3.4 Bayesian methods for the efficient and robust design

When the total cluster number is fixed, to determine the optimal allocation wc∗x in a CRT,

investigators need to know the values of π1, π2, ρ1, ρ2 and m. While m may be known

in advance, investigators often do not know accurate values of π1, π2, ρ1 and ρ2 before

the study has been conducted. Investigators usually look for previously reported similar

studies to guess what values those parameters are. In particular, accurately predicting

parameters in the treatment arm is more difficult than predicting in the control arm,

since the treatment is often novel, while the control condition is often usual care. If

those parameters values are incorrect, the calculated wc∗x may be incorrect, resulting in

a low CE of the design, especially when the cost ratio of two arms is very different from

unity.

We want to find an efficient and robust design. An efficient design means that the

design has relatively high RCE, although it may not have the maximal RCE 1. A design

is robust if the design is not affected very much by the misspecified parameters. Bayesian

methods can help to construct an efficient and robust design when parameter values are

uncertain. Although investigators may not able to obtain accurate point estimates of

parameters before the study, they may obtain some information about the values of

those parameters from previous similar studies. Based on such prior information, they

may be able to construct prior distribution for those parameters.

The basic idea of constructing an efficient and robust design using Bayesian methods
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is the same as discussed in previous sections: to find an optimal allocation w which

maximizes CE. The criterion for Bayesian methods is to maximize the expected precision

or to minimize the expected variance with respect to the prior information of (π1, π2) ∈ Π

and (ρ1, ρ2) ∈ R over the total cost.

In Section 3.3 we defined ẋ:

ẋ(π1, π2, ρ1, ρ2,m) =


π2(1−π2)
π1(1−π1)

1+(m−1)ρ2
1+(m−1)ρ1

if x = RD

π1(1−π2)
π2(1−π1)

1+(m−1)ρ2
1+(m−1)ρ1

if x = RR

π1(1−π1)
π2(1−π2)

1+(m−1)ρ2
1+(m−1)ρ1

if x = OR

Using this notation, the variances for all three measures in formulas (2.2, 2.3 and

2.4) can be written in a unified format:

Ψ−1
x ∝

(
1

w
+
ẋ(π1, π2, ρ1, ρ2,m)

1− w

)
. (3.4)

From formulas (2.12, 2.13 and 2.14), CE for all three measures can be written in a unified

format:

CEx ∝
(

1

w
+
ẋ(π1, π2, ρ1, ρ2,m)

1− w

)−1

(γw + (1− w))−1. (3.5)

Therefore, the criterion for Bayesian methods is to minimize Γ(w)x :

Γ(w)x ∝
∫
R

∫
Π

[γw + (1− w)]

{
1

w
+
ẋ(π1, π2, ρ1, ρ2,m)

1− w

}
dP (π1, π2)dP (ρ1, ρ2), (3.6)

A direct calculation shows that the optimal allocation wc∗Φx for a particular measure

x ∈ (RD,RR,OR) is given by

wc∗Γx =
1

1 +
√
γE[ẋ(π1, π2, ρ1, ρ2,m)]

. (3.7)

We observe that wc∗Φx is determined by the expectation of ẋ, which depends on the

prior distributions of π1, π2, ρ1 and ρ2. Investigators need to specify the prior dis-

tributions of those parameters before the Bayesian design can be carried out. We let

θ = (π1, π2, ρ1, ρ2).

Now we compare the Bayesian design to the balanced design. In Figure 3.8, π1, π2,

ρ1 and ρ2 follow uniform distributions on the intervals (0.3,0.5), (0.2,0.3), (0.05, 0.1)
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(a) γ = 2 (b) γ = 5

Figure 3.8: RCE of the Bayesian design and the balanced design for estimating RD for different cost

ratios γ when π1 ∼ u(0.3, 0.5), π2 ∼ u(0.2, 0.3), ρ1 ∼ u(0.1, 0.2), ρ2 ∼ u(0.1, 0.2) and all cluster sizes

have m = 20 subjects.

and (0.05, 0.1), respectively. Figure 3.8(a) shows RCEs of the Bayesian design and

the balanced design for estimating RD when the cost ratio is 2. We see that when

ẋ(θ) > 0.62, the RCE of the Bayesian design is larger than that of the balanced design;

when ẋ(θ) < 0.62, the RCE of the Bayesian design is smaller than that of the balanced

design. But over the whole range of ẋ(θ), the RCE for the Bayesian design is at least

0.97, while the lowest RCE of the balanced design is less than 0.92. Figure 3.8(b) shows

results for cost ratio γ = 5. We see that over the whole range of ẋ(θ), the RCE of the

Bayesian design is larger than 0.97, while the lowest RCE of the balanced design is less

than 0.78. In addition, in almost the whole range of ẋ(θ), the RCE of the Bayesian

design is larger than that of the balanced design.

Figure 3.9(a) shows RCE of the Bayesian design and the balanced design for esti-

mating RR when the cost ratio is 2. We see that for a large range of ẋ(θ), the RCE of

the Bayesian design is larger than that of the balanced design. Over the whole range

of ẋ(θ), the RCE for the Bayesian design is at least 0.92, and the lowest RCE of the

balanced design is less than 0.7. Figure 3.9(b) shows results for cost ratio γ = 5. We see

that in almost the whole range of ẋ(θ), the RCE of the Bayesian design is larger than

that of the balanced design. The RCE of the Bayesain design is at least 0.92, while the

lowest RCE of the balanced design reduces to 0.5.
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(a) γ = 2 (b) γ = 5

Figure 3.9: RCE of the Bayesian design and the balanced design for estimating RR for different cost

ratios γ when π1 ∼ u(0.3, 0.5), π2 ∼ u(0.2, 0.3), ρ1 ∼ u(0.1, 0.2), ρ2 ∼ u(0.1, 0.2) and all cluster sizes

have m = 20 subjects.

3.5 Maximin methods for the efficient and robust design

Another method to construct an efficient and robust design is to use the maximin

method. We briefly explain the logic behind the maximin method. For an arbitrary

value of w ∈ (0, 1), there exists at least one combination of π1, π2, ρ1 and ρ2 from

their respective ranges for which the RCE is the smallest. Let the smallest RCE be

min(RCE). In all of those associated pairs of (w, min(RCE)), we can find one specific

w which maximizes min(RCE) among all designs (i.e. all values of w). In practice, we

do not know accurate values of π1, π2, ρ1, ρ2, but only ranges of values for those parame-

ters from previous similar studies and experiences. However, such information is enough

to find w. Let parameter vector θ = (π1, π2, ρ1, ρ2). The criterion is to find a design

that maximizes min(RCEx(θ, w,m, γ)|θ), where, x ∈ RD, RR or OR.

Using ẋ introduced before, the optimal allocation wc∗RD, wc∗RR and wc∗OR in formulas

(2.15, 2.16, 2.17 ) can all be written as:

wc∗x =
1

1 +
√
γẋ
. (3.8)

Let x = min(ẋ(θ)) and x = max(ẋ(θ)), where θ = (π1, π2, ρ1, ρ2). Based on our

criterion to find wc∗maxmin, we have the following theorem.
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Theorem 3.1:

The maximin design for estimating a measure of difference of success rates in a

two-arm CRT allocates wc∗maxmin of clusters to the arm 1, and wc∗maxmin is:

wc∗maxmin =
(
√
γ +
√
x)2 − (

√
γ +
√
x)2

(
√
γ +
√
x)2(x− 1)− (

√
γ +
√
x)2(x− 1)

(3.9)

Proof:

The proof follows Dette [19] who considered the maximin method for IRTs with

binary outcomes. Recall that the optimal allocation wc∗ = 1
1+
√
γẋ

and the RCE from

equation (2.18) is

RCE(ẋ, γ,m) =
(1 +

√
ẋ/γ)2

(w + (1− w)/γ)(1/w + ẋ/(1− w))
.

Based on our definitions of x and x, we have:

min(RCE(w, θ, γ)) = minẋ∈[x,x]RCE(ẋ, γ, w).

Further, calculus shows that there is only one solution to ∂
∂ẋ
RCE(ẋ, γ, w)=0, and is

given by ẋ∗ = 1−w
w
√
γ
. We also have ∂2

∂2ẋ
RCE(ẋ, γ, w)|ẋ∗ = 1−w

w
√
γ
< 0 and so RCE(ẋ, γ, w)

has a local maximum in the interval [x, x]. It follows that:

minẋ∈[x,x]RCE(ẋ, γ, w) = min(RCE(x, γ, w), RCE(x, γ, w)). (3.10)

To maximize the right-hand of equation (3.10) by choice of w, we first assume the

optimal choice is

wc∗maximin ∈M1 = {w ∈ [0, 1]|RCE(x, γ, w) < RCE(x, γ, w)},

whereupon one obtains w∗maximin = 1
1+
√
γx

. By the definition of M1, we have

RCE(x, γ,
1

1 +
√
γx

) < RCE(x, γ,
1

1 +
√
γx

),

implying that (
√
x −
√
x)2/
√
γ < 0, and hence a contradiction. Therefore wc∗maximin is

not in the set M1. Similarly, if we assume

wc∗maximin ∈M2 = {w ∈ [0, 1]|RCE(x, γ, w) > RCE(x, γ, w)},
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(a) γ = 2 (b) γ = 5

Figure 3.10: RCE of the maximin design and the balanced design for estimating the RD for different

cost ratios γ when π1 ∈ [0.3, 0.5], π2 ∈ [0.2, 0.3], ρ1 ∈ [0.1, 0.2], ρ2 ∈ [0.1, 0.2] and all cluster sizes have

m = 20 subjects.

a similar argument also yields a contradiction and wc∗maximin is not in the set M2. It

follows that wc∗maximin ∈ M3={w ∈ [0, 1]|RCE(x, γ, w)=RCE(x, γ, w)} and solving this

equation RCE(x, γ, w) = RCE(x, γ, w) yields the desired value of wc∗maximin in our result.

Let us compare the maximin design to the balanced design for estimating RD, RR

and OR. We first consider the RD. Figure 3.10(a) shows RCEs of the maximin design

and the balanced design when the cost ratio is 2, which is relatively small. We see that

over the whole range of ẋ(θ), the RCE for the maximin design is at least 0.97, while the

lowest RCE of the balanced design is less than 0.92. In addition, for a larger range of

ẋ(θ), the RCE of the maximin design is larger than that of the balanced design. Figure

3.10(b) shows results for cost ratio γ = 5. We see that over the whole range of ẋ(θ), the

RCE of the maximin design is larger than 0.96, while the lowest RCE of the balanced

design is less than 0.78. In addition, in almost the whole range of ẋ(θ), the RCE of the

maximin design is larger than that of the balanced design. Hence the maximin design

is much better than the balanced design when the cost ratio is 5.

We next consider the RR. Figure 3.11(a) is the graph for cost ratio γ = 2 and Figure

3.11(b) is the corresponding graph for cost ratio γ = 5. From both figures, we see that

the maximin design is better than the balanced design. Note that the lowest RCEs of
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(a) γ = 2 (b) γ = 5

Figure 3.11: RCE of the maximin design and the balanced design for estimating RR for different

cost ratios γ when π1 ∈ [0.3, 0.5], π2 ∈ [0.2, 0.3], ρ1 ∈ [0.1, 0.2], ρ2 ∈ [0.1, 0.2] and all cluster sizes have

m = 20 subjects.

the balanced designs are less than 0.70 and 0.52 for γ = 2 and γ = 5 respectively in

Figure 3.11, and both are lower than those in Figure 3.10. Hence if the measure is RR

rather than RD, the balanced design is more sensitive to misspecified parameters and

the maximin design is more helpful to avoid low RCE.

We finally consider the OR. Figure 3.12(a) is the graph for cost ratio γ = 2 and

Figure 3.12(b) is the corresponding graph for cost ratio γ = 5. The lowest RCEs of the

maximin design are larger than 0.96, obviously better than the balanced design. Note

that the lowest RCEs of the balanced design are about 0.85 and 0.68 for γ = 2 and

γ = 5 respectively in Figure 3.12, and both are lower than those in Figure 3.10 but

larger than those in Figure 3.11. Hence estimating OR is less sensitive than estimating

RR but more sensitive than estimating RD in the balanced design. The maximin design

is helpful to avoid a low RCE.

It is interesting to compare the Bayesian design with the maximin design. Figure

3.13 shows that the RCE curves of the Bayesian design almost coincide with those from

the maximin design, no matter the measure is RD or RR. It is very hard to tell which

is better. But both are much better than the balanced design. Note that in this figure,

for the Bayesian design, π1, π2, ρ1 and ρ2 are assumed to follow uniform distributions.
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(a) γ = 2 (b) γ = 5

Figure 3.12: RCE of the maximin design and the balanced design for estimating OR for different

cost ratios γ when π1 ∈ [0.3, 0.5], π2 ∈ [0.2, 0.3], ρ1 ∈ [0.1, 0.2], ρ2 ∈ [0.1, 0.2] and all cluster sizes have

m = 20 subjects.

(a) RD (b) RR

Figure 3.13: RCE of the Bayesian, the maximin and the balanced designs for RD and RR when

π1 ∼ u(0.3, 0.5), π2 ∼ u(0.2, 0.3), ρ1 ∼ u(0.1, 0.2), ρ2 ∼ u(0.1, 0.2), cost ratio γ = 5 and all cluster sizes

have m = 20 subjects.
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That is the reason why the Bayesian design and the maximin design have comparable

RCE. The general comparison between the two designs is difficult [19, 29].

3.6 Application

Now we consider re-designing the Samoan women’s health study using the results in

previous sections. We first need determine the distribution or the range of π1, π2,

ρ1 and ρ2. π2 is the probability of mammography use for Samoan women without

intervention. Mishra et al. reported the probability is 0.224 and 0.244 in Hawaii and

Los Angeles [23]. Hence we assume that π2 follows uniform distribution in a range of

0.2 and 0.3. Now we consider the possible value for π1 in the intervention arm. First,

we think the intervention will increase the mammography use. Therefore, the smallers

value of π1 should be higher than the largest possible value of π2. Second, we have less

certainty about the intervention arm, so we specify a larger variance of π1. Considering

these issues, we assume that π1 follow a uniform distribution in a range of 0.3 and

0.6. Hade et al. [30] reported ICCs for cancer screening CRTs ranging from 0.05 to

0.3. Not all the clusters in those CRTs were churches and not all CRTs were about

mammography use. However, these values provide reasonable ranges of ρ1 and ρ2. We

assume that ρ1 and ρ2 follow a uniform distribution with range of 0.05 and 0.3. The

intervention consisted of three components: specially developed English and Samoan

language breast cancer educational booklets; skill building and behavioral exercises; and

interactive group discussion sessions. In the control arm, women were only provided

with the breast cancer educational materials. Hence we have the high cost ratio γ = 5.

From equation (3.7), the Bayesian allocation value is 0.32, hence we need assign

55x0.32=18 clusters to arm 1. From equation (3.9), the maximin allocation value is

0.30, hence we need assign 55x0.30=17 clusters to arm 1. The RCE comparison is

illustrated in Figure 3.14. It is clear that either assigning 18 or 17 clusters to arm 1 has

higher RCE than the original design in which 30 clusters are assigned to arm 1.
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3.7 Chapter summary and discussion

In this chapter, we first explored how different parameters affect the optimal allocation.

The effects of π1 and π2 are different for different measures. For RD and OR, when both

π1 and π2 are close to 0.5, misspecifying π1 and π2 tend to yield an allocation that is

similar with the optimal allocation. When either π1 or π2 is close to 0 or 1, misspecifying

π1 and π2 can yield an allocation that is very different from the optimal allocation. This

means that if π1 and π2 are close to 0.5, the optimal allocation is robust. For RR,

when both π1 and π2 are close to 0.5, misspecifying π1 and π2 can yield an allocation

that is very different from the optimal allocation. Therefore, RR is more sensitive to

misspecifying π1 and π2. This result suggests that investigator may want to use RD and

OR rather than RR when there is great uncertainty about π1 and π2. The effects of ρ1

and ρ2 depend on cluster size. If the cluster size is very small, then the ratio of ρ1 and

ρ2 has little impact on the optimal allocation value. When the cluster size increases,

the effects of misspecification of ρ1 and ρ2 become larger. However, their impact on

allocation value is not as large as misspecification of π1 and π2.

