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ABSTRACT OF THE DISSERTATION

Building Rich Recommender Systems by Modeling Visual, Sequential, and
Relational Signals

by

Ruining He

Doctor of Philosophy in Computer Science

University of California, San Diego, 2017

Professor Julian McAuley, Chair

Modeling and predicting user behavior in recommender systems are challenging

as there are various types of signals at play. Traditional item recommendation algorithms

mainly focus on modeling signals that indicate users’ preferences, e.g. purchases, clicks,

ratings. Despite their success, they typically ignore other signals that are also important

for the recommendation task, e.g. visual signals for understanding users’ finer-grained

preferences toward appearances of items, sequential signals for exploiting the recom-

mendation context, or relational signals encoding the complex and useful relationships

amongst items.

xvi



Modeling these signals is non-trivial because it requires one to tackle not only

‘standard’ recommender systems challenges such as dealing with large, sparse, and long-

tailed datasets, but also new challenges from dealing with the signals themselves, such as

the need to model content in terms of its visual appearance, highly subjective sequential

behavior, and the heterogeneous ‘relatedness’ amongst items.

In this dissertation, we tackle these challenges by building novel models that are

scalable, accurate, and intuitive. Empirical results on a wide spectrum of large, real-world

datasets indicate that our methods can not only quantitatively improve recommendation

accuracy, but also enrich the system’s ability to understand visual interactions (e.g. visual

preferences and fashion trends), context (e.g. the impact of recent actions on the future),

and complicated relationships amongst items (e.g. complementary or substitutable).
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Chapter 1

Introduction

Recommender systems play a key role in surfacing items that match users’ per-

sonal tastes amongst huge corpora of items. Such systems have been successful in

domains from movies and music [7, 50, 62], to research articles, news, books, and many

others [19, 31, 113]. Designing a successful recommender system is challenging; one

needs to model the interactions between users and items, relationships amongst items

themselves, and even the ‘third-order’ dynamics between users, items, and contexts,

while carefully tackling the sheer scale of the system, sparsity, heterogeneity, long-tailed

data distribution, and so on.

Traditional methods focused mostly on modeling user-item interactions, e.g. pre-

dicting the star-ratings a user would give to unseen items so as to recommend those with

the highest ratings. Methodologically, there have been Content-based Filtering that seeks

to recommend items that are most similar to what a user already consumed, with the

similarity measured based on the ‘content’ (i.e., explicit features, metadata, etc.) of items.

However, it is often difficult for Content-based Filtering to design appropriate features,

recommend diverse items, and exploit quality judgments of other users in the system [59].

In contrast, Collaborative Filtering (CF) relies on exploiting large volumes of user feed-

1



2

back in a ‘collaborative’ manner, ignoring explicit features of items or users. It includes

earlier neighborhood-based methods (e.g. [51, 103]), Bayesian methods (e.g. [11, 81]),

topic models (e.g. [9, 37]), etc. and the state-of-the-art method, Matrix Factorization

(MF). MF techniques are based on uncovering the underlying decision factors that have

an influence on users’ choices and have been ubiquitous in recent years, from the winning

solutions to the Netflix Prize Competition [5, 7], to the basis of many state-of-the-art

works (e.g. [90, 91, 97, 98, 129]).

In recent years, research focus are shifting, on the one hand, from predicting

explicit feedback like star-rating to modeling implicit feedback such as purchases, clicks,

likes, bookmarks, where only the ‘positive’ signals of users toward different items have

been observed, though similar techniques like MF are still in use (e.g. [39, 90, 91, 97]).

Comparatively, implicit feedback usually is easier to obtain and suffers less from sparsity

issues.

On the other hand, researchers began to exploit various ‘side signals’ to build

richer recommender systems. For example, one can make use of the content of items

such as explicit features, metadata, or even textual reviews written by various users to

supplement the CF model being used.1 Such data are especially useful for recommending

cold-start items for which we do not have enough collaborative data to make decisions.

Likewise, in certain circumstances we have access to the demographics or social group

information of users, which can be used to help predict the preferences of cold-start

users. In addition, contextual signals like user’s physical location and mood, time, or

even temperature are useful for making context-aware recommendations. Much recent

efforts have been made to exploit a particular type of contextual signals—what item(s)

a user recently consumed (e.g. [27, 64, 98]). For instance, a user may be interested in

cellphone accessories after the purchase of a cellphone. Exploiting such signals requires

1The resulting models are technically hybrid methods.
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approaching a sequential prediction problem where the goal is to predict items that are

most likely to be consumed by users in the future given their current sequences. The

challenge main lies in how to appropriately model the third-order interactions between

users and recent and future items. As we analyze later, existing methods are limited in

their ability to tackle such challenges.

Modeling relationships between items is another key task of an online recom-

mender system, in order to (e.g.) help users discover items that are functionally com-

plementary or visually compatible. Recently, scalable methods have been developed

that address this task by learning similarity metrics on top of the content of the items,

e.g. [77,118]. Such methods perform well when less amount of heterogeneity is involved,

but the human notion of ‘relatedness’ goes beyond mere similarity: For two items to

be compatible—whether jeans and a t-shirt, or a laptop and a charger—they should be

similar in some ways, but systematically different in others.

1.1 Dissertation Contributions

We introduce novel methods to model visual, sequential, and relational signals in

large-scale recommender systems. Our contributions are summarized as follows.

Chapter 4 — Modeling Visual Signals. We propose to exploit a new type of

signals, images of items, for domains like fashion where users pay close attention to

the visual appearances. Modeling such signals can help recommender systems not only

understand users’ fine-grained visual preferences and mitigate item cold-start issues, but

also capture useful and interesting dynamics like fashion trends.

We start by building a novel model to estimate users’ visually-aware personalized

ranking functions based on their past feedback, before we further extend it to incorporate

the subtle and non-linear evolution of fashion trends. To uncover the complex and
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evolving visual factors that people consider when evaluating items, our final method

combines high-level visual features extracted from a deep Convolutional Neural Network,

users’ past feedback, as well as evolving trends within the community. Experimentally

we evaluate our methods on two large real-world datasets from Amazon.com, where we

show them to outperform state-of-the-art personalized ranking measures, and also use to

visualize the high-level fashion trends across the 11-year span of our dataset.

Chapter 5 — Modeling Sequential Signals. First, we build scalable methods

to model the dynamics of a vibrant digital art community, Behance.net, consisting of

tens of millions of interactions (i.e., clicks and appreciates) of users toward artistic items.

Our main contributions here are to jointly model (1) sequential dynamics, in terms of

how users prefer ‘visually consistent’ content within and across sessions; (2) ‘social’

dynamics, in terms of how users exhibit preferences toward both certain art styles and

the artists themselves; and (3) rich content, especially in terms of its visual appearance.

In addition, we introduce two general-purpose algorithms with unified predictive

components to capture the complex third-order interactions for sequential prediction.

Existing methods typically decompose these high-order interactions into a combination

of pairwise relationships, by way of which user preferences (user-item interactions) and

sequential patterns (item-item interactions) are captured by separate components. Our

algorithms are advantageous since personalization and sequential dynamics are inherently

correlated and intertwine with one another. Empirically, our approaches significantly

outperform the state of the art on a wide spectrum of large, real-world datasets.

Chapter 6 — Modeling Relational Signals. We propose a new method to learn

complicated and heterogeneous relationships amongst items in product recommenda-

tion settings. To handle the heterogeneity of real-world data, our method relaxes the

metricity assumption inherent in previous works and models multiple localized notions

of ‘relatedness,’ so as to uncover ways in which related items should be systematically
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similar, and systematically different. Quantitatively, we show that our system achieves

state-of-the-art performance on large-scale compatibility prediction tasks, especially in

cases where there is substantial heterogeneity between related items. Qualitatively, we

demonstrate that richer notions of compatibility can be learned that go beyond similarity,

and that our model can make effective recommendations of heterogeneous content.

1.2 Relevant Manuscripts

[1] Ruining He and Julian McAuley. VBPR: Visual Bayesian Personalized Ranking
from Implicit Feedback. In AAAI, 2016. — Proposing to model visual signals.

[2] Ruining He and Julian McAuley. Ups and Downs: Modeling the Visual Evolution
of Fashion Trends with One-Class Collaborative Filtering. In WWW, 2016. —
Modeling fashion trends.

[3] Ruining He, Chunbin Lin, and Julian McAuley. Fashionista: A Fashion-aware
Graphical System for Exploring Visually Similar Items. In WWW, demo paper,
2016. — Designing a fashion-aware system for browsing clothing items.

[4] Ruining He, Chunbin Lin, Jianguo Wang, and Julian McAuley. Sherlock: Sparse
Hierarchical Embeddings for Visually-aware One-class Collaborative Filtering. In
IJCAI, 2016. — Proposing to use feature hierarchy to tackle heterogeneity of
visual data.

[5] Ruining He, Chen Fang, Zhaowen Wang, and Julian McAuley. Vista: A Visually,
Socially, and Temporally-aware Model for Artistic Recommendation. In RecSys,
2016. — Modeling sequential, social, and visual dynamics on Behance.net.

[6] Ruining He and Julian McAuley. Fusing Similarity Models with Markov Chains
for Sparse Sequential Recommendation. In ICDM, 2016. — Introducing a new
sequential model based on item similarity.

[7] Ruining He, Charles Packer, and Julian McAuley. Learning Compatibility Across
Categories for Heterogeneous Item Recommendation. In ICDM, 2016. — Modeling
heterogeneous relationships amongst items.

[8] Ruining He, Wang-Cheng Kang, and Julian McAuley. Translation-based Recomm-
endation. Under review at RecSys, 2017. — Introducing a new sequential model
based on translation embedding.

[9] Chenwei Cai, Ruining He, and Julian McAuley. SPMC: Socially-Aware Personal-
ized Markov Chains for Sparse Sequential Recommendation. In IJCAI, 2017. —
Jointly modeling sequential and social activities.



Chapter 2

Background

There have been two main types of recommendation approaches in the literature.

Content-based Filtering (CBF) seeks to recommend items1 that are similar in terms of

explicit features, i.e., content, to what a user ‘liked’ before. For instance, the system can

surface a bunch of yellow tees to a user after she bought one such product (see Figure 2.1).

Such methods have been widely used for recommending textual items including research

papers [35, 69], news [8, 58], webpages [2, 94], emails [89], and so on. Leveraging the

content of items enables CBF to handle unpopular or new items in the system; however,

it is also limited in that (1) laborious (and often restrictive) feature engineering can

be involved to extract useful features from the content, e.g. it is hard to represent the

aesthetic quality of a webpage’s layout [99]; (2) recommendations it makes suffer from

overspecialization and low serendipity; and (3) it can not take advantage of the quality

judgments of other users in the system [59].

In contrast to CBF, Collaborative Filtering (CF) methods make recommenda-

tions based on (only) the historical feedback ‘profiles’ of users and do not suffer from

above issues. Figure 2.1 shows the difference between the two types of approaches.

1Objects (e.g. products, movies, music) to be recommended are referred to as items in this dissertation.

6
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similar  
content

recommend  

Figure 2.1: Demonstration of the difference between Content-based Filtering (left)
and Collaborative Filtering (right). Black arrows represent positive feedback users
expressed toward items.

Neighborhood-based (also known as ‘memory-based’ [11]) CF methods are amongst

the earliest recommendation algorithms. According to the user-item feedback matrix2,

similarity between different users/items are computed by these methods, which can be

done in the following two manners:

1. User-oriented methods identify each user’s peers (or ‘like-minded’ users) in

terms of the similarity of their feedback patterns such that a user’s proclivity for

an item can be predicted according to the previously observed behaviors of her

peers. Representative works in this area include GroupLens [51], Ringo [103], and

Bellcore video [36].

2. Item-oriented methods predict the preference of a user toward an item based on

her previous feedback on those similar to the item being considered. To achieve

this, similarity between two items are calculated based on the extent to which users

in the system have ‘rated’ them similarly. When there are less items than users in

2i.e., representing the bipartite graph in Figure 2.1 with a matrix.
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the system, item-oriented methods are more computationally efficient [21, 62].

More recent CF approaches directly model the underlying interactions between

users and items, including Bayesian methods (e.g. [11, 81]), topic models (e.g. [9, 37]),

clustering methods (e.g. [16, 116]), Restricted Boltzmann Machines [101], and so on. CF

has been increasingly popular especially since the Netflix Prize Competition [7], when

Matrix Factorization (MF) methods were proposed to model the interactions between

users and items upon a set of latent rating dimensions. Due to their superior predictive

accuracy, scalability, and flexibility, MF is now usually the first choice for implementing

a CF recommender system [54].

MF relates users and items by uncovering a set of latent dimensions such that

users have similar representations to items they have consumed or rated highly. The basic

formulation of MF assumes the following model to predict the preference of a user u

towards an item i:

x̂u,i = α+βu +βi + 〈~γu,~γi〉, (2.1)

where α is global offset, βu and βi are bias terms associated with user/item, and~γu

and~γi are K-dimensional vectors capturing latent factors of u and i respectively. The

inner product estimates the extent to which the user’s latent ‘preferences’ are aligned (or

compatible) with the item’s ‘properties’.