If we set the RCE required be at least a, the corresponding w falls in an interval which

depends on a. We called it the allocation interval and explored the effects of parameters

on that interval. It seems that ρ1 and ρ2 and cluster size m have little impact on the

length of such interval. When cluster size is larger than 20, the location of the interval

is almost the same. The effects of ρ1, ρ2 and cluster size m on the interval are similar

for different measures. However, the impact of π1 and π2 on the interval depends on

different measures. For RD and OD, for given π2, the length of the interval is largest

when π1 equals to 0.5 and becomes smaller when π1 is close to 0 or 1. For RR, the length

of the interval becomes shorter with increasing of π1. For a given π2, it seems that the

length of the interval is larger for RD than RR unless π1 is very small. It suggests that

RD may be preferred than RR unless π1 is very small.

We have seen that misspecifying parameters may not yield the optimal allocation and

may result in a design with low RCE. But true values of π1, π2, ρ1 and ρ2 are generally
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not known before the study. Hence in order to construct a robust design, we proposed

two methods: a Bayesian method and a maximin method. For the Bayesian method, we

assumed uniform and beta distributions for π1 and π2 and uniform distribution for ρ1

and ρ2. We assumed that these distributions are obtained from historical data and they

are informative priors. One alternative way is to assume non-informative priors and

create a likelihood model. Then we can use the historical data to obtain the posterior

distribution of these parameters. For the success rates, a non-informative conjugate

Beta(1/3, 1/3) is suggested by Kerman [31]. For the ICCs, a non-informative uniform

[0,1] is often assumed [32, 33]. The likelihood is based on the distributional assumption

that have been used to construct confidence interval for ρ. One possible method is to

assume that observed ρ̂ follows a normal distribution around the true ρ [32].

In summary, the maximin method does not need distribution of π1, π2, ρ1 and ρ2 but

only need the range of those parameters. The designs based on the Bayesian method

and the maximin method often have the similar RCE. Therefore, we prefer the maximin

method since it avoids requirement of the knowledge of the distribution of those param-

eters. We showed that designs based on the two methods often have higher RCE than a

balanced design, in which cluster are equally assigned to the two arms. Current research

often use the balanced design in CRTs, and we recommend investigators to consider

using the maximin method or the Bayesian method to construct a robust design.
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Figure 3.14: RCE of Bayesian design, max-

imin design and original design for estimating

RD in Samoan study when π1 ∼ u(0.3, 0.6),

π2 ∼ u(0.2, 0.3), ρ1 ∼ u(0.05, 0.3),

ρ2 ∼ u(0.05, 0.3), cluster size m=14 and cost

ratio γ = 5.
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CHAPTER 4

Optimal sample size when cluster sizes are equal

4.1 Introduction

In previous chapters, we investigated the design problems for a two-arm CRT when the

total number of clusters is pre-determined and equal to k and all cluster sizes are the

same. We derived the optimal allocation wc∗x , which is a function of success rates π1 and

π2, ICCs ρ1 and ρ2, cost ratio γ and the constant cluster size equal to m. For different

outcome measures x, x ∈ (RD,RR,OR), the optimal allocation wc∗x was found to be

different. If the unit costs are very different in the two arms, a balanced design which

assigns the same number of clusters in the two arms could be inefficient. We showed

how to assign clusters to the two arms so that investigators can use the smallest amount

of resources to obtain the most accurate estimate of the difference in response rates

between the two arms.

Suppose now investigators want to attain a specific power to detect a given difference

in response rates between the two arms in a CRT and control type 1 error rate as well.

How many cluster are needed in the trial and how should they be distributed between

the two arms? In this chapter, we derive the sample size formulas to satisfy the fixed

type 1 error rate α and power 1−β requirements. The usually used sample size formula

in a CRT with binary outcomes is given in equation (5.5) in Donner and Klar [4]. It

says in each arm, the number of individuals needed is:

n =
(Zα/2 + Zβ)2(π1(1− π) + π2(1− π2))(1 + (m− 1)ρ)

m(π1 − π2)2
.

However, that formula assumes a balanced design and RD is the outcome measure. In

this chapter, we derive the sample size formulas for RR and OR as well.

55



We further show that, although a balanced design in a CRT can satisfy the power and

type 1 rate requirements, the total cost of the balanced design is not always minimal.

Accordingly, we incorporate the optimal allocation wc∗x and derive modified formulas for

the numbers of clusters in each arm of a CRT for different measures. Although the total

clusters or numbers of individuals by these sample size formulas are not minimal, the

total cost in the study is guaranteed to be minimal.

We next consider non-inferiority CRT study. Non-inferiority trials are often used

in medical studies. The hypothesis of interest in non-inferiority trials is that the new

treatment is at worst inferior to the standard treatment (control) by a defined margin.

There is a lot of research on design problems for non-inferiority IRTs, but few discuss

non-inferiority CRTs. We extend the results of a non-inferiority IRT to a non-inferiority

balanced CRT study. Further, we extend the results to equivalence CRTs.

4.2 Sample size for a balanced CRT

We consider sample size calculation for a two-arm balanced CRT with a common cluster

size. Let Xhij denote the binary response of the jth individual in the ith cluster in the

hth arm, where j = 1, ...,m, i = k1, k2 and h = 1, 2. The success rate in the hth arm is

πh and its ICC is ρh, h = 1, 2.

The estimator of πhi in the ith cluster in the hth arm is π̂hi =
∑m
j=1Xhij

m
, where m is

the cluster size. The unbiased estimator of πh is π̂h =
∑kh
i=1 π̂hi
kh

=
∑kh
i=1

∑m
j=1Xhij

khm
, where

kh is the number of clusters in the hth arm. It is easily shown that the variance of π̂h is

V ar(π̂h)=πh(1− πh)1+(m−1)ρh
khm

.

We introduced the common correlation model in Section 2.2. In that model, responses

from different clusters are independent. Hence direct calculation shows that the variance

of π̂1-π̂2 is:

V ar(π̂1 − π̂2) = π1(1− π1)
1 + (m− 1)ρ1

k1m
+ π2(1− π2)

1 + (m− 1)ρ2

k2m
(4.1)

We consider the null hypothesis H0 : π1 − π2 = 0 and the alternative hypothesis
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H1 : π1 − π2 6= 0. Our test statistic is π̂1−π̂2√
V ar(π̂1−π̂2)

. From the central limit theorem,

this statistic approximately follows a normal distribution. Hence we reject the null

hypothesis at the α level of significance if

∣∣∣∣ π̂1−π̂2√
V ar(π̂1−π̂2)

∣∣∣∣ > Zα/2, where Zα/2 is the

100(1− α/2) percentile of the standard normal distribution.

Let C be the critical cut-off point. Under H0 : π1 − π2 = 0, we have

Pr(|π̂1 − π̂2| > C) = α⇒ Pr(π̂1 − π̂2 > C) = α/2

⇒ Pr

(
(π̂1 − π̂2)− 0√
V ar(π̂1 − π̂2)

>
C − 0√

V ar(π̂1 − π̂2)

)
= α/2

⇒ C = Z1−α/2
√
V ar(π̂1 − π̂2).

Under the alternative hypothesis H1 : π1 − π2 = ε 6= 0, we will have power equal to

1− β if

Pr(|(π̂1 − π̂2)− ε| > C) = 1− β ⇒ Pr((π̂1 − π̂2)− ε > C) ≈ 1− β

⇒ Pr

(
(π̂1 − π̂2)− ε√
V ar(π̂1 − π̂2)

>
C − ε√

V ar(π̂1 − π̂2)

)
= 1− β

⇒ C = Zβ
√
V ar(π̂1 − π̂2) + ε.

Therefore, in order to achieve power of 1− β, we set:

|ε|√
π1(1− π1)1+(m−1)ρ1

k1m
+ π2(1− π2)1+(m−1)ρ2

k2m

= Zα/2 + Zβ. (4.2)

When m = 1, this formula reduces to that for an IRT.

In most studies, investigators use a balanced design and assign the same number

of clusters to the two arms. Putting k1 = k2 = k0 in equation (4.2) and solving the

equation for k0, the number of clusters required in each arm is given by:

k0 =
(Zα/2 + Zβ)2[π1(1− π1)(1 + (m− 1)ρ1) + π2(1− π2)(1 + (m− 1)ρ2)]

(π1 − π2)2m
(4.3)
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If ρ1 = ρ2 = ρ, we multiply both sides by m, and equation (4.3) is exactly the same

with equation (5.5) in Donner and Klar [1]. This equation is the common sample size

formula for CRTs design based on the measure RD.

Next, we consider the measure RR. In this case, the null hypothesis is H0 : π1/π2 =

1. This is equivalent to H0 : log(π1/π2) = 0. Since π̂1/π̂2 is highly skewed, the log

transformation log(π̂1/π̂2) is preferred, which is less skewed than π̂1/π̂2 and more likely

to be normally distributed.

By using the delta method, the variance of log(π̂1/π̂2) is given by:

V ar(log(π̂1/π̂2)) =
1− π1

π1

1 + (m− 1)ρ1

k1m
+

1− π2

π2

1 + (m− 1)ρ2

k2m
. (4.4)

The following procedure to obtain the sample size formula is similar to earlier work.

A direct calculation shows the required number of clusters in each arm is:

k0 =
(Zα/2 + Zβ)2[ (1−π1)(1+(m−1)ρ1)

π1
+ (1−π2)(1+(m−1)ρ2]

π2
)

(log(π1/π2))2m
. (4.5)

Finally in this section, we consider the measure OR. The corresponding null hypoth-

esis is H0 : OR = 1 where OR = π1(1−π2)
π2(1−π1)

. Like RR, the estimated OR is also highly

skewed. We take a log transformation of ÔR and our hypothesis is H0 : log(OR) = 0.

By using the delta method, the variance of log(ÔR) is given by:

V ar(log(ÔR) =
1 + (m− 1)ρ1

π1(1− π1)k1m
+

1 + (m− 1)ρ2

π2(1− π2)k2m
. (4.6)

Hence the number of clusters required in each arm is:

k0 =
(Zα/2 + Zβ)2[1+(m−1)ρ1

π1(1−π1)
+ 1+(m−1)ρ2

π2(1−π2)
]

(log(OR))2m
. (4.7)

4.3 Optimal sample size

In the previous section, we assumed each arm had the same number of clusters and

we derived the sample size formulas for different measures in a two-arm CRT. However,

when the unit costs are very different in the two arms, assigning equal number of clusters
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in the two arms may not be cost efficient. Hence although a balanced design can satisfy

the power and type 1 rate requirements in a study, it may cost more. Investigators

usually want to use minimal resources to obtain the desired power. Hence the balanced

design while convenient may not be the preferred choice.

Our optimal sample size by definition is the cheapest sample size in terms of cost

among all those that meet our power and type 1 error rate requirements. In this section,

we will derive the optimal sample size formulas which meet pre-selected power 1−β and

type 1 rate α requirements for all of the three measures.

First we consider the measure RD. We wish to test the null hypothesis H0 : π1−π2 =

0. From equation (4.2), we know that for any combination of k1 and k2, as long as they

satisfy the equation, they satisfy the power and type 1 rate requirements. A balanced

design, in which k1 = k2, is a special case. Suppose that the number of clusters in the

arm 1 is s times that in the arm 2. We plug k1 = sk2 in equation (4.2) and solve this

equation for k1 and obtain:

k1 =
(Zα/2 + Zβ)2[π1(1− π1)(1 + (m− 1)ρ1) + sπ2(1− π2)(1 + (m− 1)ρ2)]

(π1 − π2)2m
. (4.8)

If π1, π2, ρ1 and ρ2 are known, for any s, we can obtain corresponding k1 through

the above equation for any s. All combinations of s and k1 obtained from the above

equation satisfy power and type 1 error requirements. The value of k2 is determined

from s and k1 through the equation k2 = k1/s. The total cost is expressed by the cost

function (2.11), k1mc1 + k2mc2 = k1m(c1 + c2/s), and different combinations of s and

k1 result in different total costs. In all combinations of s and k1, there is one pair of s

and k1 that minimizes the total cost.

Recall that in Section 2.3, we had the same cost function and when the total number

of clusters k is fixed, the optimal allocation wc∗RD in equation (2.15) maximizes the

precision of estimation per cost unit. This in turns implies that the power for the same

total cost is maximized. In other words, the total cost for the optimal allocation wc∗RD is

minimized in all different w that satisfy the power requirement.

Since w = k1/(k1 + k2) and s = k1/k2, we have s = w/(1 − w). Hence k1 which
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is associated with s∗ = wc∗RD/(1 − wc∗RD) is the optimal sample size we need. Plugging

s∗ = wc∗RD/(1 − wc∗RD) in equation (4.8) and solving for k1 gives the required number of

clusters in arm 1:

k1 =
wc∗RD(Zα/2 + Zβ)2[π1(1−π1)(1+(m−1)ρ1)

wc∗RD
+ π2(1−π2)(1+(m−1)ρ2)

1−wc∗RD
]

(π1 − π2)2m
. (4.9)

The corresponding number of clusters needed in arm 2 is:

k2 =
(1− wc∗RD)(Zα/2 + Zβ)2[π1(1−π1)(1+(m−1)ρ1)

wc∗RD
+ π2(1−π2)(1+(m−1)ρ2)

1−wc∗RD
]

(π1 − π2)2m
. (4.10)

Let us summarize the steps to obtain the optimal sample size for the measure RD.

Step 1: Determine the parameters π1, π2, ρ1, ρ2, cost ratio γ and cluster size m.

Step 2: Calculate the optimal allocation wc∗RD from equation (2.15).

Step 3: Determine the power and type 1 error requirements, and calculate k1 and k2

from equations (4.9) and (4.10).

The steps are similar when the measure is RR or OR. In step 2, wc∗RR or wc∗OR is used

instead. In step 3, equations (4.11) and (4.12) or equations (4.13) and (4.14) are used.

The total number of clusters needed in a study calculated by the optimal sample size

formulas is usually larger than the total number of clusters needed for a balanced design,

unless the cost per individual in the two arms are the same. However, the total cost for

the former is usually minimal. For example, Table 4.1 shows the numbers of clusters,

individuals and total cost for estimating RD in a two-arm CRT. In this CRT, π1=0.1,

π2=0.3, ρ1=ρ2=0.1 and the cluster size is m = 20. We assume the unit cost is 5 in the

arm 1 and 1 in the arm 2. The desired power is 0.8 and type 1 error rate is 0.05. The

first row in Table 4.1 has different allocation values of w = k1/(k1 + k2), the proportion

of clusters assigned to the arm 1. The last value of 0.23 is the optimal allocation value.