MF is the basis of many state-of-the-art approaches for tasks from rating predic-

tion (e.g. [5, 52, 53, 93]) to personalized ranking (e.g. [57, 91, 97, 129]) and sequential

prediction (e.g. [98, 121]).



Chapter 3

Related Works

The most closely related branches of work to ours are those that (1) recommend

items from implicit feedback, (2) extend CF with various side signals in the system, (3)

model visual and clothing data, (3) deal with temporal and sequential dynamics, and (4)

model relationships amongst items from the content data.

3.1 Item Recommendation from Implicit Feedback

To make personalized recommendations, recommender systems need to uncover

preferences of users from their historical feedback, which comes in explicit forms like

star-ratings or implicit forms such as purchase histories, bookmarks, browsing logs,

search patterns, and even mouse activities [127]. Previously, recommendation algorithms

mainly focused on modeling explicit feedback, i.e., addressing the rating prediction

task and thus recommending items with the highest (predicted) ratings (e.g. [52–54, 93]).

However, explicit feedback is usually rare and hard to obtain. Recent works have begun to

exploit implicit feedback that is often much denser in the system. These works formulate

recommendation as a personalized ranking task where the objective is to rank items each

user is interested in as high as possible.

9
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The concept of One-Class Collaborative Filtering (OCCF) was introduced by

Pan et al. [90] to allow CF methods to effectively cope with scenarios where implicit

feedback is observed. In the same work, they proposed to sample unknown feedback as

negative instances and perform matrix factorization. This was further refined by Hu et al.

in [39], where they assign varying confidence levels to different feedback and factorize the

resulting weighted matrix. These two models can be classified as ‘point-wise’ methods.

Following this thread, there are also subsequent works that build probabilistic models

(e.g. [92, 110]) to address the same task.

Pairwise methods were later introduced by Rendle et al. in [97], where they

proposed the framework of Bayesian Personalized Ranking (BPR) and empirically

demonstrate that MF outperforms competitive baselines when trained with BPR (i.e.,

BPR-MF). It is a state-of-the-art method for the OCCF setting as well as the basis of

a series of recent works, e.g. [57, 91, 98, 129]. In this dissertation, our visually- and

fashion-aware recommendation methods (to be introduced in Chapter 4) are directly built

on top of BPR-MF while maintaining its scalability.

3.2 Modeling Various Side Signals

There have been some recent works that model various side signals in the system

in part to combat the cold-start issues suffered by CF methods. Here we briefly introduce

textual, social, and contextual signals that have been popular in recent years.

3.2.1 Textual Signals

Textual data can entail rich features of items. This is especially true for textual

items such as news, research articles, webpages, and so on. In such cases, topic models

such as Latent Dirichlet Allocation (LDA) are often used to extract useful information
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from the textual content in order to facilitate the recommendation task. For example,

Wang et al. [119] proposed to combine the probabilistic version of MF model and LDA

for scientific article recommendation. The resulting model leans a topic distribution from

the content of each item, which is then used as a prior of the latent factors of the items.

The entire probabilistic model is trained jointly to maximally optimize all parameters.

In recommender systems, another type of textual data is review text, which

users use to express their experience, feelings, and opinions about the items they have

consumed. Recent works in this area have tried integrating topic models (e.g. [63,74]) and

phrase-level sentiment analysis tools (e.g. [29,70,123]) with CF techniques. For example,

Zhang et al. [128] proposed an explicit factor model that makes use of triplets with the

form (Feature,Opinion,Sentiment) extracted from user reviews to generate interpretable

recommendations.

3.2.2 Social Signals

Social media are connecting and affecting human beings’ lives; friendships on

Google+ and Facebook, citing relations in research communities, following relations

on Twitter and Weibo1, etc. are encoding rich information about the social interactions

between circles of families, friends, and co-workers. In the recommender systems

literature, there has been a large body of work (e.g. [13, 33, 71, 72]) that models social

networks for mitigating user cold-start issues. Most existing works in this area are

based on MF and mainly follow three frameworks [112]: (1) Regularization-based

approaches (e.g. [42, 73]) assume that users’ preferences should be similar to those of

their social circles and methodologically use regularizations to achieve this goal; (2) Joint

factorization-based approaches (e.g. [72, 111]) try to find a factorization of the social

network matrix so that the resulting user representations can also be useful for explaining

1http://www.weibo.com/

http://www.weibo.com/
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users’ preferences; and (3) Ensemble-based approaches (e.g. ma2009learning) directly

incorporate social network information into the user preference predictor.

3.2.3 Contextual Signals

In recent years, the importance of contextual data such as time, location, tem-

perature, etc. is becoming recognized by the research community [99]. The simplest

definition of contextual information is the environment a person is in. Many different

types of contextual data have proven to be useful for helping generate context-aware

recommendations. Here we summarize a few popular types of contextual data as follows.

Location. As mobile devices are gaining popularity in these years, location-

aware recommender systems attracted much research attention (e.g. [27, 64]). Location

information is often used to recommend items that are geographically close to the user,

including restaurants, hotels, cinemas, theaters, tourist sites, and even nearby social

activities [95].

Time. Time information like season, day of week, time of day, and holiday can

also be useful for recommendation [34, 64]. For instance, one might want to recommend

clothes for the current season. Likewise, it is also sensible to recommend items that fit

the atmosphere of holidays, e.g. Christmas trees before Christmas.

Modal context. This includes user’s mood, state, experience, capabilities, and so

on. For example, the music being played can be indicative of the current mood of the

user; relevant items like music, movies, and books can be recommended.
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3.3 Modeling Visual and Clothing Data

Extensive previous research have emphasized the importance of images in e-

commerce scenarios (e.g. [22, 30, 32]). In recent years, there is a growing interest in

investigating the visual compatibility between different items. For example, [77] learns a

distance metric to classify whether two given items are compatible or not. [118] fine-tunes

a Siamese Convolutional Neural Network to learn a feature transformation from the image

space to a latent space of metric distances. There are also related works that focus more on

parsing/retrieving clothing images and capture some notion of ‘style’ [23, 41, 47, 65, 126].

For instance, the work of [105] can tell a user how to become more fashionable after

taking a look at a photograph with the user in it. Another method [47] uses segmentation

to detect clothing classes in the query image before it retrieves visually similar products

from each of the detected classes.

These works are related to our visually-aware model to be introduced in Chapter

4, but they do not make use of the historical feedback of users to learn their personalized

preferences, which is at the core of making personalized recommendations. Additionally,

our approach takes into account various non-visual factors, which goes beyond the scope

of the above methods.