The fifth and the sixth rows show the numbers of total individuals needed and the total

cost in the study. We observe that the optimal design with w = 0.23 has a total cost

800. This cost is the minimal among all different values of w. The total numbers of

clusters and individuals for optimal allocation are 20 and 400 respectively, versus 18 and

360, for the balanced design (with w = 0.5).
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Table 4.1: Cost differentials for estimating RD from different allocation schemes

versus optimal (wc∗RD = 0.23) when CRT can have different number of clusters

(π1 = 0.1, π2 = 0.3,m = 20, γ = 5, ρ1 = ρ2 = 0.1, 1− β = 0.8).

w 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.23(wc∗RD)

k1 4 5 6 7 9 12 17 27 57 5

k2 29 17 12 10 9 8 8 7 7 15

k 33 22 18 17 18 20 25 34 64 20

N 660 440 360 340 360 400 500 680 1280 400

Cost 980 840 840 900 1080 1360 1860 2840 5840 800

For the measure RR, the null hypothesis is H0 : log(π1/π2) = 0. The procedure

to derive the optimal sample size formula for estimating RR is the same with that for

estimating RD. Hence we omit the details. A direct calculation shows the number of

clusters for the measure RR in arm 1 is:

k1 =
wc∗RR(Zα/2 + Zβ)2[ (1−π1)(1+(m−1)ρ1)

π1wc∗RR
+ (1−π2)(1+(m−1)ρ2)

π2(1−wc∗RR)
]

(log(π1/π2))2m
. (4.11)

The corresponding number of clusters needed in arm 2 is:

k2 =
(1− wc∗RR)(Zα/2 + Zβ)2[ (1−π1)(1+(m−1)ρ1)

π1wc∗RR
+ (1−π2)(1+(m−1)ρ2)

π2(1−wc∗RR)
]

(log(π1/π2))2m
. (4.12)

Table 4.2 shows the numbers of clusters, individuals and total cost for estimating

RR in a two-arm CRT. Note that the total cost for the optimal size is not the minimal.

When w = 0.4, k1 = 10 and k2 = 15, the total cost is minimal. The reason is that for

different values of w, the calculated values of k1 and k2 are not integers; but k1 and k2

have to be integers. Hence the calculated values of k1 and k2 are rounded to integers

which are at least as large as the original values of k1 and k2.

For the measure OR, the null hypothesis is H0 : log(OR) = 0. The procedure to

derive the optimal sample size formula for estimating OR is the same with that for

estimating RD and RR. Again we omit the details. A direct calculation shows the
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Table 4.2: Cost differentials for estimating RR from different allocation schemes

versus optimal (wc∗RR = 0.47) when CRT can have different number of clusters

(π1 = 0.1, π2 = 0.3,m = 20, γ = 5, ρ1 = ρ2 = 0.1, 1− β = 0.8).

w 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.47(wc∗RR)

k1 9 10 10 10 11 12 14 18 29 11

k2 79 37 22 15 11 8 6 5 4 12

k 88 47 32 25 22 20 20 23 33 23

N 1760 940 640 500 440 400 400 460 660 460

Cost 2480 1740 1440 1300 1320 1360 1520 1900 2980 1340

Table 4.3: Cost differentials for estimating OR from different allocation schemes

versus optimal (wc∗OR = 0.41) when CRT can have different number of clusters

(π1 = 0.1, π2 = 0.3,m = 20, γ = 5, ρ1 = ρ2 = 0.1, 1− β = 0.8).

w 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.41(wc∗OR)

k1 8 8 9 9 10 12 14 19 34 9

k2 66 31 20 14 10 8 6 5 4 13

k 74 39 29 23 20 20 20 24 38 22

N 1480 780 580 460 400 400 400 480 760 440

Cost 2120 1420 1300 1180 1200 1360 1520 2000 3480 1160

optimal number of clusters for the measure OR in arm 1 is:

k1 =
wc∗OR(Zα/2 + Zβ)2[ 1+(m−1)ρ1

π1(1−π1)wc∗OR
+ 1+(m−1)ρ2

π2(1−π2)(1−wc∗OR)
]

(log(OR))2m
. (4.13)

The corresponding number of clusters in arm 2:

k2 =
(1− wc∗OR)(Zα/2 + Zβ)2[ 1+(m−1)ρ1

π1(1−π1)wc∗OR
+ 1+(m−1)ρ2

π2(1−π2)(1−wc∗OR)
]

(log(OR))2m
. (4.14)

Table 4.3 shows the numbers of clusters, individuals and total cost for estimating OR

in a two-arm CRT. The optimal sample size is k1 = 9 and k2 = 13 and the total cost is
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1160. From Table 4.1, 4.2 and 4.3, we observe different measures have different optimal

sample sizes and their corresponding total costs are different too. If investigators have no

specific reason to choose a particular measure, they may consider choosing the measure

with the minimal total cost for its optimal sample size. For the example discussed in

this section, the minimal total cost is 800 for estimating RD, hence investigators may

design the trial using the measure RD.

4.4 Sample size for a non-inferiority trial

In previous sections we consider the problems of sample size calculation to detect the

difference between two binary responses in the two arms in a CRT. The aim for the

design is to determine whether responses rate from a new intervention is different from

that in the control intervention.

Sometimes, investigators are interested in whether a new intervention is nearly as

effective as the standard intervention. For this purpose, what desired is a non-inferiority

trial. The non-inferiority trial seeks to determine whether a new intervention is not

worse than a reference intervention by more than an acceptable amount, which is also

called the non-inferiority margin. The selection of the non-inferiority margin is key to

design the non-inferiority trial. However, we won’t discuss how to choose this margin

here. Throughout, we assume that the non-inferiority margin has been determined.

The new intervention is potentially less toxic, less costly, or easier to administer than a

standard intervention and hence may be preferred. There are many papers to discuss

non-inferiority trials, for example, see D’Agostino et al. [34] and Ch16 in Crowley [35].

Hilton [36] discussed the non-inferiority trial designs for RD and OR.

Almost all research on non-inferiority trials assumes IRTs. One exception is Dixon

et. al. [37] who reported a non-inferiority CRT. That trial was to investigate whether

triage nurses in the emergency department can safely reduce radial-head subluxation at

rates that are not substantially lower than those of emergency department physicians.

However, although it was a CRT, the authors did not include variance inflation factor
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in the sample size calculation. More work is needed for non-inferiority CRTs. In this

section, we will derive the sample size formula for non-inferiority CRTs assuming the

measure is RD.

Let ε = π1−π2 be predetermined. We wish to test the null and alternative hypotheses:

H0 : ε ≤ δ and H0 : ε > δ, where δ < 0 is the non-inferiority margin. The variance of

(π1−π2− δ) is the identical to the variance of (π1−π2), as shown in equation (4.1). We

reject the null hypothesis at the α level of significance if π̂1−π̂2−δ√
V ar(π̂1−π̂2)

> Zα where Zα is

the 100(1− α) percentile of the standard normal distribution.

Under the alternative hypothesis that ε > δ, the power of the above test is approxi-

mately

Φ

 ε− δ√
π1(1− π1)1+(m−1)ρ1

k1m
+ π2(1− π2)1+(m−1)ρ2

k2m

− Zα

 . (4.15)

Therefore, in order to achieve the power 1− β, we have the equation:

ε− δ√
π1(1− π1)1+(m−1)ρ1

k1m
+ π2(1− π2)1+(m−1)ρ2

k2m

= Zα + Zβ. (4.16)

Suppose that the number of clusters in the arm 1 is as s times as that in the arm 2,

k1 = sk2. Note s = 1 (k1 = k2) is a special case, corresponding to a balanced design.

Plugging k1 = sk2 in equation (4.16), we solve the equation for k1:

k1 =
(Zα + Zβ)2[π1(1− π1)(1 + (m− 1)ρ1) + sπ2(1− π2)(1 + (m− 1)ρ2)]

(π1 − π2 − δ)2m
. (4.17)

Since k1 = sk2, the number of clusters in the arm 2 is:

k2 =
(Zα + Zβ)2[1

s
π1(1− π1)(1 + (m− 1)ρ1) + π2(1− π2)(1 + (m− 1)ρ2)]

(π1 − π2 − δ)2m
. (4.18)

For the balanced design, in which k1 = k2, we have the number of clusters in each

arm is:

k0 =
(Zα + Zβ)2[π1(1− π1)(1 + (m− 1)ρ1) + π2(1− π2)(1 + (m− 1)ρ2)]

(π1 − π2 − δ)2m
. (4.19)
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We consider the optimal sample size calculation for a non-inferiority trial. From the

last section, we know that in order to obtain the desired power we need satisfy this

equation s∗ = w∗RD/(1 − w∗RD), where w∗RD is the optimal allocation. However, the

optimal allocation w∗RD for a non-inferiority trial may not be exactly the value given

in equation (2.15). This is because in a non-inferiority trial, the success rate π1 in the

intervention arm is not a fixed value, but in a range.

4.5 Sample size for an equivalence trial

In this section, we extend the sample size formula for non-inferiority CRTs to equivalence

CRTs. Equivalence trials aim to determine whether the new intervention is similar to

the standard existing treatment.

Let ε = π1 − π2. We wish to test the null and alternative hypotheses: H0 : |ε| ≥ δ

and H0 : |ε| < δ.

We reject the null hypothesis at the α level of significance if π̂1−π̂2−δ√
ˆV ar(π̂1−π̂2)

< −Zα and

π̂1−π̂2+δ√
ˆV ar(π̂1−π̂2)

> Zα.

Under the alternative hypothesis that |ε| < δ, the power of the above test is approx-

imately

2Φ

 δ − |ε|√
π1(1− π1)1+(m−1)ρ1

k1m
+ π2(1− π2)1+(m−1)ρ2

k2m

− Zα

− 1. (4.20)

Therefore, in order to achieve the power 1− β, we have the equation:

δ − |ε|√
π1(1− π1)1+(m−1)ρ1

k1m
+ π2(1− π2)1+(m−1)ρ2

k2m

= Zα + Zβ/2 (4.21)

where Zβ is the 100(1− β) percentile of the standard normal distribution.

Suppose that the number of clusters in the arm 1 is as s times as that in the arm 2,

k1 = sk2. Note s = 1 (k1 = k2) is a special case, corresponding to a balanced design.

Plugging k1 = sk2 in equation (4.21), we solve the equation for k1:

k1 =
(Zα + Zβ/2)2[π1(1− π1)(1 + (m− 1)ρ1) + sπ2(1− π2)(1 + (m− 1)ρ2)]

(δ − |π1 − π2|)2m
. (4.22)
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Since k1 = sk2, the number of clusters in the arm 2 is:

k2 =
(Zα + Zβ/2)2[1

s
π1(1− π1)(1 + (m− 1)ρ1) + π2(1− π2)(1 + (m− 1)ρ2)]

(δ − |π1 − π2|)2m
. (4.23)

For the balanced design, in which k1 = k2, we have the number of clusters in each

arm is:

k0 =
(Zα + Zβ/2)2[π1(1− π1)(1 + (m− 1)ρ1) + π2(1− π2)(1 + (m− 1)ρ2)]

(δ − |π1 − π2|)2m
. (4.24)

For the optimal sample size calculation, we need satisfy this equation s∗ = wc∗RD/(1−

wc∗RD). However, the optimal allocation wc∗RD may not exactly be the same as in equation

(2.15), since π1 in the intervention arm is not assumed be a fixed value.

4.6 Chapter summary and discussion

In this chapter, we consider sample size calculation problem for a CRT. The common

used sample size formula assumes the measure is RD and ICCs in the two arms are the

same. In this chapter, we first derive the sample size formula including arm-specific ρ1

and ρ2. We also derive the sample size formulas for RR and OR.

Investigators often use the balanced design. We define the optimal sample size and

derive the optimal sample size formulas for all three measures. In all the designs satisfy-

ing the power requirement, the total study cost for the optimal sample size is minimal.

We show the results in Tabes 4.1, 4.2 and 4.3. However, the total number of clusters

and individuals are not minimal in optimal sample size. When the number of clusters is

large, investigators do not worry about the sample is not enough but more care about

the cost in the study, hence they may prefer to use optimal sample size. However, if the

number of clusters is very limited, investigators may use the balanced design, and the

price is increasing the total study cost.

We also consider non-inferiority CRTs and equivalence CRTs. The former is to

determine whether a new intervention is not worse than a standard intervention by more

than an acceptable amount, and the latter is to determine whether the new intervention
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is similar to the standard existing treatment. Very few literature discuss this topic.

Dixon et al. [37] reported a non-inferiority CRT but they did not consider correlation

in a cluster when they calculated the sample size. We derive sample size formulas for

non-inferiority CRTs and equivalence CRTs respectively. We only consider the measure

RD because the hypothesis to define the non-inferiority and equivalence uses RD scale.

Also, we only give explicit sample size formulas for the balanced design. More work is

needed for the optimal sample size in non-inferiority CRTs and equivalence CRTs.

In this chapter, we assume that cluster size is a constant. We will deal with a CRT

with varying cluster size in Chapter 5.
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CHAPTER 5

Optimal allocation and sample size when cluster size

varies

5.1 Introduction

In Chapter 2, we investigated efficient design of a two-arm CRT with a fixed total number

of clusters. We showed how to assign clusters to the two arms to obtain the most precise

estimate of the difference in response rates between the two arms while minimizing the

study cost. In Chapter 4, we derived the sample size formulas for optimal allocation for

a two-arm CRT to achieve specific type 1 error rate and power requirements. In those

two chapters, we assumed that cluster size was constant.

Constant cluster size can occur naturally, when couples (constant cluster size of 2) are

randomized to conditions, for example. Sometimes, the investigator can control cluster

size, even though the actual size of clusters is varying. For example, investigators may

recruit a fixed number of individuals from each cluster, which has been termed sample

size per cluster ; see Hayes [2]. In this case, we can regard sample size per cluster as

cluster size and results of Chapter 2 and 4 can be applied directly. More commonly,

CRTs exhibit variation in cluster size. The variation may reflect natural variation in

the actual size of the clusters, or variation in recruitment rates or loss to follow-up rates

among equal-sized clusters. For example, in the Samoan women’s health study reported

by Mishra [23], Samoan churches in southern California were randomized to intervention

and control arms. Cluster sizes ranged from 2-42 with a mean of 14. Another example

is a CRT reported by Bastani [38] and Glenn [39]. In that trial, colorectal cancer cases

were identified through the California Cancer Registry and relatives within the same
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family composed clusters, which were randomized to intervention or control arms. The

cluster sizes ranged from 1-7 with a mean of 1.6.

Guittet et al. [13] investigated the impact of unequal cluster size on power in CRTs

with continuous outcomes. In their simulation studies, beside the constant cluster size,

three types of dispersion were considered: a moderate imbalance, a Pareto imbalance and

a Poisson imbalance. In the moderate imbalance, an individual has the same probability

to be assigned to any cluster. Therefore, all clusters have the same expected cluster size.

In Pareto imbalance, within each treatment arm, two strata were defined, larger clusters

(20% of all clusters) and smaller clusters (80% of all clusters). 80% individuals were

assigned to the larger cluster stratum and 20% were assigned to the smaller cluster

stratum. Within each stratum, an individual has the same probability to be assigned to

any cluster. Hence in each stratum, all clusters have the same expected cluster size. But

the expected cluster sizes in the two strata are very different, with expected cluster size

in the larger cluster stratum 16 times higher than that in the smaller cluster stratum.

Hence they regarded Pareto imbalance as severe dispersion. In Poisson imbalance, they

let cluster size follow a Poisson distribution. They compared the power of these three

distributions to a constant cluster size distribution. The power is slightly reduced in the

moderate imbalance and Poisson imbalance, but is greatly reduced in Pareto imbalance.

They concluded that varying cluster size greatly reduces power in the case of severe

dispersion, particularly if the number of clusters is low and/or the ICC is high.

Ahn et al. [14] investigated the effect of cluster size variability on the power of

CRTs with a binary outcome. Cluster sizes were generated using a negative binomial

distribution truncated below 1. They defined an imbalance parameter κ = 1/(1+σ2/µ2),

where σ and µ are the standard deviation and mean of cluster size. The degree of

imbalance can be measured by the imbalance parameter. When κ = 1, all clusters have

the same cluster size. As κ decreases, the imbalance of cluster size increases. They

considered the situations when κ = 1, κ = 0.8 and κ = 0.6. Their simulation studies

showed that empirical power levels are not close to the nominal power when there is

severe (κ = 0.6) imbalance in cluster size and the number of clusters is as small as
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10. Note that coefficient of variation (CV) of cluster size is a function of the imbalance

parameter κ: CV =
√

1−κ
κ

. When κ = 0.6 and κ = 0.8, then we have CV = 0.82 and

CV = 0.5, respectively.

Although severe imbalance in cluster size affects power, especially when number of

clusters is small and ICC is large, investigators seldom account for varying cluster size

in the trial design stage. Rather, they typically use average cluster size in formulas

intended for use in trials with equal size clusters. Only a few authors, such as Kerry

and Bland [15], Mantunga and Hudgen [16] and Guittet et al.[13], discuss sample size

determination in the case of unequal cluster sizes. Fewer authors deal with a binary

outcome rather than a continuous outcome.

In this chapter, we extend the results obtained in Chapters 2 and 4 to the situation

where a CRT has unequal cluster sizes. In the first part of this chapter, we fix the total

number of clusters and investigate the optimal design problem of how to allocate clusters

to each arm to achieve the most precise estimate with minimal cost. In Chapter 2, the

cluster size is assumed equal to m. Recall that w is the fraction of clusters assigned to

arm 1. Since all clusters have the same number of individuals, w is also the fraction of

individuals assigned to the arm 1. For measure x, x ∈ (RD,RR,OR), optimal allocation

wc∗x is a function of m, the fixed cluster size. However, when cluster size is varying, this

does not apply. Therefore, we need further consideration of optimal allocation when

cluster size is varying. We address the optimal allocation problem in the first part of

this chapter.

In Chapter 4, we derived optimal sample size formulas for CRTs with constant cluster

size. In the second part of this chapter, we extend the results to CRTs with varying

cluster size. The usual sample size calculation approach is to assign the same number

of clusters to each arm and ignore the cluster size variation. However, when cluster

size variation is large, the desired power may not be achieved, and equal allocation of

clusters may not be efficient when costs on the individual level and the cluster level

are very different in the two arms. Hence we first derive sample size formula for equal

allocation of clusters, considering cluster size variation, to satisfy the desired type 1 error
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rate and power requirements. Then as in Chapter 4, we derive a optimal sample size

formula, which satisfies the power requirement but guarantees that total cost is minimal.

For optimal sample size, the number of clusters in the two arms are usually unequal.

In this chapter, we confine attention to estimating RD. Results for RR and OR can

be derived in the same manner.

5.2 Weighted estimation of proportions

The sample size requirement will be based on the estimator of the risk difference π1−π2.

Hence we consider the problem of estimating the success rate πh in the hth arm of a

CRT in this section.

Our approach is based on the common correlation model, which was described in

Chapter 2 and has been discussed in the literature, for example, see Crespi et al. [40].

Recall Xhij denotes the response of the jth individual in the ith cluster in the hth

arm. The success rate in the ith cluster in the hth arm is πhi. The estimator of πhi is

π̂hi=
∑mhi
j=1 Xhij

mhi
, where mhi is the cluster size of the ith cluster in the hth arm.

We want to estimate the success rate πh in the hth arm. Several different estimators

for πh could be considered. One estimator using πhi is the simple average of the propor-

tions over clusters, π̂Ch =
∑kh
i=1 π̂hi
kh

, where kh is the number of clusters in the hth arm.

Under the common correlation model, this estimator is unbiased:

E(π̂Ch ) =

∑kh
i=1E(π̂hi)

kh
=
khE(π̂hi)

kh
= πh.

Another estimator of πh is π̂Ih =
∑kh
i=1

∑mhi
j=1 Xhij∑kh

i=1mhi
, which averages over individuals; see Don-

ner and Klar [41], for example. This estimator is also unbiased:

E(π̂Ih) =

∑kh
i=1

∑mhi
j=1 E(Xhij)∑kh
i=1mhi

=

∑kh
i=1mhiE(Xhij)∑kh

i=1 mhi

= πh.

When cluster size is the same for all clusters (mhi = m), the two estimators are identical.

However, when cluster size is varying, the two estimators can yield different estimates.
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To generalize, we can express these estimators using a weighting scheme with weight

for each cluster. Let bhi be the weight assigned to ith cluster in the hth arm. Then the

estimators can be expressed as:

π̂h =

kh∑
i=1

bhiπ̂hi subject to:

kh∑
i=1

bhi = 1. (5.1)

Note that the constraint
∑kh

i=1 bhi = 1 ensures that the weighted estimators are

unbiased:

E(π̂h) =

kh∑
i=1

bhiE(π̂hi) = πh

kh∑
i=1

bhi = πh.

For the estimator π̂Ch =
∑kh
i=1 π̂hi
kh

, the weight is:

bChi =
1

kh
(5.2)

We refer to these weights as cluster weights. They give the same weight to each

cluster regardless of cluster size. Hence these weights give more weight to individuals in

smaller clusters than to individuals in larger clusters.

For the estimator π̂Ih =
∑kh
i=1

∑mhi
j=1 Xhij∑kh

i=1mhi
, the weight is:

bIhi =
mhi∑kh
i=1mhi

. (5.3)

We refer to these weights as individual weights. They give weight to a cluster accord-

ing to its cluster size, i.e., the number of individuals in the cluster. Hence these weights

give more weight to larger clusters.

Kerry and Bland [15] and Jung et al. [17] proposed another weighting scheme:

bMV
hi =

mhi(1 + (mhi − 1)ρh)
−1∑kh

i=1mhi(1 + (mhi − 1)ρh)−1
(5.4)

”MV ” stands for minimal variance, as we will explain. This weight depends on ρh,

the value of the ICC in the hth arm. When ρh = 1, this weight reduces to cluster weight,

and when ρh = 0, this weight reduces to individual weight. When 0 < ρh < 1, the value

of this weight is intermediate between the cluster weight and individual weight. We

denote the corresponding estimator of success rate in the hth arm as π̂MV
h .
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Note that the variance of π̂hi is 1
mhi

πh(1− πh)[1 + (mhi− 1)ρh]. From equation (5.1),

direct calculation shows that the variance of π̂MV
h is:

V ar(π̂MV
h ) =

kh∑
i=1

bMV 2
hi

1

mhi

πh(1− πh)[1 + (mhi − 1)ρh]. (5.5)

If the number of clusters in the hth arm kh is fixed, then for all weights satisfy-

ing
∑kh

i=1 bhi = 1, the weights in equation (5.4) make the variance of π̂MV
h minimal.

Therefore, we call bMV
hi minimal variance weight.

All of these weight schemes have been used in data analysis and sample size calcu-

lation. For example, with respect to data analysis, cluster weights are used in Lee and

Dubin [42], individual weights are used in Rao and Scott [43], and minimal variance

weights are discussed in Jung and Ahn [44]; with respect to sample size calculation,

these weights schemes are used in Kerry et al.[15] and Guittet et al.[13], although Kerry

and Guittet used other terminology for these weight schemes.

5.3 Optimal allocation when the total number of clusters is

fixed but cluster size varies

In Chapter 2, we derived results for the optimal allocation wc∗x for different measures x.

In that chapter, we assumed a constant cluster size m. Now we consider the situation

in which the cluster size is varying.

An unbiased estimator of the risk difference RD = π1 − π2 is

R̂D = π̂1 − π̂2 =

k1∑
i=1

b1iπ̂1i −
k2∑
i=1

b2iπ̂2i, (5.6)

where the weights bhi are as defined in the last section. The variance of π̂h is
∑kh

i=1 b
2
hi

1
mhi

πh(1−

πh)[1 + (mhi− 1)ρh]. The variance of R̂D is the sum of the variances of π̂1 and π̂2, given

by:

Ψ−1
RD = π1(1− π1)

k1∑
i=1

b2
1i

1 + (m1i − 1)ρ1

m1i

+ π2(1− π2)

k2∑
i=1

b2
2i

1 + (m2i − 1)ρ2

m2i

. (5.7)
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As in Chapter 2, the objective for the optimal design is to allocate a total fixed

number of clusters k to each arm so as to minimize Ψ−1
RD, the variance of R̂D. In

Chapter 2, the cluster size is a constant m, and Ψ−1
RD is a function of w = k1

k1+k2
, the

fraction of clusters allocated to arm 1. Hence the optimal allocation problem involved

finding the value of w that makes the variance minimal.

When cluster size varies, the situation is more complicated and there are additional

considerations. Investigators not only consider how many clusters are assigned to each

arm, but also consider which cluster is assigned to each arm. Investigators usually want

the distribution of cluster size to be similar in the two arms. If an interaction exists

between intervention and cluster size, this strategy can prevent bias in the estimation

of the intervention effect. Note that we use w to denote the fraction of clusters assigned

to arm 1. If the distribution of cluster size is the same in the two arms, w also stands

for the fraction of individuals assigned to arm 1, even though cluster size is varying.

Since π̂1 and π̂2 may be based on various weighting schemes, we also need to consider

which weighting approach to use. The total number of clusters is a constant k. Since

our goal is to minimize the variance of R̂D, we select the minimal variance weights.

To simplify notation, we drop the superscript MV in bMV
hi and π̂MV

h through out the

remainder of this chapter.

Using the minimal variance weights in equation (5.7), we obtain:

Ψ−1
RD = π1(1− π1)

1∑k1
i=1

m1i

1+(m1i−1)ρ1

+ π2(1− π2)
1∑k2

i=1
m2i

1+(m2i−1)ρ2

. (5.8)

We now need to determine k1 = kw, k2 = k(1−w), which are the numbers of clusters

assigned to each arm. Note that equation (5.8) requires values for the size of each

cluster, m1i, i = 1, ..., k1 and m2i, i = 1, ..., k2. To proceed, we can specify the cluster

size distribution. Suppose cluster size has a discrete distribution with d different cluster

sizes: n1, n2, ..., nd, d ≤ k, and the proportion of clusters with cluster size ni is fi with∑d
i=1 fi = 1. Hence the numbers of clusters of size n1, n2, ..., nd are kf1, kf2, ..., kfd,

respectively.
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Since we have

k1∑
i=1

m1i

1 + (m1i − 1)ρ1

= kw
d∑
i=1

fini
1 + (ni − 1)ρ1

,

k2∑
i=1

m1i

1 + (m1i − 1)ρ2

= k(1− w)
d∑
i=1

fini
1 + (ni − 1)ρ2

,

we can rewrite Ψ−1
RD (up to a factor 1/k) as:

Ψ−1
RD = π1(1− π1)

[
1

w
+

1

(1− w)

π2(1− π2)
∑d

i=1
fini

1+(ni−1)ρ1

π1(1− π1)
∑d

i=1
fini

1+(ni−1)ρ2

]
. (5.9)

When π1, π2, ρ1, ρ2, fi(i = 1, ..., d), and ni(i = 1, ..., d) are known, the variance is

a function with one unknown variable w. Using the same method as in Chapter 2, we

obtain the optimal allocation:

wv∗RD =

√
π1(1− π1)

∑d
i=1

fini
1+(ni−1)ρ2√

π1(1− π1)
∑d

i=1
fini

1+(ni−1)ρ2
+
√
π2(1− π2)

∑d
i=1

fini
1+(ni−1)ρ1

(5.10)

We use wv∗RD to distinguish this allocation from w∗RD. The superscript v indicates vary-

ing cluster size. Note that if ρ1 = ρ2, this equation reduces to wv∗RD =

√
π1(1−π1)√

π1(1−π1)+
√
π2(1−π2)

.

Hence in the case of equal ICCs and same distribution of cluster sizes, the optimal al-

location is determined by values of π1 and π2 only; we then have the same optimal

allocation for CRTs with constant cluster size and CRTs with varying cluster size.

5.4 Optimal allocation when the total number of clusters is

fixed and cost is considered

In Section 2.3, we derived optimal allocation wc∗x of a fixed number of clusters with equal

cluster sizes when cost is considered in the allocation. Here we extend that result to the

case of varying cluster size.

We consider both cluster-level and individual-level costs. Suppose that the cluster-

level cost per cluster in the hth arm is eh, h = 1, 2, and cost per individual in the hth

arm is ch, h = 1, 2. The total cost associated with a particular allocation is
∑k1

i=1(m1ic1 +
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e1) +
∑k2

i=1(m2ic2 + e2). Cost efficiency, CE, the ratio of the precision to the total study

cost is:

CERD =
ΨRD∑k1

i=1(m1ic1 + e1) +
∑k2

i=1(m2ic2 + e2)
. (5.11)

The optimal allocation wc∗RD will be the allocation that maximizes CE for measure RD.

Recall that ΨRD is the precision, the inverse of the variance of the estimator. Since

ΨRD is the inverse of the right side of equation (5.9), CE can be expressed (up to a

constant) as:

CERD =

{
π1(1− π1)

[
1

w
+

1

(1− w)

π2(1− π2)q1

π1(1− π1)q2

]
[wq3 + (1− w)q4]

}−1

, (5.12)

where q1 =
∑d

i=1
fini

1+(ni−1)ρ1
, q2 =

∑d
i=1

fini
1+(ni−1)ρ2

, q3 = c1

∑d
i=1 fini + e1 and q4 =

c2

∑d
i=1 fini + e2.

Again, if cluster size distribution (fi and ni) is known, the righthand side of the

equation is a function with one unknown variable w. Using the same method as in

Chapter 2, we obtain the optimal allocation wvc∗RD:

wvc∗RD =

√
π1(1− π1)q2√

π1(1− π1)q2 +
√
π2(1− π2)q1γ

, (5.13)

where γ =
(c1

∑d
i=1 fini+e1)

(c2
∑d
i=1 fini+e2)

. When cost per cluster in the two arms (e1, e2) and cost per

individual in the two arms (c1, c2) are given, this γ is a constant. As in Chapter 2, we

call γ the cost ratio.

Note that due to the discrete nature of cluster size, investigators may need do some

adjustments. Recall that the proportions of clusters of size ni in the k clusters are

fi, i = 1, 2, ..., d respectively and the total numbers of clusters of sizes n1, n2, ..., nd are

kf1, kf2, ..., kfd, respectively. However, the values of wvc∗RDkf1, w
vc∗
RDkf2, ..., w

vc∗
RDkfd may

not be integers. Therefore, investigators will typically need to round values to integers

such that k1 + k2 = k.

In Chapter 2, we derived wc∗RD when the cluster size is a constant m. One could ask,
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suppose we calculate wc∗RD using n̄, mean cluster size, instead of m in equation (2.15).

How different are wvc∗RD and wc∗RD for different cluster size distributions?

We first consider a special case. If ICCs are the same in both arms, ρ1 = ρ2, then

q1 = q2 and wvc∗RD reduces to wvc∗RD =

√
π1(1−π1)√

π1(1−π1)+
√
π2(1−π2)γ

, where γ = (c1n̄+e1)
(c2n̄+e2)

. The

parameters c1, c2, e1, e2 are individual and cluster level costs per unit in each arm and

are known constants; the value of n̄ is also known. The parameter γ is a constant. If

we use constant cluster size m to substitute n̄, wvc∗RD is identical to wc∗RD in the case of

ρ1 = ρ2 and we do not need to know the exact distribution of cluster size. Rather, we

only need the mean of cluster size and can directly calculate wc∗RD. Compared to the

exact distribution of cluster size, the mean of cluster size is easier to obtain.

Next we consider more generalized situations in which the ICCs are different in each

arm. Suppose the total number of clusters is 100 and the mean of cluster size is 20. We

consider several different cluster size distributions with increasing dispersion of cluster

size distribution.

We use coefficient of variation (CV) of cluster size to measure the degree of dispersion.

Recall that CV=σ/µ, where σ is the standard deviation and µ is the mean of cluster

size. When the value of CV is larger, there is more dispersion in cluster size. Ahn et

al. [14] defined and used an imbalance parameter to measure the dispersion and that

imbalance parameter can be expressed as 1/(1 + 1/CV 2). But CV is more often used

in research on CRTs with varying cluster size; for example, see Eldridge et al. [22] and

Breukelen et al. [45].