On the other hand, visual features from deep Convolutional Neural Networks

(CNN) have been widely successful in tasks such as object classification [100], semantic

segmentation [67], human action recognition [43], aesthetic quality categorization [68],

and photographic style annotations [48], among many others. Furthermore, an increasing

number of transfer learning studies have demonstrated that CNNs pre-trained on one large

dataset such as ImageNet [100] can provide useful visual features for other (presumably

smaller) datasets. Such features can achieve state-of-the-art performance on these new

datasets for tasks that may considerably differ from what the CNNs were originally
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trained for [26, 96].

Considering the generic and descriptive ability of CNN features, we exploit

them to build our fashion-aware recommendation system (in Chapter 4) and model the

preferences toward artistic items (in Chapter 5).

3.4 Modeling Temporal Dynamics

Users’ preferences are evolving over time, which necessitates the modeling of

temporal dynamics in the system. There has been some work in the machine learning

community that investigates the notion of concept drift in temporally evolving data. Such

learning algorithms include decision trees [120], SVMs [49], instance-based learning [1],

etc.; see the work of Tsymbal [115] for a comprehensive survey. According to [115],

these methods can be classified into three basic approaches: instance selection, instance

weighting, and ensemble learning.

There also have been CF models that take temporal dynamics into consideration,

though not involved with modeling visual data. For example, to improve similarity-based

CF, Ding et al. [24] propose a time weighting scheme to assign decaying weights to

previously-rated items according to the time difference. More recent efforts are mostly

based on MF, where the goal is to model and understand the historical evolution of users

and items, e.g. Koren et al. achieved state-of-the-art rating prediction results on Netflix

data, largely by exploiting temporal signals [53, 55].

In Chapter 4, we will not only build visually-aware recommendation models,

but also handle the particular challenges from modeling temporal dynamics of people’s

preferences toward visual appearances, by way of which to build fashion-aware rec-

ommender systems. Our method, in some sense, fits into the instance selection camp,

i.e., we use a time-window (or epoch) mechanism to highlight/favor appearance that are
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widely accepted by the community in each window.

3.5 Modeling Sequential Dynamics

A user’s recent feedback can be seen as a particular type of contextual signal and

is useful for predicting their actions in the near future, e.g. the recent purchase of a laptop

indicates the possibility of buying a laptop backpack next. To exploit such signals, one

needs to model and predict the personalized sequential behavior of users.

Markov Chains (MCs) are a powerful tool to model stochastic transitions between

different ‘states.’ In sequential recommendation domains, MCs have been studied by

several earlier works, from investigating their strength at uncovering sequential patterns

(e.g. [82, 131]), to directly modeling decision processes with Markov transitions [102].

Scalable sequential models usually rely on MCs to capture sequential patterns (e.g. [27,

98, 121]). Rendle et al. proposed to factorize the third-order ‘cube’ that represents the

transitions amongst items made by users. The resulting model, Factorized Personalized

Markov Chains (FPMC), can be seen as a combination of MF and MC (two separate

components) and achieves good performance for next-basket recommendation.

There are also works that have adopted metric embeddings for the recommenda-

tion task, leading to better generalization ability. For example, Chen et al. introduced

Logistic Metric Embeddings (LME) for music playlist generation [17], where the Markov

transitions among different songs are encoded by the distances among them. Recently,

Feng et al. further extended LME to model personalized sequential behavior and used

pairwise ranking for predicting next points-of-interest [27]. However, like FPMC, this

method still has to combine two correlated components in a separate manner, though

using a hyperparameter to balance them.

On the other hand, Wang et al. recently introduced a hierarchical representation
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model, which extends FPMC by applying aggregation operations (like max/average

pooling) to model more complex interactions. Although the predictor can be seen as

modeling the third-order interactions between user, previous and next items with a single

component, the aggregation is hard to interpret and does not reap the benefits of using

metric embeddings.

Our works on modeling sequential signals in Chapter 5 differ from the above in

terms of the more complex signals and interactions being modeled (i.e., our visually-

, socially-, and sequentially-aware model on Behance.net), as well as the types of

methods (i.e., our two unified, interpretable, and accurate models based on similarity

and translation respectively). We will also include above methods as baselines in our

experiments.

3.6 Modeling Relationships Amongst Items

Identifying relationships among items is a fundamental part of many real-world

recommender systems, e.g. to generate recommendations of the form ‘people who viewed

x also viewed y’ on Amazon.com. Such methods may be based on CF, e.g. counting the

overlap between users who have clicked on / bought both items, as in Amazon’s own

solution [62]. Of more interest to us are systems that predict item-to-item relationships

based on the content (e.g. images/text/metadata) of the items themselves. Various systems

have been proposed to address specific settings, e.g. to identify relationships between

members of ‘urban tribes’ [84], tweets [109], text [4,14], or music [108]. Several methods

have also been used to model visual data [12,25,45,104,125], though typically in settings

where the metric assumption is well-founded (e.g. similar image retrieval).

Our work on modeling relational signals in Chapter 6 follows recent examples

that aim to model co-purchase and co-browsing relationships, using a recently introduced
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dataset from Amazon.com [75, 77, 118]. While we extend and compare quantitatively

against such work, our main contribution here is that we substantially relax the model

assumptions to allow for more complex relationships than mere similarity between items.

Outside of the recommendation scenarios considered here, learning the features

that describe relationships between objects is a vast topic. Typically, one is given some

collection of putative relationships between items (i.e., a training set), and the goal is then

to identify a (parameterized) function that can be tuned to fit these relationships, i.e., to

assign observed relationships a higher likelihood or score than non-relationships. State-

of-the-art methods identify hidden variables or factors that describe relationships among

items [20, 114], e.g. by factorizing the matrix of links between items [78]. Again, the

main contributions we hope to make over such approaches are (1) to relax the assumption

of metricity, and (2) to allow for multiple notions of relatedness to compete and interact.

While a few approaches have recently been proposed to learn non-metric relationships

(e.g. [15]), we are unaware of any that allow for the scale of the data (thousands of

features, millions of items and relationships) that we consider.
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Chapter 4

Modeling Visual Signals for

Fashion-aware Recommendation

4.1 Introduction

In order to surface useful recommendations, it is crucial to be able to learn from

user feedback in order to understand and capture the underlying decision factors that have

an influence on users’ choices. Here we are interested in applications in which visual

decision factors are at play, such as clothing recommendation. In such settings, visual

signals play a key role—naturally one would not buy a t-shirt from Amazon.com without

being able to see a picture of the product, no matter what ratings or reviews the product

had. Likewise then, when building a recommender system, we argue that this important

source of information should be accounted for when modeling users’ preferences.