We consider the following distributions:

Distribution 1 (Discrete uniform distribution): The cluster sizes are 10, 15, 20, 25

and 30. There are 20 clusters of each size. The corresponding CV is 0.35.

Distribution 2: The cluster sizes are 10 and 30. There are 50 clusters of each size.

Distribution 2 has the same maximal, minimal and mean values of cluster size as Dis-

tribution 1. It has only two different values of cluster size, so it has more imbalance of

cluster size, with CV value of 0.50.
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Distribution 3: The cluster sizes are 10 and 60. There are 80 clusters of size 10

and 20 clusters for cluster size 60. Distribution 3 is a skewed distribution and has more

imbalance in cluster size, with CV value of 1.

Distribution 4: The cluster sizes are 10 and 110. There are 90 clusters of size 10 and

10 clusters for cluster size 110. Distribution 4 is a more skewed distribution and more

severe imbalance in cluster size, with CV value of 1.5.

We assume ρ1 = 0.3, ρ2 = 0.1 and γ = 5. The values of wvc∗RD and wc∗RD for different

combinations of π1 and π2 are summarized in Table 5.1.

Table 5.1 shows that in Distribution 1, the discrete uniform distribution with CV of

0.35, wvc∗RD and wc∗RD are identical for almost all combinations of π1 and π2. A few small

discrepancies between wvc∗RD and wc∗RD exist for Distribution 2 with wc∗RD slightly higher

than wvc∗RD. We see more discrepancies for Distribution 3. However, these discrepancies

are very small. The maximal value is just 0.02. The maximal value of discrepancies

between wvc∗RD and wc∗RD is 0.03. Thus there is a pattern of more imbalance in cluster

size leading to larger discrepancy between wvc∗RD and wc∗RD. However, even though the CV

value is quite high at 1.5, the maximal value of discrepancies between wvc∗RD and wc∗RD is

not large. Hence using wc∗RD with mean cluster size may be a good approximation of

wvc∗RD.

In practice, CV of cluster size is typically less than 1. For example, in the Samoan

Women’s Health study [23], which was a CRT designed to increase rates of mammogram

usage in women of Samoan ancestry, the CV of cluster size is 0.63. Another CRT study,

the High Risk Colon Study, was designed to increase colorectal cancer (CRC) screening

among high-risk individuals [38]. In that study, CRC cases were identified through the

California Cancer Registry and relatives within the same family composed clusters. The

CV of cluster size in that study is 0.58. Carter [46] reviewed four CRTs and CV values

were between 0.30 and 0.51. Eldridge et al. [22] reported CVs for six CRTs and found

values are between 0.42 to 0.75. We recommend investigators to estimate the CV of

cluster size for their study. If the CV is not large, we may directly use wc∗RD with mean
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Table 5.1: Comparison of wvc∗RD and wc∗RD (in parentheses) values under different combi-

nations of π1 and π2 for different cluster size distributions (ρ1 = 0.3, ρ2 = 0.1, γ = 5)

.

π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Distribution 1

0.1 .40(.40) .34(.34) .31(.31) .29(.29) .29(.29) .29(.29) .31(.31) .34(.34) .40(.40)

0.2 .47(.48) .40(.40) .37(.37) .36(.36) .35(.35) .36(.36) .37(.37) .40(.40) .47(.48)

0.3 .51(.51) .44(.44) .40(.40) .39(.39) .38(.38) .39(.39) .40(.40) .44(.44) .51(.51)

0.4 .52(.53) .45(.45) .42(.42) .40(.40) .40(.40) .40(.40) .42(.42) .45(.45) .52(.53)

0.5 .53(.53) .46(.46) .42(.43) .41(.41) .40(.40) .41(.41) .42(.43) .46(.46) .53(.53)

0.6 .52(.53) .45(.45) .42(.42) .40(.40) .40(.40) .40(.40) .42(.42) .45(.45) .52(.53)

0.7 .51(.51) .44(.44) .40(.40) .39(.39) .38(.38) .39(.39) .40(.40) .44(.44) .51(.51)

0.8 .47(.48) .40(.40) .37(.37) .36(.36) .35(.35) .36(.36) .37(.37) .40(.40) .47(.48)

0.9 .40(.40) .34(.34) .31(.31) .29(.29) .29(.29) .29(.29) .31(.31) .34(.34) .40(.40)

Distribution 2

0.1 .40(.40) .33(.34) .30(.31) .29(.29) .29(.29) .29(.29) .30(.31) .33(.34) .40(.40)

0.2 .47(.48) .40(.40) .37(.37) .35(.36) .35(.35) .35(.36) .37(.37) .40(.40) .47(.48)

0.3 .51(.51) .43(.44) .40(.40) .38(.39) .38(.38) .38(.39) .40(.40) .43(.44) .51(.51)

0.4 .52(.53) .45(.45) .42(.42) .40(.40) .40(.40) .40(.40) .42(.42) .45(.45) .52(.53)

0.5 .53(.53) .46(.46) .42(.43) .41(.41) .40(.40) .41(.41) .42(.43) .46(.46) .53(.53)

0.6 .52(.53) .45(.45) .42(.42) .40(.40) .40(.40) .40(.40) .42(.42) .45(.45) .52(.53)

0.7 .51(.51) .43(.44) .40(.40) .38(.39) .38(.38) .38(.39) .40(.40) .43(.44) .51(.51)

0.8 .47(.48) .40(.40) .37(.37) .35(.36) .35(.35) .35(.36) .37(.37) .40(.40) .47(.48)

0.9 .40(.40) .33(.34) .30(.31) .29(.29) .29(.29) .29(.29) .30(.31) .33(.34) .40(.40)

cluster size even though cluster size is varying.

5.5 Sample size for balanced designs when cluster size varies

In Chapter 4, we derived the sample size formulas for estimating RD, RR and OR when

the cluster size in CRTs is constant. In practice, the cluster size often varies. When

the cluster size is varying, a common way to calculate the sample size is to use average
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π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Distribution 3

0.1 .39(.40) .33(.34) .30(.31) .29(.29) .29(.29) .29(.29) .30(.31) .33(.34) .39(.40)

0.2 .46(.48) .39(.40) .36(.37) .35(.36) .34(.35) .35(.36) .37(.37) .39(.40) .46(.48)

0.3 .50(.51) .43(.44) .39(.40) .38(.39) .37(.38) .38(.39) .39(.40) .43(.44) .50(.51)

0.4 .52(.53) .44(.45) .41(.42) .39(.40) .39(.40) .39(.40) .41(.42) .44(.45) .52(.53)

0.5 .52(.53) .45(.46) .42(.43) .40(.41) .39(.40) .40(.41) .42(.43) .45(.46) .52(.53)

0.6 .52(.53) .44(.45) .41(.42) .39(.40) .39(.40) .39(.40) .41(.42) .44(.45) .52(.53)

0.7 .50(.51) .43(.44) .39(.40) .38(.39) .37(.38) .38(.39) .39(.40) .43(.44) .50(.51)

0.8 .46(.48) .39(.40) .36(.37) .35(.36) .34(.35) .35(.36) .37(.37) .39(.40) .46(.48)

0.9 .39(.40) .33(.34) .30(.31) .29(.29) .29(.29) .29(.29) .30(.31) .33(.34) .39(.40)

Distribution 4

0.1 .43(.40) .36(.34) .33(.31) .32(.29) .31(.29) .32(.29) .33(.31) .36(.34) .43(.40)

0.2 .50(.48) .43(.40) .40(.37) .38(.36) .38(.35) .38(.36) .40(.37) .43(.40) .50(.48)

0.3 .53(.51) .46(.44) .43(.40) .41(.39) .41(.38) .41(.39) .43(.40) .46(.44) .53(.51)

0.4 .55(.53) .48(.45) .45(.42) .43(.40) .42(.40) .43(.40) .45(.42) .48(.45) .55(.53)

0.5 .56(.53) .48(.46) .45(.43) .43(.41) .43(.40) .43(.41) .45(.43) .48(.46) .56(.53)

0.6 .55(.53) .48(.45) .45(.42) .43(.40) .42(.40) .43(.40) .45(.42) .48(.45) .55(.53)

0.7 .53(.51) .46(.44) .43(.40) .41(.39) .41(.38) .41(.39) .43(.40) .46(.44) .53(.51)

0.8 .50(.48) .43(.40) .40(.37) .38(.36) .38(.35) .38(.36) .40(.37) .43(.40) .50(.48)

0.9 .43(.40) .36(.34) .33(.31) .32(.29) .31(.29) .32(.29) .33(.31) .36(.34) .43(.40)

cluster size instead of the constant cluster size in sample size formulas designed for

CRTs with constant cluster size. For example, if the goal is to estimate RD using equal

allocation, under this approach we would use average cluster size m̄ instead of m in

equation (4.3) to calculate the number of clusters needed in each arm. However, the

sample size calculated by this way may not reach the desired power; see Guittet [13],

for example.

Our goal is to derive a sample size formula that will archive the desired power when

cluster size varies. Our approach is to regard cluster size as a random variable denoted

N . We denote the pdf of cluster size as f(N).
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Kerry and Bland [15] consider this sample size problem in a two-arm CRT with

continuous outcomes. Recall that the design effect (DE) is the ratio of the sample size

required for a CRT to the sample size required for an IRT with the same power, see

Donner and Klar [1], for example. When cluster size is constant and equal to m, the

design effect is 1 + (m− 1)ρ. Hence the sample size formula in a CRT can be obtained

by multiplying the usual sample size formula by the design effect term. Suppose one

arm of a CRT has k clusters with varying size, and the ith cluster has size mi and its

corresponding summary statistic is given a weight bi. Kerry and Bland [15] show that

the design effect can be expressed as:

DE =
m̄k
∑k

i=1
b2i
mi

(1 + (mi − 1)ρ)

(
∑k

i=1 bi)
2

(5.14)

When all cluster sizes are equal, mi = m and bi = 1/k, and the design effect reduces to

1 + (m− 1)ρ.

Kerry and Bland consider the three different weights as we present in Section 5.2,

cluster weight, individual weight and minimal variance weight. They refer to the first

two as equal weight and cluster size weight. When clusters are given equal weight, the

design effect is:

DE =
m̄
∑k

i=1 1/mi

k
(1− ρ) + m̄ρ.

When clusters are weighted by their size, the design effect is given by:

DE = 1 +

(∑k
i=1 m

2
i∑k

i=1mi

− 1

)
ρ

Kerry and Bland [15] indicated the minimum variance mean of the cluster means is found

by weighting the individual cluster means by the inverse of their variances. Weights

proportional to the inverse of the variances become mi/(1 + (mi − 1)ρ). The design

effect is given by:

DE =
m̄k∑k

i=1
mi

1+(mi−1)ρ

.

81



Although Kerry and Bland did not provide the explicit sample size formulas, the

sample size required can be obtained by multiplying the usual sample size formula for

an individual randomized trial by the design effect. Based on simulation results, Kerry

and Bland conclude that minimum variance weights are always best, but equal weights

may be acceptable for trials with large clusters and cluster size weights for trials with

small clusters.

Mantunga and Hudgen [16] derived a sample size formula for a continuous outcome

for a two-arm CRT while accounting for variability due in cluster size. It is shown that

the proposed formula can be obtained by adding a correction term to the traditional

formula which uses the average cluster size. Their derivation is based on an estimator

equivalent to the estimator using the individual weighting scheme. Hence their sample

size formula can be derived using Kerry and Bland’s method too, although Kerry and

Bland did not give an explicit formula. The additional correction term in Mantunga and

Hudgen’s paper is essentially the design effect term.

Mantunga and Hudgen’s work dealt with a continuous outcome rather than a binary

outcome. Kang et al. [47] extend Mantunga’s work to a CRT with a binary outcome.

The sample size (number of clusters per arm) is given by:

k0 =
(zα/2 + zβ)2[π1(1− π1) + π2(1− π2)]

(π1 − π2)2
[(1− ρ)

1

m
+ ρ+ ρCV 2], (5.15)

where m = E(N), σ2 = V ar(N) and CV = σ/m, the coefficient of variation of cluster

size. Note that the term
(zα/2+zβ)2[π1(1−π1)+π2(1−π2)]

(π1−π2)2
ρCV 2 is a correction term and repre-

sents the additional number of clusters needed for a CRT with varying cluster sizes and

average cluster size m compared to a CRT with equal cluster sizes in order to achieve the

same power 1− β. When CV is equal to 0, which corresponds to constant cluster size,

this correction term equals 0, and equation (5.15) is reduced to the traditional formula;

see equation (5.5) in Donner [41]. With larger CV , which means more dispersion of

cluster sizes, more clusters are needed.

In Mantunga and Hudgen’s derivation for the sample size formula, individual weights

are used. In that paper, the authors also mention minimal variance weight, but they
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argue that the sample size formula based on individual weight may be a little conservative

but provides reasonable values in practice. Note that equation (5.15) can also be written

as:

k0 =
(zα/2 + zβ)2[π1(1− π1) + π2(1− π2)]

(π1 − π2)2

[
E(N(1 + (N − 1)ρ))

E(N)2

]
. (5.16)

Jung et al.[17] discussed sample size calculation for a binary outcome in CRTs. They

derived a sample size formula for a one-arm CRT for the hypothesis test H0 : π=π0. They

considered cluster weight, individual weight and minimal variance weight in estimating

the success rate. They showed that the minimal variance weight is the best among

these three weights. It requires equal or smaller sample sizes and is more robust to mis-

specification of an input parameter than those assigning equal weights to individuals or

clusters. The sample size formula based on the minimal variance weight for a one-arm

CRT is given by:

k0 =
(zα/2 + zβ)2π1(1− π1)

(π0 − π1)2

1

E[ N
1+(N−1)ρ

]
. (5.17)

Jung’s formula is for one-arm CRTs with binary outcomes, and other formulas men-

tioned above focus on two-arm CRTs but assume that both arms have the same ICC.

Since this assumption may not hold, we relax it and allow each arm to have its own

ICC, denoted ρ1 and ρ2.

Our approach is based on the R̂D = π̂1 − π̂2 and its variance as given in equation

(5.7). As we have seen, using different weights in this equation leads to different variance

estimates. Here we use the minimal variance weight, so the variance of the test statistic

is given in equation (5.8).

Let m1i and m2i be the size of the i-th cluster in arm 1 and arm 2, respectively. We

regard them as independent and identically distributed random variables. By the law of

large numbers, as k1 →∞ and k2 →∞, we have
∑k1

i=1
m1i

1+(m1i−1)ρ1
/k1

P→ E
(

N
1+(N−1)ρ1

)
and

∑k2
i=1

m2i

1+(m2i−1)ρ2
/k2

P→ E
(

N
1+(N−1)ρ2

)
.

83



By equation (5.8), we have:

V ar(π̂1 − π̂2)
P→ π1(1− π1)

1

k1E
(

N
1+(N−1)ρ1

) + π2(1− π2)
1

k2E
(

N
1+(N−1)ρ2

) . (5.18)

Our hypotheses are H0 : π1 = π2 and H1 : π1 6= π2, and the test statistic is

π̂1−π̂2√
V ar(π̂1)+V ar(π̂2)

. The two arms have equal numbers of clusters, so k1 = k2 = k0. Using

the same method as in Section 4.2, we can obtain the number of clusters required in

each arm:

k0 =
(zα/2 + zβ)2

[
π1(1− π1) 1

q1
+ π2(1− π2) 1

q2

]
(π1 − π2)2

, (5.19)

where q1 = E
(

N
(1+(N−1)ρ1)

)
and q2 = E

(
N

(1+(N−1)ρ2)

)
.

Note that when we say cluster size is a random variable N following a particular prob-

ability distribution and the pdf is f(N), we refer to the population distribution of cluster

size. If in a study, the clusters are randomly chosen by investigators, then the population

distribution of cluster size can be used to calculate the sample size; E
(

N
(1+(N−1)ρ1)

)
is

calculated using the pdf f(N). However, if investigators do not randomly select clusters,

the distribution of cluster size will not reflect the population distribution. For example,

investigators may attempt to choose smaller size clusters. Recall that the design effect

DE = 1 + (m− 1)ρ, the smaller value of m, the smaller value of DE. Hence the smaller

sample size is required to obtain the same power. Therefore, selecting smaller size clus-

ters is more efficient than selecting larger size clusters. In any case, the pdf f(N) should

reflect the realized probability distribution of cluster size.

5.6 Sample size for optimal allocation designs when cluster size

varies

In Section 5.4, assuming each arm has the same number of clusters, we derived the sample

size formula for a two-arm CRT with varying cluster size. From previous chapters, we

know that when the cost per cluster and the cost per individual are very different in the

two arms, assigning equal numbers of clusters in the two arms may not be efficient.
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Suppose that the number of clusters in arm 1 is s times as the number in arm 2,

k1 = sk2. Again using the same method in Section 4.2, after direct calculation we obtain

the number of clusters in arm 1 and arm 2 to satisfy the power and type 1 error rate

requirements:

k1 =
(zα/2 + zβ)2

[
π1(1− π1) 1

q1
+ sπ2(1− π2) 1

q2

]
(π1 − π2)2

, (5.20)

k2 =
(zα/2 + zβ)2

[
π1(1− π1) 1

sq1
+ π2(1− π2) 1

q2

]
(π1 − π2)2

, (5.21)

where q1 = E
(

N
(1+(N−1)ρ1)

)
and q2 = E

(
N

(1+(N−1)ρ2)

)
.

Given π1, π2, ρ1 and ρ2 and the pdf of cluster size N , for any s we can obtain

corresponding k1 and k2. All combinations of s, k1 and k2 satisfying the above equations

can satisfy power and type 1 error requirement. But different s, k1 and k2 are associated

with different costs.

In Section 5.3, when the total number of clusters is fixed, we derived equation (5.13),

the optimal allocation wvc∗RD, which maximizes the precision of the estimator per unit

cost, thereby maximizing the power for the total cost. In other words, the total cost for

wvc∗RD is minimized for all different w satisfying the same power requirement.

In contrast to the problem in Section 5.3, in which the total number of clusters is

fixed, in this section we consider the sample size requirement problem. The number of

clusters in the study is not pre-determined and our role is to find it. When k1 and k2

are large, we have

wvc∗RD
P→

√
π1(1− π1)q2√

π1(1− π1)q2 +
√
π2(1− π2)q1γ

(5.22)

where q1 = E
(

N
(1+(N−1)ρ1)

)
, q2 = E

(
N

(1+(N−1)ρ2)

)
and γ = (c1E(N)+e1)

(c2E(N)+e2)
. This wvc∗RD can be

used in sample size calculations.

Since s = k1/k2 and wvc∗RD = k1/(k1 + k2), we obtain s∗ =
wvc∗RD

1−wvc∗RD
. The value of s∗

makes the total cost minimal for the study. Plugging s∗ =
wvc∗RD

1−wvc∗RD
into equations (5.20)

85



and (5.21), we obtain:

k1 =
(Zα/2 + Zβ)2

[
π1(1− π1) 1

q1
+

wvc∗RD
1−wc∗RD

π2(1− π2) 1
q2

]
(π1 − π2)2

, (5.23)

k2 =

(Zα/2 + Zβ)2

[
π1(1− π1) 1

wvc∗
RD

1−wc∗
RD

q1
+ π2(1− π2) 1

q2

]
(π1 − π2)2

, (5.24)

where q1 = E
(

N
(1+(N−1)ρ1)

)
, q2 = E

(
N

(1+(N−1)ρ2)

)
and wvc∗RD is obtained from equation

(5.22).

We assess the performance of our sample size formula (5.19), which corresponds to

equal sample sizes and formulas (5.23, 5.24) which correspond to the optimal sample

size. We also compare them to the usually used sample size formula (4.3) in which mean

cluster size replaces constant cluster size. Suppose the distribution of cluster size is one

of following distributions:

Distribution 1: All clusters have size 5, with CV equal to 0;

Distribution 2: One fourth of clusters have size 2, 4, 6 and 8, respectively, with CV

equal to 0.45;

Distribution 3: Half of clusters have size 2 and half have size 8, with CV equal to

0.6;

Distribution 4: Four fifths of clusters have size 2 and one fifth of clusters have size

17, with CV equal to 1.2.

The mean cluster size in the four cluster size distributions is equal to 5. However,

the imbalance of cluster size increases sequentially from Distribution 1 to Distribution

4.

Our null hypothesis is π1 = π2 and we want to obtain 0.8 power with type 1 error rate

of 0.05. We assume that the success rates in the two arms are 0.5 and 0.3 and the ICC

in the arm 1 takes values 0.05, 0.1, 0.2 and 0.3 while the ICC in the arm 2 is a constant

0.1. We assume cost ratio γ = 5. We simulate data with cluster size following one of
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Table 5.2: Empirical power and sample size (in parentheses) for different cluster size

distributions (π1 = 0.5, π2 = 0.3, desired power 80%)

(ρ1, ρ2) Dist 1 Dist 2 Dist 3 Dist 4

Based on formula (4.3)

(0.05, 0.1) 78.9(24, 24 ) 76.6(24, 24 ) 74.8(24, 24 ) 67.4(24, 24 )

(0.1, 0.1) 78.4(26, 26 ) 76.7(26, 26 ) 72.9(26, 26 ) 67.4(26, 26 )

(0.2, 0.1) 78.8(30, 30 ) 75.6(30, 30 ) 74.4(30, 30 ) 68.0(30, 30 )

(0.3, 0.1) 81.2(34, 34 ) 79.2(34, 34 ) 77.4(34, 34 ) 68.4(34, 34 )

Based on formula (5.19)

(0.05, 0.1) 78.9(24, 24 ) 76.9(25, 25 ) 77.8(26, 26 ) 78.9(30, 30 )

(0.1, 0.1) 78.4(26, 26 ) 77.4(27, 27 ) 77.0(28, 28 ) 78.6(33, 33 )

(0.2, 0.1) 78.8(30, 30 ) 77.4(31, 31 ) 80.9(33, 33 ) 80.8(38, 38 )

(0.3, 0.1) 81.2(34, 34 ) 79.0(35, 35 ) 79.8(37, 37 ) 79.3(42, 42 )

Based on formulas (5.23, 5.24)

(0.05, 0.1) 80.3(17, 38 ) 78.5(18, 40 ) 80.2(19, 41 ) 80.0 (22, 47 )

(0.1, 0.1) 79.8(20, 40 ) 80.8(21, 42 ) 82.6(22, 44 ) 81.2 (26, 52 )

(0.2, 0.1) 81.8(25, 44 ) 82.6(26, 46 ) 82.3(24, 25 ) 82.1(32, 57 )

(0.3, 0.1) 81.7(29, 47 ) 84.8(31, 50 ) 82.7(32, 52 ) 81.2(37, 59 )

above distributions. The details of our simulation method are described in Section 6.3.

The power and sample size under different formulas are summarized in Table 5.2.

We see that for all formulas, the sample sizes required increase with the increasing

ρ1. This is reasonable since when ICC is larger, the design effect is larger, leading to a

larger sample size to obtain the same power.

When formula (4.3) is used, we see that for different distributions, the calculated

sample sizes are the same. Recall that in formula (4.3), the mean cluster size is used.

The mean cluster sizes are the same in all of the 4 distributions, hence we obtain the

same sample sizes. For Distribution 1, the power levels under all ρ1 and ρ2 combinations
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are around 0.8, which is the desired power. For Distribution 2, the power levels are

decreased, but only slightly. For Distribution 3 and Distribution 4, the power levels are

obviously smaller than 0.8.

We next assess our derived sample size formula (5.19). For this formula, we still

assume that the two arms have the same number of clusters. However, we used the

minimal variance weights scheme to incorporate the cluster distribution information in

the sample size calculation. From Distribution 1 to Distribution 4, as CV of cluster

size increases, the sample size required also increases. For example, when ρ1 = 0.3

and ρ2 = 0.1, the total number of clusters required for Distribution 1 is 48, and the

total number of individuals required is 68x5=340; in contrast, the total number of clus-

ters required for Distribution 4 is 84, and the total number of individuals required is

84x0.8x2+84x0.2x17=84x5=420. For various ρ1 and ρ2, the power levels for all 4 differ-

ent distributions are around the desired power 0.8.

Finally we assess our derived optimal sample size formulas (5.23, 5.24), in which

we allow the number of clusters in the two arms to be different. For those formula,

besides incorporating cluster distribution information, we also incorporate the optimal

allocation information. Similar with formula (5.19), from Distribution 1 to Distribution

4, with CV increasing, we see that the calculated sample size increases for various ρ1

and ρ2, the power levels for all 4 different distributions are around the desired power 0.8.

In fact, in most cases, the power levels are slightly larger than 0.8. The difference from

formula (5.19) is that the total sample size required by formulas (5.23, 5.24) is larger

but the total cost is less. For example, when ρ1 = 0.3 and ρ2 = 0.1, for Distribution

3, the total number of clusters required is 74 by formula (5.19) and 84 by (5.23, 5.24),

respectively. Since the cost ratio γ is 5, the total cost is 37x5+37=222 by formula (5.19)

and 32x5+52=212 by formula (5.19). This suggests that the balanced design costs more

than the design based on optimal sample size.
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5.7 Application

We show how to use the results in this chapter using real studies. Recall the Samoan

Women’s Health study [23], which was a CRT designed to increase rates of mammogram

usage in women of Samoan ancestry. In the trial, Samoan churches in southern California

were randomized to intervention and control arms, and women at intervention churches

participated in a culturally appropriate breast cancer education program. The control

arm received usual care. The outcome was self-reported receipt of mammogram at

follow-up. In previous chapters, we assume the cluster size in this CRT is constant.

Now we abandon such assumption.

In this study, 55 churches were recruited. The actual cluster size varies, ranging

from 2 to 42 participants with a mean cluster size of 14. A histogram of cluster size

distribution is shown in Figure 5.1.

These 55 churches have 24 distinctive cluster sizes. The frequencies of churches for

some cluster sizes are very small. For example, only 1 church with cluster size 3 exists.

No matter what the optimal allocation is, we can only assign this church to one arm. For

practical purpose, we group churches into several cluster size strata and randomly assign

churches in each stratum to arm 1 or arm 2 according to wvc∗RD. In order to calculate

wvc∗RD, ni in equation (5.13) is the mean cluster size of churches in a stratum. Since the

CV within each stratum will be small, the wvc∗RD will be essentially the same for each

stratum. We have seen that the difference between using wc∗RD with mean cluster size

and wvc∗RD is small. Hence we do not need many strata.

From Figure 5.1, we can classify churches into 4 groups with mean cluster size 7, 17,

27 and 37 respectively. The corresponding density 0.45, 0.37, 0.1 and 0.08.

In this study, the cost per church is $1000. For churches in the intervention arm

(arm 1), there is an additional cost of $4000 per church. The cost of materials for each

individual is $10 in both arms. Hence γ = 5000+14∗10
1000+14∗10

= 4.51. In the original Samoan

Women’s Health study, the observed success proportions in the intervention and and

control arm were 0.5 and 0.4. Even though all Samoan churches available were used, a
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significant difference was not found. Here we assume the success proportions in the two

arms are more different, say, 0.5 and 0.3, respectively. The ICCs are assumed to be 0.3

and 0.1.

From equation (5.13), after calculation, we obtain wvc∗RD = 0.41. Hence for clusters

with size 2-12, 55 ∗ 0.45 ∗ 0.41 = 10 clusters are assigned to arm 1 and 15 are assigned to

arm 2. For clusters with size 12-22, 8 clusters are assigned to arm 1 and 12 are assigned

to arm 2. For the rest clusters, 4 are assigned to arm 1 and 6 are assigned to arm 2.

Now we consider using equation (2.15). The mean of cluster size is 14. After calcu-

lation, we obtain wc∗RD = 0.41, the same as wvc∗RD = 0.41. Hence for this study, although

the cluster size is varying, directly using wc∗RD is good.

Now suppose we want to test the hypotheses π1 = π2 with power 0.8 and type 1

error 0.05. The optimal sample size can be directly calculated from equations (5.23) and

(5.23). After calculation, k1 = 93.4 and k2 = 134.5. Hence we need 94 clusters in arm 1

and 135 clusters in arm 2.

5.8 Chapter summary and discussion

In Chapter 2 through 4, we assumed the cluster size is constant. In this chapter, we

deal with a CRT with varying cluster size. When the cluster size is varying, there are

different ways that we can assign weights to different clusters to obtain an unbiased

estimator of RD. We reviewed three different weighting approaches: cluster weight,

individual weight and minimal variance weight, which were introduced in Kerry and

Bland [15]. For the same precision, the number of clusters needed is the smallest for

minimal variance weights. Hence our work is based on minimal variance weights.

We considered the optimal allocation problem assuming the cluster sizes are known.

We regarded cluster size as a random variable that follows a particular probability dis-

tribution. We let clusters in the two arms have similar distributions of cluster size and

derived the optimal allocation wvc∗RD, which makes the CE maximal among all allocation
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values w. The optimal allocation wvc∗RD is dependent on the cluster size distribution.

However, if ρ1 = ρ2, the optimal allocation does not involve the distribution of cluster

size; it only involves the mean cluster size. Even though ρ1 6= ρ2, wc∗RD derived for

constant cluster size could be used to approximate wvc∗RD. The constant cluster size is

substituted by mean of cluster size to calculate wc∗RD. The approximation is generally

good. As shown in Table 5.1, even when the CV of cluster size is as large as 1.5, the

difference between wvc∗RD and wc∗RD is negligible. Recall that we need the number of clus-

ters to be integers, therefore we often obtain the same number of clusters after rounding

kwvc∗RD and kwc∗RD to integers, as illustrated by the example in section 5.7.

We also consider the sample size calculation problem for a CRT with varying cluster

sizes. We review recent research on sample size calculation for a CRT with varying

cluster size. Previous research mainly focused on a continuous outcome. Besides the

literature reviewed in Section 5.5, some other work on sample size calculation can be

found in Breukelen et al. [48] and Candel et al. [49], in which they used CV to calculate

how many more clusters are required for varying cluster size compared to equal cluster

size. Kang et al. [47] extended the work of Mantunga and Hudgen [16] to a two-

arm CRT with binary outcomes. Although they did not directly specify, they used

individual weights. Jung et al.[17] provided sample size formulas for a one-arm CRT

with a binary outcome using all three weighting approaches. In this chapter, we derived

a sample size formula (5.19) for a two-arm CRT with a binary outcome using the minimal

variance weights. The minimal variance weights can naturally connect to the concept

of maximizing cost efficiency (CE), which was introduced in Chapter 2. In addition,

previous studies assumed a common ρ in the two arms. In our sample size formula, we

considered arm-specific ρ1 and ρ2.

All sample size formulas given in previous literature are for balanced designs, in which

the same number of clusters are assigned in the two arms. As we showed in Chapter

4, among all designs satisfying the power requirement, the total cost of a balanced

design may not be minimal. In this chapter, we modify our sample size formula (5.19)

for varying cluster size using the optimal allocation wvc∗RD, as we did in Chapter 4. The
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modified sample size formulas (5.23, 5.24), which are called optimal sample size formula,

include cost consideration and guarantee the total cost of the study is minimal. However,

the total number of individuals in the study by optimal sample size formula is generally

larger than that of a balanced design. From the simulation study shown in Table 5.2, it

seems that formulas (5.23, 5.24) tend to give a conservative sample size. Note that the

distribution of cluster size should be specified in the sample size calculation.