In spite of their potential value, there are several issues that make visual decision

factors particularly difficult to model. First is simply the complexity and subtlety of the

factors involved; to extract any meaningful signal about the role of visual information

in users’ purchasing decisions shall require large corpora of products (and images)

19
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and purchases. Second is the fact that visual preferences are highly personal, so we

require a system that models and accounts for the preferences of and differences between

individuals. Third is the fact that complex temporal dynamics are at play, since the

features considered ‘fashionable’ change as time progresses. And finally, it is important

to account for the considerable amount of non-visual factors that are also at play (such

as durability and build quality); this latter point is particularly important when trying to

interpret the role of visual decision factors, since we need to ‘tease apart’ the visual from

the non-visual components of people’s decisions.

Our main goal is to address these four challenges, i.e., to build visually-aware

recommender systems that are scalable, personalized, temporally evolving, and inter-

pretable. We see considerable value in solving such problems—in particular we shall be

able to build better recommender systems that surface products that more closely match

users’ and communities’ evolving interests. This is especially true for fashion recommen-

dation, where product corpora are particularly ‘long-tailed’ as new items are continually

introduced; in such cold-start settings we cannot rely on user feedback but need a rich

model of the product’s appearance in order to generate useful recommendations.

Beyond generating better recommendations, such a system has the potential to

answer high-level questions about how visual features influence people’s decisions, and

more broadly how fashions have evolved over time (see Figure 4.1 for an example). For

instance, we can answer queries such as “what are the key visual features or factors that

people consider when evaluating products?” or “what are the main factors differentiating

early 2000s vs. late 2000s fashions?”, or even “at what point did Hawaiian shirts go out

of style?”. Thus our main goal is to learn from data how to model users’ preferences

toward products, and by doing so to make high-level statements about the temporal and

visual dynamics at play.

Addressing our goals above requires new models to be developed. Previous



21

2011                 2012                    2013                 2014

Figure 4.1: Fashion evolution and its impact on users. Above the timeline are the
three most fashionable styles (i.e., groups) of women’ sneakers during each year/epoch,
revealed by our model; while below the timeline is a specific user’s purchases (one in
each year), which we model as being the result of a combination of fashion and personal
factors.

models typically ignore visual signals in the system, which means we need to first build

a (visually-aware) recommendation model that is able to handle the complexity of visual

data. Next, in order to further make the model fashion-aware, the challenges of modeling

both visual and temporal aspects simultaneously need to be tackled.

First, as we show quantitatively, the evolution of fashion trends can be abrupt and

non-linear, so that existing temporal models such as timeSVD++ [53] are not immediately

appropriate to address the challenge of capturing fashion dynamics. Moreover, multiple

sources of temporal dynamics can be at play simultaneously, e.g. dynamics at the user

or community level; the introduction of new products; or sales promotions that impact

the choices people make in the short term. Thus we need a flexible temporal model

that is capable of accounting for these varied effects; this is especially true if we want

to interpret our findings, which requires that we ‘tease-apart’ or separate these visual

vs. non-visual temporal dynamics.

Secondly, real-world datasets are often highly sparse, especially for clothing data
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where new products are constantly emerging and being replaced over time; this means

on the one hand that accounting for content (i.e., visual information) is critical for new

items, but on the other hand that only a modest amount of parameters are affordable per

item due to the huge item vocabulary involved. This drives us to avoid using localized

structures as much as possible.

Thirdly, scalability can be a potential challenge since the new model needs to be

built on top of a large corpus of product image data as well as a huge amount of user

feedback. Note that the high dimensionality of the image data also exacerbates the above

sparsity issue.

4.1.1 Our Contributions

Specifically, our main contributions include:

1. We propose a novel visually-aware model that incorporates visual signals into

predictors of people’s opinions while scaling to large datasets. Our model is

designed for the classical One-Class Collaborative Filtering setting [90], where

only the implicit feedback of users (i.e., purchase histories, bookmarks, browsing

logs, mouse activities, etc.) are available.

2. We further build scalable fashion-aware models to capture temporal dynamics in

order to make better recommendations. To cope with the non-linearity of fashion

trends, we propose to automatically discover the important fashion ‘epochs’ each

of which captures a separate set of prevailing visual decision factors at play.

3. Our method also models non-visual dimensions and non-visual temporal dynamics

(in a lightweight manner), which not only helps to account for interference from

non-visual sources, but also makes our method a fully-fledged recommendation
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system. We develop efficient training procedures based on the Bayesian Personal-

ized Ranking framework to learn the epoch segmentation and model parameters

simultaneously.

4. Empirical results on two large real-world datasets, Women’s and Men’s Clothing &

Accessories from Amazon.com, demonstrate that our models are able to outperform

state-of-the-art methods significantly, both in warm- and cold-start settings.

5. We provide visualizations of our learned models and qualitatively demonstrate

how fashion has shifted in recent years. We find that fashions evolve in complex,

non-linear ways, which can not easily be captured by existing methods.

4.2 VBPR: Visually-aware Item Recommendation

In this section, we propose a novel item recommendation model, Visual Bayesian

Personalized Ranking (VBPR), that is personalized, visually-aware, and scalable. Letting

U and I denote the set of users and items respectively, each user u is associated with

an item set I+
u about which u has expressed explicit positive feedback. In addition, a

single image is available for each item i ∈ I . Using only the above data, our objective is

to generate for each user u a personalized ranking of those items about which they haven

not yet provided feedback (i.e., I \ I+
u ).

4.2.1 Modeling Visual Dimensions

Our preference predictor is built on top of Matrix Factorization (MF), which is

state-of-the-art for rating prediction as well as modeling implicit feedback, whose basic

formulation assumes Eq. (2.1) to predict the preference of a user u toward an item i (see

Chapter 2).
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Figure 4.2: Diagram of the proposed visually-aware preference predictor. Rating
dimensions consist of visual factors and latent (non-visual) factors. Inner products
between users and item factors model the compatibility between users and items.

Although theoretically latent factors are able to uncover any relevant dimensions,

one major problem it suffers from is the existence of ‘cold’ items in the system, about

which there are too few associated observations to estimate their latent dimensions.

Using explicit features can alleviate this problem by providing an auxiliary signal in such

situations. In particular, we propose to partition rating dimensions into visual factors and

latent (non-visual) factors, as shown in Figure 4.2. Our extended predictor takes the form

x̂u,i = α+βu +βi + 〈~γu,~γi〉+ 〈~θu,~θi〉, (4.1)

where α, β, and~γ are as in Eq. (2.1). ~θu and~θi are newly introduced K′-dimensional

visual factors whose inner product models the visual interaction between u and i, i.e., the

extent to which the user u is attracted to each of K′ visual dimensions. Note that we still

use K to represent the number of latent dimensions of our model.