Optimal allocation and optimal sample size for varying cluster size in this chapter

are based on the assumption that the cluster size follows a probability distribution and

that distribution is similar in the two arms. This assumption is realistic. In practice,

investigators usually want their intervention to work for clusters with various sizes, not

for only smaller clusters or larger clusters. More research is needed if this assumption

does not hold.
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Figure 5.1: Histogram of cluster size distribution in Samoan Women’s

Health study.
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CHAPTER 6

Comparison of analysis methods when cluster size

varies

6.1 Introduction

In CRTs, clusters rather than individuals are randomized to different treatment arms and

observations are typically made at the individual level. When observations are available

at the individual level, there is a choice to be made as to whether to conduct analyses

at the cluster level or on the individual level. In a cluster-level analysis, cluster-level

summary measures are used. In individual-level analyses, individual-level measures are

used, and correlated data methods are used to account for clustering.

Cluster-level analysis is conceptually straightforward; cluster-level summary mea-

sures are calculated and treated as independent. According to Donner [1] and Hayes [2],

cluster-level analysis is more robust than individual-level analysis, especially when the

number of clusters is small. However, cluster-level analysis does not use the individual

level information and hence may not be fully efficient. Compared to the cluster-level

analysis, the individual-level analysis can be more complex but may offer advantages.

For example, when a multilevel regression model is used, covariates can be included in

the model.

There is currently limited information on the comparative performance of different

analysis methods for CRTs with binary outcomes in terms of type 1 error rate and

statistical power, and even more limited information in the case of varying cluster size.

Here we review relevant literature.
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Heo and Leon [50] compared the performance of different methods for analysis of

clustered binary outcomes. They considered the mixed effect logistic regression model

(MELR), also called the ”random effects logistic regression model” and generalized es-

timating equation method (GEE). For MELR, they used SAS PROC NLMIXED and

the SAS GLIMMIX macro. The former corresponds to a full likelihood method and the

latter corresponds to a penalized quasi-likelihood (PQL) method. They also included

the ordinary logistic regression model as a comparison, although it is not a correct

method to analyze CRTs data. Type I error rate, power, bias, and standard error were

compared across the four statistical methods through computer simulations. In their

simulation, they only considered balanced designs with same number of clusters in each

of two arms and the same number of individuals in each cluster. They concluded that

the performance of the full likelihood and the penalized quasi-likelihood methods were

superior to GEE for analysis of clustered binary observations. In a subsequent paper

[51], they compared MELR performance for binary outcomes between CRTs with equal

cluster size and CRTs with unequal cluster size, using uniform distributions to generate

unequal cluster size. They concluded that the performance of MELR was very similar,

regardless of inequality in cluster size. However, they did not compare MELR with other

analysis methods for CRTs with unequal cluster sizes.

Ukoumunne et al. [52] used simulation to compare the accuracy of estimation and

confidence interval coverage of several methods for analyzing binary outcomes from

CRTs. The emphasis of their study was on estimation rather than hypothesis testing.

They considered GEE and also used ordinary least square regression to analyze cluster-

level summary measures. They also considered a modified GEE approach, in which

Wald tests of significance and confidence intervals were based on quantiles from a t-

distribution rather than quantiles from the standard normal distribution. They assumed

equal cluster size and equal number of clusters in the two arms. In general, GEE was

better than the other methods. In a subsequent paper [53], they compared GEE and

cluster level t-tests for binary outcomes when the outcome measures were RD, RR and

OR. Since distributions of RR and OR are skewed, they used log transformations for
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these measures. They found that the cluster level t-test often had large bias when log

RR and log OR were used.

Pacheco et al. [54] compared methods for the analysis of CRTs with count data.

They considered cluster-level t test, GEE and MELR, which they called generalized

linear mixed models. For the GEE method, they used both the sandwich estimator and

model-based estimator of the variance-covariance matrix. For MELR, they used both

maximum-likelihood-based methods and Bayesian methods for parameter estimation.

Unlike other authors, they assumed unequal cluster size. Cluster sizes were generated

from normal distributions, with fractional cluster sizes rounded to the closest integer

and the number of individuals per cluster truncated to a minimum of 8. They concluded

that MELR performs better in general.

Some work on the comparative performance of different analysis methods in CRTs

with binary outcomes and varying cluster size is reported by Austin [55]. Austin com-

pared the cluster level t-test, Wilcoxon rank sum test, permutation test, adjusted chi-

square test, MLER (which he called logistic-normal random effects model) and GEE

method. In his simulation study, cluster size followed a Poisson distribution with mean

of 7 or 39 and the ICC was assumed constant across arms. He concluded that the GEE

method performs better in general. As far as we know, his work is the first to compare

different methods to analyze binary outcomes in CRTs with varying cluster sizes. How-

ever his work has some limitations and in particular, reflects only limited imbalance of

cluster sizes. In Austin’s work, the CV of cluster size is only 0.38 and 0.16. In practice,

the variance of cluster size may be larger than the mean of cluster size, but the Poisson

distribution does not allow for such overdispersion. In addition, the assumption of a

constant ICC across arms can be questionable, especially when proportions are very

different in the two arms. In fact for binary outcomes, the ICC is a function of outcome

prevalence. Hence, the ICC and the outcome prevalence are intrinsically related. With

different outcome prevalences in two arms, a constant ICC in both arms may not hold.

A discussion can be found in Crespi et al. [56].

The previous studies on analysis methods for binary outcomes in CRTs often overlook
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imbalance of cluster size, and especially severe imbalance has not been considered. In

addition, all previous studies have assumed the same ICC in the two arms, but in

practice, this assumption is often violated. To address these issues, we conducted a

simulation study to address two questions: (1) How does imbalance of cluster size affect

the comparative performance of the different analysis methods, especially for severe

imbalance of cluster sizes? (2) How does unequal ICC in two arms affect the performance

of the methods if a constant ICC is assumed in the analysis?

Many analysis methods are available for CRTs with binary data. Many are described

in Donner and Klar [1] and Hayes and Moulton [2]. We will consider four methods:

the two-sample cluster-level t-test, the adjusted chi-square approach, GEE and MELR.

Research such as Crespi et al. [57] has found the most commonly used analysis methods

in cancer prevention and screening CRT are mixed models and GEE. Although the

adjusted chi-square approach is less commonly used, it is an individual-level analysis

method and unlike GEE and MELR, it is not a regression method. The cluster level

t-test is a simple and commonly used cluster-level analysis method, and therefore we

also include it. We first review these analysis methods. Next, we describe a method of

indirectly generating correlated binary data, and modify this method to generate CRTs

data with varying cluster size and different ICCs. Using this method to simulate data,

we compare the four methods in terms of power and type 1 error rate under a broad

range of scenarios.

6.2 Commonly used analysis methods

In this section, we review the four CRTs data analysis methods compared in our simu-

lation study. We define some key notations here:

πh: the success probability in the hth arm.

πhi: the success probability in the ith cluster in the hth arm.

kh: the number of clusters in the hth arm.
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nhi: the number of individuals in the ith cluster in the hth arm.

6.2.1 Cluster-level t-test

The first method we consider is the cluster-level t-test. This test is a two indepen-

dent sample t-test on the cluster-level proportions which are regarded as independently

distributed in each arm.

The null hypothesis is H0 π1 = π2. The test statistic for a cluster-level t-test is

t =
π̄1 − π̄2

S
√

1
k1

+ 1
k2

, (6.1)

where π̄h =
∑kh
i=1 π̂hi
kh

is the mean proportion for treatment hth arm, h = 1, 2, S2 =∑
h,i(π̂hi−π̄h)2

k1+k2−2
is the pooled estimate of error variance, and kh is the number of clusters in

the hth arm.

Note that this statistic does not require calculation of the ICC. The observed pro-

portion in each cluster is calculated and these are regarded as independent observations.

Hence this method avoids estimating the ICC. Under the null hypothesis of no difference

of proportions between the two arms, the statistic follows a t-distribution with k1+k2−2

degrees of freedom [1].

According to the standard t-test assumptions, this method assumes that the cluster-

specific proportions are normally distributed with common variance. The variance of

π̂hi is πh(1−πh)(1+(nhi−1)ρh)
nhi

. Hence when there is considerable variation in cluster size,

this assumption is commonly violated. However, simulation studies [58, 59] have shown

that the test is robust to violations of the underlying assumptions, especially when the

numbers of clusters in the two treatment arms are equal.

The cluster-level t-test ignores any variation in cluster size. An alternative is the

weighted t-test, in which weights are given to clusters. Recall in Section 5.2, we described

various weight schemes and used minimal variance weight in our sample size calculation.

That weight scheme is given in equation (5.4) and we use this weight scheme here. Let
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bhi be minimal variance weights. The test statistic for the weighted t-test is

tweight =
π̄1 − π̄2√

(
S2
1(k1−1)+S2

2(k2−1)

k1+k2−2
)( 1
k1

+ 1
k2

)
, (6.2)

where

π̄h =
∑kh
i=1 bhiπ̂hi
kh

is the mean proportion for treatment arm h, h = 1, 2, and

S2
h =

∑kh
i=1 bhi(πhi−π̄h)2

1−
∑kh
i=1 b

2
hi

is the estimate of the sample variance in the hth arm, h = 1, 2 .

6.2.2 Adjusted chi-Square test

The second method we consider is the adjusted chi-square test. This test was developed

by Donner and Donald [60]. The idea behind this method is to adjust the usual Pearson

chi-square statistic using by an estimate of the ICC. The test statistic is given by

χ2
A =

2∑
h=1

∑kh
i=1 nhi(π̂h − π̂)2

Chπ̂(1− π̂)
(6.3)

where π̂h is the success rate in the hth arm, π̂ is the success rate across both arms and

nhi is the cluster size in the hth arm and the ith cluster, Ch =
∑kh
i=1 nhi[1+(nhi−1)ρ̂]∑kh

i=1 nhi
and ρ̂

is an estimate of ρ.

Recall that if cluster size is m, then the design effect is defined as 1+(m−1)ρ, which

measures the inflation in variance of π̂h that can be attributed to clustering [1]. The

factor Ch can be regarded as the estimated design effect in the hth arm. Donner and

Donald [60] assumed the population design effects are the same in both treatment arms

and argued that the assumption is guaranteed to hold for experimental comparisons due

to randomization. The statistic χ2
A approximately follows a chi-square distribution with

1 degree of freedom when H0 holds.

An estimate of the ICC is required for this method. There are several different

methods available to estimate the ICC, for example, see Ridout et al. [21] and Wu et

al.[61]. Donner and Donald use the ANOVA method to estimate ρ and we follow this

method. Since in practice the ICCs may be different in the two arms, we also consider

a modification of this method to estimate and use arm-specific estimates ρ̂1 and ρ̂2 in
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C1 and C2. When ρ1 = 0 and ρ2 = 0, the adjusted chi-square test reduces to a standard

Pearson chi-square test.

6.2.3 Mixed logistic regression model

The third method we consider is the mixed logistic regression model (MELR), which is

an individual-level analysis method. Many textbooks have discussions about MELR, for

example, see Fitzmaurice [62] and McCulloch [63]. The MELR model can be expressed

as:

log

(
πhij

1− πhij

)
= logit(πhij) = α + βcsThi + uhi, (6.4)

where πhij = Pr(xhij = 1|uhi, Thi) is the probability of success for the jth individual in

the ith cluster in the hth arm conditional on uhi, Th, uhi ∼ N(0, σ2
u) is a cluster-level

random effect for the ith cluster in the hth arm, Thi is a dummy variable with Thi = 1

for the intervention arm and Thi = 0 for the control arm.

The random effects uij account for between-cluster variation and are assumed to

follow a normal distribution with mean 0 and variance σ2
u. The coefficient βcs is the

log odds of success in the intervention arm compared to the control arm. The subscript

cs in βcs indicates that this is a cluster-specific effect. Note that logit(πhij|Thi = 1) -

logit(πhij|Thi = 0) = βcs. Hence the term exp(βcs) can be interpreted as the cluster-

specific odds ratio for the effect of intervention. The treatment effect can be tested

by testing the hypothesis H0 : βcs = 0 using a Wald test. MELR belongs to the class

of generalized linear mixed models (GLMM), for which there are several methods of

estimation, including penalized quasilikelihood, Laplace approximation, Gauss-Hermite

quadrature and Markov chain Monte Carlo [63].

Individual-level covariates can be added into the MELR model, which is an advantage

of MELR compared to a non-regression method such as the adjusted chi-square test.

Hayes [2] indicates that MELR does not provide reliable results when there are fewer

than about 15 clusters per arm.

In the MELR model, the ICC is defined on the logistic scale. On this scale, cluster and
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individual effects are assumed additive and the within-cluster individual-level variance

Π2

3
does not depend on within-cluster prevalence. In the MELR model, the ICC can be

expressed as:

ρ =
σ2
u

σ2
u + (Π2/3)

. (6.5)

In equation (6.4), the random effects uij follow the same distribution in both arms,

which implies that ICCs are the same in the two arms. When ICCs are different in the

two arms, Omar [64] used a model to allow different random effect variances. We can

modify the MELR model to allow different random effect variances; we call this model

MELR2. This allows ICC to be different in the two arms. The modified model is:

log

(
πhij

1− πhij

)
= α + βcsThi + u1i(1− Thi) + u2iThi, (6.6)

where u1i ∼ N(0, σ2
u1) and u2i ∼ N(0, σ2

u2).

6.2.4 GEE method

The fourth method we consider is the GEE approach developed by Liang and Zeger [65].

The GEE model we consider is:

log

(
πhij

1− πhij

)
= α + βpaThi, , (6.7)

where πhij = Pr(xhij = 1|Thi) and correlation within clusters is accounted for by using

unknown correlation matrix R(a). As for MELR, Thi = 0 in the control arm and Thi = 1

in the intervention arm.

In GEE, the working correlation matrix R(a) can have different structures [65]. We

assume a common correlation model for CRT data. Subjects from different clusters

are independent and the correlation between pairs of subjects in the same cluster is

identical. Therefore, an exchangeable working correlation matrix with 1 in the diagonal

and a constant a elsewhere is assumed. It can be expressed as:
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R(a) =


1 a a ...

a 1 a ...

a a 1 ...

 .

Note that if a constant ICC is accounted for in all clusters, the constant a in R(a)

is across all clusters. If the ICC in each arm is different, we can use modified working

correlation structures in our GEE model. In this case, we still assume an exchangeable

working correlation matrix. However, the working correlation matrix in each arm has

its own constant in off-diagonal positions. In the control arm, the working correlation

matrix is:

R(a0) =


1 a0 a0 ...

a0 1 a0 ...

a0 a0 1 ...

 .

In the intervention arm, the working correlation matrix is R(a1):

R(a1) =


1 a1 a1 ...

a1 1 a1 ...

a1 a1 1 ...

 .

More discussions can be found in Crespi [66].

In this GEE model, βpa denotes the intervention effect on the log odds scale. The sub-

script pa in βpa indicates the population average effect. The treatment effect is tested by

testing H0 : βpa = 0. A robust variance estimator and Wald test are used. Like MELR,

GEE can accommodate cluster-level and individual-level covariates. Interpretation of

βpa is a little different from βcs. Here exp(βpa) is the population-averaged odds ratio for

the effect of intervention, and exp(βcs) is the odds ratio for the effect of innervation for

a specific cluster. Like MELR, GEE also requires a large numbers of clusters per arm

to obtain reliable results and at least 15 per arm is recommended [2].
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6.3 Simulation method

We use Emrich and Piedmonte’s method [67] to generate correlated binary data, which

is an indirect method to generate correlated binary data from a multivariate normal dis-

tribution. Within each cluster, the generated binary outcomes have the given marginal

expectation and pairwise correlation.