One naı̈ve way to implement the above model would be to directly use visual

features ~fi from (Deep) Convolutional Neural Networks (CNNs), e.g. AlexNet [56], of

item i as~θi in the above equation. However, this would present issues due to the high

dimensionality of the features in question, for example the features we use have 4,096

dimensions. Dimensionality reduction techniques like PCA pose a possible solution, with

the potential downside that we would lose much of the expressive power of the original

features to explain users’ behavior. Instead, we propose to learn an embedding kernel
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which linearly transforms such high-dimensional features into a much lower-dimensional

(say 20 or so) ‘visual rating’ space:

~θi = E~fi. (4.2)

Here E is a K′×F matrix embedding CNN feature space (F-dimensional) into visual

space (K′-dimensional). The numerical values of the projected dimensions can then be

interpreted as the extent to which an item exhibits a particular visual rating facet. This

embedding is efficient in the sense that all items share the same embedding matrix which

significantly reduces the number of parameters to learn.

Next, we introduce a visual bias term ~β′ whose inner product with ~fi models

users’ overall opinion toward the visual appearance of a given item. In summary, our

final prediction model is

x̂u,i = α+βu +βi + 〈~γu,~γi〉+ 〈~θu,E~fi〉+ 〈~β′, ~fi〉. (4.3)

4.2.2 Learning the Model

Bayesian Personalized Ranking (BPR) is a state-of-the-art framework for learning

parameterized models from implicit feedback [97]. It seeks to optimize the pairwise

ranking >u between a positive item i and a negative item j for each user u; i >u j means

i is ranked higher than j for u. Assuming independence of users and items, it maximizes

the maximum a posterior estimator of the model parameters Θ:

Θ̂ = argmax
Θ

ln ∏
u∈U

∏
i∈I+

u

∏
j/∈I+

u

Prob(i >u j|Θ) Prob(Θ)

= argmax
Θ

∑
u∈U

∑
i∈I+

u

∑
j/∈I+

u

lnσ(x̂u,i− x̂u, j)−Ω(Θ),

(4.4)
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where the pairwise ranking between a positive (i) and a non-positive ( j) item Prob(i >u

j|Θ) is estimated by a sigmoid function σ(x̂u,i− x̂u, j). Ω(Θ) is an L2 regularizer.

The full set of parameters of VBPR is Θ = {βi∈I ,~γu∈U ,~γi∈I ,~θu∈U ,E,~β′}1. Using

Stochastic Gradient Ascent, first a user u and a positive/non-positive pair (i, j) are

sampled, and then parameters are updated as follows:

Θ←Θ+ ε · (σ(x̂u, j− x̂u,i) ·
∂(x̂u,i− x̂u, j)

∂Θ
−λΘ ·Θ), (4.5)

where ε represents the learning rate and λΘ is a regularization hyperparameter tuned with

a held-out validation set.

Compared to BPR-MF (i.e., MF model learned with BPR), we have two sets of

parameters to be updated: (1) the non-visual parameters, and (2) the newly-introduced

visual parameters. Non-visual parameters can be updated in the same form as BPR-MF

(therefore are suppressed for brevity), while visual parameters are updated according to:

~θu←~θu + ε · (σ(x̂u, j− x̂u,i) ·E(~fi−~f j)−λΘ ·~θu),

~β′←~β′+ ε · (σ(x̂u, j− x̂u,i) · (~fi−~f j)−λβ ·~β′),

E← E+ ε · (σ(x̂u, j− x̂u,i) ·~θu(~fi−~f j)
T −λE ·E).

(4.6)

Note that we sample users uniformly to optimize the ranking metrics across

all users. All hyperparameters are tuned using a validation set as we describe in our

experimental section later.

1Note that α and βu∈U in the preference predictor are canceled out in Eq. (4.5), therefore are removed
from the set of parameters.
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4.2.3 Scalability Analysis

The efficiency of the underlying MF model makes our method similarly scalable.

Specifically, BPR-MF requires O(K) to finish updating the parameters for each sampled

triple (u, i, j). In our case we need to update the visual parameters as well. In particular,

updating~θu takes O(K′), ~β′ takes O(F), and E takes O(K′×F) = O(K′), where F is

the dimension of CNN features (fixed to 4096 in our case). Therefore the total time

complexity of our model for updating each triple is O(K +K′) (i.e. O(K)+O(K′×F)),

i.e., linear in the number of dimensions. Note that visual feature vectors (~fi) from CNNs

are sparse, which significantly reduces the above worst-case running time.

4.3 FashionRec: Fashion-aware Item Recommendation

Our proposed method, VBPR, is good at capturing/uncovering visual dimensions

as well as the extent to which users are attracted to each of them. Nevertheless, fashions,

i.e., the visual elements of items that people are attracted to, evolve gradually over time.

This presents challenges when modeling the visual dimensions of opinions because the

same appearance may be favored during some time periods while disliked during others.

Our goal here is to discover such trends both as a means of making better predictions,

but also so that we can draw high-level conclusions about how fashions have evolved

over the life of our dataset.

4.3.1 Modeling Fashion Evolution

We aim to enhance the ‘static’ VBPR model to capture the temporal dynamics

of fashions. Considering the sparsity of real-world datasets, it is important to develop

models that are expressive enough to capture the relevant dynamics but at the same time

are tractable in terms of the number of parameters involved. The resulting model is
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termed Fashion-aware Recommendation Model, or FashionRec in short.

Temporally-evolving Visual Factors

Here we identify three main fashion dynamics from which we can potentially

benefit. We propose models to capture each of them with temporally-evolving visual

factors; that is we model user/item visual factors as a function of time t, i.e.,~θu(t) and

~θi(t), with their inner products accounting for the temporal user-item visual interactions.

This formulation is able to capture different kinds of fashion dynamics as described

below.

Temporal Attractiveness Drift. The first notion of temporal dynamics is based

on the observation that items gradually gain/lose ‘attractiveness’ in different visual

dimensions as time goes by. To capture such a phenomenon, it is natural to extend our

embedding matrix E to be time-dependent. More specifically, we model our embedding

matrix at time t as

E(t) = E+∆E(t). (4.7)

Here the underlying ‘stationary’ component of the model is captured by E while the

time-dependent ‘drifting’ component is accounted for by ∆E(t). Then item i’s visual

factors at time t become

~θi(t) = E(t)~fi. (4.8)

In this way, we are modeling fashion evolution across entire communities with global

low-rank structures. Such structures are expressive while introducing only a modest

number of parameters.

Temporal Weighting Drift. As fashion evolves over time, it is likely that users

weigh visual dimensions differently. For example, people may pay less attention to a

dimension describing colorfulness as communities become more tolerant of bright colors.
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Accordingly, we introduce a K′-dimensional temporal weighting vector ~w(t) to capture

users’ evolving emphasis on different visual dimensions, namely

~θi(t) = E~fi�~w(t), (4.9)

where � is the Hadamard product.

Combining the above two dynamics, our formulation for item visual factors

becomes

~θi(t) = E~fi�~w(t)︸ ︷︷ ︸
base

+∆E(t)~fi︸ ︷︷ ︸
deviation

(4.10)

such that (when properly regularized) temporal variances are partly explained by the

weighting scheme while the rest are absorbed by the expressive deviation term.

Note that compared to our basic model, so far we have only introduced global

structures that are shared by all users. This achieves our goal of capturing temporal

fashion trends that apply to the entire population. Next, we introduce ‘local’ dynamics,

in order to model the drift of personal tastes over time.

Temporal Personal Drift. Apart from the above global temporal dynamics (i.e.,

fashion evolution), there also exist dynamics at the level of drifts in personal tastes over

time. In other words, users’ opinions are affected by ‘outside’ fashion trends as well as

their own personal preferences, both of which can evolve gradually. Modeling this kind

of drift can borrow ideas from existing works (e.g. timeSVD++ [53]) in order to extend

our basic model with time-evolving user visual factors, i.e., by modeling~θu as a function

of time. Here we give one example formulation (see [53] for more details) as follows:

~θu(t) =~θu + sign(t− tu) · |t− tu|κ ·~ηu, (4.11)

which uses a simple parametric form to account for the deviation of user u at time t from
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his/her mean feedback date tu. This method uses two vectors~θu and~ηu to model each

user, with hyperparameter κ learned with a validation set (to be described later).

Temporally-evolving Visual Bias

In addition to temporally evolving factors~θi(t), we introduce a temporal visual

bias term to account for that portion of the variance which is common to all factors. More

precisely, we use a time-dependent F-dimensional vector~β′(t) that adopts a formulation

resembling that of Eq. (4.10):

~β′(t) =~β′�~b(t)+∆~β′
(t). (4.12)

Then the visual bias of item i at time t is computed by taking the inner product 〈~β′(t), ~fi〉.

The intention is to use low-rank structures to capture the changing ‘overall’ response to

the appearance, so that the rest of the variance (i.e., per-user and per-dimension dynamics)

are captured by properly regularized higher-rank structures, namely the inner product

of~θu(t) and~θi(t). Experimentally, incorporating this term improves the performance to

some degree, and is also useful for visualization.

Non-Visual Temporal Dynamics

Up to now, we have described how to extend our basic formulation to model

visual dynamics. However, there also exist non-visual temporal dynamics in the datasets,

such as sales, promotions, or the emergence of new products. Incorporating such dy-

namics into our model can not only improve predictive performance, but also helps with

interpretability by allowing us to tease apart visual from non-visual decision factors.

Here we want to distinguish as much as possible those factors that can be determined

by the item’s non-visual properties (such as its category) versus those that can only be
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determined from the image itself.

To serve this purpose, we propose to incorporate the following two non-fashion

dynamics in a lightweight manner, i.e., we guarantee that we are only introducing an

affordable amount of additional parameters due to the sparsity of the real-world datasets

we consider.

Per-Item Temporal Dynamics. The first dynamics to model are on the per-item

level. As said before, various factors can cause an item to be purchased during some

periods and not during others. Our choice is to replace the stationary item bias term βi in

VBPR with a temporal counterpart βi(t) [53].

Per-Subcategory Temporal Dynamics. Next, for datasets where the category

tree is available (as is the case for the ones we consider), it is also possible to incorporate

per-subcategory temporal dynamics. By accounting for category information explicitly

as we do here, we discourage the visual component of our model from indirectly trying

to predict the subcategory of the product, so that it may instead focus on subtler visual

aspects. Letting Ci denote the subcategory the item i belongs to, we add a temporal

subcategory bias term βCi(t) to our formulation to account for the drifting of users’

opinions toward a subcategory.

Gluing all above components together, we predict x̂u,i(t), the affinity score of user

u and item i at time t, with Eq. (4.13).2 Experimentally, we found that global temporal

dynamics (i.e., fashion trends) are particularly useful at addressing personalized ranking

tasks. However, modeling user terms, i.e., temporal personal drift, had relatively little

effect in our datasets. The reasons are dataset-specific: (1) our datasets span a decade and

most users only remain active during a relatively short period of time; (2) our datasets

are highly sparse which means that the lack of per-user observations makes it difficult to

2Note that when computing personalized rankings for a single user u, α and βu in Eq. (4.13) can be
ignored.
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fit the high-dimensional models required (see Eq. (4.11)). Therefore for our experiments

we ultimately adopted stationary user visual factors~θu (note this way users’ preferences

are still affected by fashion trends).

x̂u,i(t)︸ ︷︷ ︸
preference of user u

toward item i at time t

= α + βu + βi(t) + βCi(t)︸ ︷︷ ︸
temporal non-visual biases

+ 〈

defined by Eq. (4.12)︷︸︸︷
~β′(t), ~fi〉︸ ︷︷ ︸

temporal visual bias︸ ︷︷ ︸
bias terms

+ 〈~γu,~γi〉︸ ︷︷ ︸
non-visual interaction

+ 〈

defined by
Eq. (4.11)︷︸︸︷
~θu(t) ,

defined by
Eq. (4.10)︷︸︸︷
~θi(t) 〉︸ ︷︷ ︸

temporal visual interaction︸ ︷︷ ︸
user-item interactions

.

(4.13)

Fashion Epoch Segmentation

So far we have described what temporal components to use in the formulation of

our time-aware predictor; what remains to be seen is how to model the temporal term,

i.e., how β(t),~θ(t) change as time progresses. One solution is to adopt a fixed schedule

to describe the underlying evolution, e.g. to fit some parameterized function of (say) the

raw timestamp, as is done by timeSVD++ [53]. However, fashion tends to evolve in a

non-linear and somewhat abrupt manner, which goes beyond the expressive power of

such methods (we experimentally tried parameterized functions like those in timeSVD++

but without success). Instead, a time-window design which uncovers fashion ‘stages’ or

‘epochs’ during the life span of the dataset proved preferable in our case. In other words,

we want to learn a temporal partition of the timeline of our data into discrete segments

during which different visual characteristics predominate to influence users’ opinions.

To achieve our goal, we learn a partition of the timeline of our dataset, consisting
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of N epochs, and to each epoch ep we attach a set of parameters

Θep = {∆E(ep),∆~β′
(ep),~w(ep),~b(ep),βi(ep),βCi(ep)}.3

Then we predict the preference of user u toward item i at epoch ep according to x̂u,i(ep(t)),

where the function ep(·) returns the epoch index of time t according to the segmentation.