Suppose the cluster size is m. In general, the steps to simulate an m-dimensional

vector X with binary elements X1, ..., Xm with E(Xj) = πj and Corr(Xj, Xk) = ρjk,

j 6= k are as follows:

(1): Let Φ denote the CDF for a standard bivariate normal random variable with

correlation coefficient δjk and let w(π) denote the πth quantile of the standard normal

distribution. Solve the following equation for δjk:

Φ[w(πj), w(πk), δjk] = ρjk[πj(1− πj)πk(1− πk)]1/2 + πjπk (6.8)

(2): Simulate anm-dimensional multivariate normal random variable W = (W1, ...,WJ)T

with mean 0 and correlation matrix Σ=(δjk).

(3): Generate the vector X with components Xj = I[Wj ≤ w(πj)] for j = 1, ...,m.

Note I[Wj ≤ w(πj)] is an indicator function which transforms continuous components

in the vector X to binary components.

It can be shown that under this setting, E(Xj) = πj and Corr(Xj, Xk) = ρjk. There

is a very brief proof in Emrich and Piedmonte’s paper [67]. We give a more detailed

proof here.

Proof:

The expectation of the jth component of the vector X is E(Xj) = E{I[Wj ≤ w(πj)]}

= Pr[Wj ≤ w(πj)] = πj since w(π) denotes the πth quantile of the standard normal

distribution and Wj is the jth component of a multivariate normal random variable.

The covariance of the jth and kth components of the vector X is:

Cov(Xj, Xk)=E(XjXk)− E(Xj)E(Xk)=Pr(Xj = 1, Xk = 1)− πjπk=Pr[Wj ≤ w(πj),Wk ≤
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w(πk)]− πjπk=Φ[w(πj), w(πk), δjk]− πjπk.

From equation (6.8) in step (1), we have Cov(Xj, Xk)=ρjk[πj(1− πj)πk(1− πk)]1/2.

Hence we have Corr(Xj, Xk)=
Cov(Xj ,Xk)√
V ar(Xj)V ar(Xk)

=
ρjk[πj(1−πj)πk(1−πk)]1/2

[πj(1−πj)πk(1−πk)]1/2
=ρjk.

We implement this method in R. Since we use the common correlation model, we

have E(Xj) = π ∀ j and Corr(Xj, Xk) = ρ ∀ j, k. We write an R function to calculate

the CDF of a bivariate normal distribution. Then we specify π and ρ and use the R

function uniroot to solve equation (6.8) to obtain δ. After we obtain δ, the correlation

matrix Σ is obtained, which has 1 on the diagonals and δ on the off-diagonals. Then

we use the R function rmvnorm in R package mvtnorm to generate multivariate normal

distribution of a m-dimensional random vector with mean 0 and correlation matrix Σ.

The dimension m of this vector is equal to the size of the corresponding cluster. Finally

we write an indicator function to transform the continuous elements in that vector to be

binary elements as in step (3). The transformed vector is a cluster of size m with binary

outcomes with the desired mean and correlation structure. We repeat this procedure p

times to obtain p clusters.

6.4 Simulation specification

The purpose of our simulation study is to compare different methods to analyze CRT

data with varying cluster size. We set up the simulation study so that the mean of cluster

size is fixed and CV of cluster size varies. Austin [55] who assumed varying cluster size

following a Poisson distribution. However, the CV of cluster size in his simulation was

low (CV=0.38 or 0.16). The Poisson distribution also has limitations; we can not vary the

mean of cluster size and CV independently. The negative binomial distribution is more

flexible. However, since one parameter of the negative binomial distribution must be

an integer, this approach would not allow us to find appropriate parameters to achieve

a pre-specified mean and CV. Heo et al. [51] used uniform distributions to generate

unequal cluster size, but it can be shown that the CV of any uniform distribution is less

than 0.58. To see this, let a uniform distribution have parameters a and b. The CV of
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this uniform distribution is

√
(b−a)2/12

(a+b)/2
= b−a
b+a

1
3
≤ 1

3
= 0.577. Pacheco et al. [54] considered

varying cluster size by generating normal distributions. However, when using normal

distributions, if the CV is large, we can expect that many cluster would have negative

cluster size. Hence none of these distributions are appropriate for our simulation study.

In our simulation, we let cluster size follow a gamma distribution. The reasons we

choose a gamma distribution are as follows. First, CV of cluster size can be easily

controlled by the shape and scale parameters of the gamma distribution. Therefore

we can easily fix the mean cluster size and vary CV to pre-specified values. Second, a

gamma distribution can be skewed and in practice, cluster size distributions are often

skewed. Since the gamma distribution is a continuous distribution, but cluster size must

take integer values, we round fractional cluster sizes value to the nearest integer. In

addition, cluster size cannot be 0, hence we add 1 to all numbers obtained from the

gamma distribution. Using this method, the CV of the simulated data is not exactly

the same as the CV we want but the difference is negligible.

A factorial design is used in our simulation study. The factors include the number of

clusters in the two arms, the CV of cluster size, the success probabilities in the two arms

and the ICCs in the two arms. With respect to the number of clusters, we consider both

equal and unequal numbers of clusters in the two arms. For equal number of clusters,

we let k1 = 30, k2 = 30. For unequal number of clusters, which may occur when optimal

allocation is used, we let k1 = 40, k2 = 20 and k1 = 20, k2 = 40. The mean of cluster

size is set to be 20. CV of cluster size is set to be 0, 0.25, 0.5, 0.75, 1 and 1.5. The case

of CV=0 corresponds to constant cluster size. When cluster size varies, we assume it

to follow a gamma distribution. As CV increases, the imbalance of cluster size becomes

more severe. The success rate π1 in the intervention arm is set to be 0.3, 0.4 and 0.5. The

success rate π2 in the control arm is set to 0.3. When π1 = π2, we assess the type 1 error.

When π1 6= π2, we assess the statistical power. With respect to the ICCs, we consider

both equal ICCs and unequal ICCs in two arms. For the former, we set ρ1 = ρ2 = 0.1.

For the latter, we let ρ1 = 0.05, ρ1 = 0.2 and ρ=0.3 while keeping ρ2 = 0.1. Hence we
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have 216 different scenarios.

For each scenario, 2000 data sets were generated. The MELR model is fitted in R

using the lme4 package and the GEE model is fitted in R using the geepack package. For

the GEE method, we use the ”robust error” estimator (”sandwich variance” estimator).

We write R functions to calculate the cluster-level t-test and the adjusted chi-square

test statistics. The weighted t-test and the adusted chi-square test need estimated ICCs

values. We write an R function to estimate ICCs values using the ANOVA method.

More detailed discussion of estimating ICC can be found in Ridout et al.[21].

The performance of methods is evaluated based on type I error rate and statistical

power. Type I error rate is computed as the proportion of p values less than 0.05 under

a null hypothesis of no intervention effect (π1 = π2, βcs = 1, βpa=1). Statistical power is

computed as the proportion of p values less than 0.05 under an alternative hypothesis

of intervention effect (π1 6= π2, βcs 6= 1, βpa 6= 1).

6.5 Simulation results

In order to save space, we show selected simulation results. Recall in adjusted chi-square

test shown in equation (6.3), the factor Ch is calculated using the common ρ̂ or the arm-

specific ρ̂h. In our simulations we found that the results for the two versions of the

adjusted chi-square test are exactly the same. Therefore, we present results of only the

common ICC adjusted chi-square test.

In Figures 6.1 and 6.2, π2 is fixed as 0.3, and π1 is equal to 0.5 and 0.4 respectively,

and the statistical power of different methods is compared. In each figure, we include

different sub-figures for different combinations of ρ1 and ρ2. More specifically, we fix ρ2

as 0.1 and assign 0.05, 0.1, 0.2, 0.3 to ρ1 sequentially.

In Figure 6.1, we see that with CV of cluster size increasing, which means cluster

size becomes more unbalanced, the power of all methods decreases. But the rates of

decrease are different for different methods. The cluster-level t-test and the adjusted
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chi-square test are more sensitive to increasing CV of cluster size than other methods.

For example, in Figure 6.1(a) in which ρ1 = 0.05 and ρ2 = 0.1, when cluster size is

a constant (CV=0) the power is close to 1 for all methods. When CV of cluster size

increases to 1, the power of t-test and the power of adjusted chi-square test decrease to

0.92. In contrast, all other methods have power around 0.98 when CV=1. When CV

of cluster size increases to 1.5, the power of t-test decreases to 0.78 and the power of

adjusted chi-square test decreases to 0.80, much less than power for constant cluster size.

Note that although weighted t-test is a cluster-level analysis method, it has relatively

high power.

In Figure 6.1(b) in which ρ1 = ρ2, we see that GEE and GEE2 have almost the same

power, as do MELR and MELR2. In Figure 6.1(a), 6.1(c) and 6.1(d), ρ1 and ρ2 are not

the same, and we use these figures to check whether the power of GEE2 is different from

that of GEE and the power of MELR2 is different from that of MELR when ρ1 6= ρ2.

In Figures 6.1(a) and 6.1(c), we see that GEE and GEE2 almost have the same power,

even when the CV is large. In Figure 6.1(d), in which the difference of ρ1 and ρ2 and

the absolute value of ρ1 and ρ2 are relatively large, GEE2 has slightly higher power than

GEE when CV of cluster size is as large as 1.5. However, the power differences for GEE

and GEE2 are negligible when CV is less than 1. For MELR and MELR2, the situation

is different. In Figure 6.1(a), we see that MELR and MELR2 have almost the same

power. However, in Figures 6.1(c) and 6.1(d), MELR2 has less power than MELR2 for

different CV values, including for constant cluster size.

Figure 6.2 also compares the power of different methods. In this figure, the success

rate π1 reduced to 0.4, so the true difference of π1 and π2 is only 0.1. We see that the

power for all methods are smaller than those in Figure 6.1. However, the pattern of the

power change with CV increasing is similar in those two figures. In Figure 6.2(b), when

ρ1 = ρ2, we see that GEE and GEE2 have almost the same power. In Figures 6.2(a),

GEE and GEE2 also have the similar power. In Figures 6.2(c) and 6.2(d), when the

difference between ρ1 and ρ2 and the absolute values of ρ1 and ρ2 are large, GEE2 has a

slightly higher power than GEE. In Figure 6.2(a), we see that MELR2 has higher power
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(a) ρ1 = 0.05, ρ2 = 0.1 (b) ρ1 = 0.1, ρ2 = 0.1

(c) ρ1 = 0.2, ρ2 = 0.1 (d) ρ1 = 0.3, ρ2 = 0.1

Figure 6.1: Comparison of power for different analysis methods when π1 = 0.5, π2 = 0.3, m̄ = 20 and

k1 = k2 = 30.

than MELR, but in Figures 6.2(b) and Figure 6.2(d), MELR2 has smaller power than

MELR. In fact, in those two figures, MELR2 even has smaller power than t-test and

adjusted chi square test.

The results of comparison of type 1 error rates are shown in Figures 6.3. It seems

that the type 1 error rate of cluster-level t-test is very close to the nominal value of 0.05,

regardless of CV of cluster size; the same is true for the adjusted chi square test. The

type 1 error rate of the weighted t-test is also close to the nominal value of 0.05 when

CV is less than 1. When CV is as large as 1.5, the weighted t-test has slightly inflated

type 1 error rate. GEE, GEE2, MELR and MELR2 all have inflated type 1 error rate.

Unlike power decreasing with CV increasing, the change of type 1 error rate is not so

obvious with CV increasing, unless the CV is larger than 1. In Figures 6.3(c) and 6.3(d),
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(a) ρ1 = 0.05, ρ2 = 0.1 (b) ρ1 = 0.1, ρ2 = 0.1

(c) ρ1 = 0.2, ρ2 = 0.1 (d) ρ1 = 0.3, ρ2 = 0.1

Figure 6.2: Comparison of power for different analysis methods when π1 = 0.4, π2 = 0.3, m̄ = 20 and

k1 = k2 = 30.
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(a) ρ1 = 0.05, ρ2 = 0.1 (b) ρ1 = 0.1, ρ2 = 0.1

(c) ρ1 = 0.2, ρ2 = 0.1 (d) ρ1 = 0.3, ρ2 = 0.1

Figure 6.3: Comparison of type 1 error rate for different analysis methods when

π1 = 0.3, π2 = 0.3, m̄ = 20 and k1 = k2 = 30.

we see that MELR2 has high type 1 error rate. MELR also has high type 1 error rate

when CV is equal to 1.5.

6.6 Chapter summary and discussion

In this chapter, we reviewed several commonly used CRTs analysis methods: cluster-

level t-test, weighted t-test, adjusted chi-square test, MELR method and GEE method.

We showed how to modify the adjusted chi-square test, MELR and GEE to incorporate

arm-specific ICCs. Then we reviewed Emrich and Piedmonte’s method to generate

correlated binary data. Based on a modification of this method, we simulated CRT data

with varying cluster size and different ICCs in the two arms. We used simulated data
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to compare the performance of different analysis methods.

In previous research, although it is known that power may decrease when the cluster

is varying, few papers compare different analysis methods with pre-selected CV of cluster

size. As far as we know, we are the first to select CV values and compare the performance

of different analysis methods with increasing CV. We find that the power of all methods

decreases when cluster sizes become more unbalanced. When CV is very large, the power

of the cluster-level t-test is very low. In addition, although Donner and Klar [1] and

Donner [68] provide the adjusted chi-square test to analyze CRT data, our simulation

results indicate that such method may have poor performance when CV of cluster size is

large and ICCs are large. The weighted t-test is relatively insensitive to increasing CV of

cluster size. When the CV is less than 0.75, the weighted t-test has slightly lower power

than GEE. Therefore, the weighted t-test may be an alternative method to GEE when

CV of cluster size is not very large. GEE and MELR are relatively robust to increasing

CV in terms of power. Ahn, Jung and Kang [69] provided a weighted version of the

adjusted Chi square test. We have not checked its performance in our simulation, but

we expect it may have better performance than the adjusted chi-square test we used.

All previous work on comparing different analysis methods has simulated CRT data

with the same ICCs in the two arms. In our work, we simulated different ICCs in the two

arms, which is more realistic. We find the results are identical for adjusted chi-square

test with estimated common ρ̂ and adjusted chi-square test with arm-specific estimated

ρ̂1 and ρ̂2. According to Jung, Ann and Donner [70], this is due to the fact that the mean

cluster sizes in the two arms are the same. We also modify GEE and MELR to consider

different ρ1 and ρ2 in two arms (GEE2 and MELR2). We find that when ρ1 6= ρ2,

GEE2 has the same power or only slightly higher power than GEE2, depending on CV

of cluster size and ρ1 and ρ2. Unless CV of cluster size is large and ρ1 and ρ2 are large,

e.g., when CV is larger than 1 and ρ1 and ρ2 are larger than 0.1, GEE2 is not superior

to GEE in terms of power. This is reasonable, since for GEE method, even though the

working correlation matrix is misspecified, the estimation is robust. We find that in

most instances, MELR2 actually has lower power than MELR when ρ1 6= ρ2. When CV
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is very large, MELR2 even has lower power than the t-test. We used R package lme4 to

fit MELR2 and these problems may be specific to this package.

Unlike power decreasing with increasing CV of cluster size for all methods, the im-

balance of cluster size does not seem to affect type 1 error rate in a consistant manner.

All regression methods (GEE, GEE2, MELR and MELR2) showed inflated type 1 error

rates. GEE has smaller type 1 error rate than MELR. MELR2 has very large type 1

error rate when ρ1 6= ρ2 and ρ1 and ρ2 are relatively large.

Based on our simulation study, we would recommend using GEE. Austin [55] also

concluded that GEE is slightly better than other methods. GEE2 can also be used, but

it does not have obvious advantages over GEE unless CV of cluster size is large and ρ1

and ρ2 are large. We did not consider the case of small number of clusters in a CRT.

Previous studies indicate MELR and GEE are not robust if the number of clusters is

smaller than 15, e.g., see Donner and Klar [1]. When the number of cluster is very small

and cluster size is close to a constant, the weighted t-test may be used.
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