Note that while such a model could potentially capture seasonal effects (given fine-

grained enough epochs), this is not our goal since we want to uncover long-term temporal

drift; this can easily be achieved by tuning the number of epochs such that they tend to

span multiple seasons (e.g. we obtained the best performance using 10 epochs in our 11

year dataset).

Finally, there are two components of the model to be estimated: (1) the model

parameters Θ = ∪epΘep ∪ {α,βu,~γu∈U ,~γi∈I ,~θu∈U ,E,~β′}, and (2) the fashion epochs

themselves, i.e., a partition Λ of the timeline into segments with different visual rating

behavior.

4.3.2 Learning the Model

With the above temporal preference predictor, our objective is for each user u to

generate a personalized ranking of the items they haven not interacted with (i.e., I \ I+
u )

at time t. Here we extend Bayesian Personalized Ranking (BPR) to directly optimize the

rankings produced by our model. First we derive the likelihood function we are trying to

maximize, before we describe the coordinate ascent optimization procedure to learn the

fashion epoch segmentation Λ as well as the model parameters Θ.

3i.e., discretized ∆E(t),∆~β′(t),~w(t),
~b(t),βi(t),βCi(t) (respectively).
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Log-Likelihood Maximization

Let Pu ⊂ I+
u be the set of positive (i.e., observed) items for user u in the training

set. Then according to BPR, a training tuple set DS consists of triples of the form (u, i, j),

where i ∈ Pu and j ∈ I \Pu. Given a triple (u, i, j) ∈ DS , recall that BPR models the

probability that user u prefers item i to item j with σ(x̂u,i− x̂u, j), where σ is the sigmoid

function, and learns the parameters by maximizing the regularized log-likelihood function

as follows:

∑
(u,i, j)∈DS

lnσ(x̂u,i− x̂u, j)−
λΘ

2
· ‖Θ‖2

2.

Building on the above formulation, we want to add a temporal term tu,i encoding

the time at which user u expressed positive feedback about i ∈ Pu. The basic idea is that

we want to rank the observed item i higher than all non-observed items at time tu,i. More

precisely, our training set DS+ is comprised of quadruples of the form (u, i, j, tu,i), where

user u expressed positive feedback about item i at time tu,i with j being a non-observed

item:

DS+ = {(u, i, j, tu,i) | u ∈U∧ i ∈ Pu∧ j ∈ I \Pu}. (4.14)

To simplify the notion, we introduce the shorthand

x̂u,i, j
(
ep(tu,i)

)
= x̂u,i

(
ep(tu,i)

)
− x̂u, j

(
ep(tu,i)

)
,

where ep(t) returns the index of the epoch that timestamp t falls into, and x̂u,i(ep) as

well as x̂u, j(ep) are defined by Eq. (4.13). Then according to the BPR framework, our

model is fitted by maximizing the regularized log-likelihood of the corpus (i.e., BPR-OPT

in [97]):

Θ̂, Λ̂ = argmax
Θ,Λ

∑
(u,i, j,tu,i)∈DS+

lnσ

(
x̂u,i, j

(
ep(tu,i)

))
− λΘ

2
· ‖Θ‖2

2. (4.15)
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Again, note that there are two components to fit to maximize the above objective function,

with one being the parameter set Θ and the other being the segmentation Λ of the timeline

comprising N fashion epochs. Next we describe how to derive a coordinate-ascent-style

optimization procedure to fit these two components.

Coordinate Ascent Fitting Procedure

We adopt an iterative optimization procedure which alternates between (1) fitting

the model parameters Θ (given the segmented timeline Λ), and (2) segmenting the

timeline Λ (given the current estimate of the model parameters Θ). This procedure

resembles the one used in [76], though the problem setting and data are different.

Fitting the Model Parameters Θ. This step fixes the epoch segmentation Λ

and adopts Stochastic Gradient Ascent (SGA) to optimize the regularized log-likelihood

in Eq. (4.15). Given a randomly sampled training quadruple (u, i, j, tu,i) ∈ DS+ , the

update rule of Θ is derived as

Θ←Θ+ ε ·
(

σ

(
− x̂u,i, j

(
ep(tu,i)

))
·

∂x̂u,i, j
(
ep(tu,i)

)
∂Θ

−λΘ ·Θ
)
, (4.16)

where ε is the learning rate. Sampling strategies may affect the performance of the

model to some extent. In our implementation, we sample users uniformly to optimize the

average AUC metric (to be discussed later).

Fitting the Fashion Epoch Segmentation Λ. Given the model parameters

Θ, this step finds the optimal segmentation of the timeline to optimize the objective

in Eq. (4.15). To achieve this goal, we first partition the timeline into N continuous

bins of equal size. Then the fitting problem is solved with a dynamic programming

procedure, which finds the segmentation such that rankings inside all bins are predicted

most accurately. This is a canonical instance of a sequence segmentation problem [6],
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which admits an O(|DS+|×N) solution in our case.

Finally, our parameters are randomly initialized between 0 and 1.0. The two

fitting steps above are repeated until convergence, or until no further improvement is

obtained on the validation set.

Scaling to Large Datasets

Fitting the epoch segmentation in a naı̈ve way would be time-consuming due to

the fact that the ‘ranking quality’ has to be evaluated by enumerating all non-observed

items for each positive item. Fortunately, it turns out that for this step we can approximate

the full log-likelihood by sampling a relatively small ‘batch’ of non-observed items for

each positive user-item pair. Experimentally this proved to be effective and allows the

dynamic programming procedure to find the optimal solution within around 3 minutes

on our largest datasets.

4.3.3 Scalability Analysis

Building on top of BPR-MF and VBPR, FashionRec achieves the goal of scaling

up to large real-world datasets. Here we analyze and compare its time complexity with

those of BPR-MF and VBPR.

Fitting the Model Parameters

For this step, FashionRec adopts the sampling scheme of BPR-MF implemented

in MyMediaLite [28], i.e., during each iteration we sample |P | training tuples to update

the model parameters Θ, which we repeat for 100 iterations. For each training triple

(u, i, j), BPR-MF requires O(K) to update the parameters, while VBPR and FashionRec

need to update the visual parameters as well. VBPR takes O(K +K′) in total to finish

updating the parameters for each sampled training triple. Compared to VBPR, although
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there are more visual parameters to describe multiple fashion epochs, FashionRec only

needs to update the parameters associated with the epoch the timestamp tu,i falls into.

This means that FashionRec exhibits the same time complexity as VBPR. Additionally,

visual feature vectors (~fi) from CNNs turn out to be very sparse, which can significantly

reduce the above worst-case running time.

Fitting the Epoch Segmentation

In addition to the model parameters, FashionRec has to fit a fashion epoch

segmentation term. Compared to the parameter fitting step, training the segmentation

(i.e., the ‘outer loop’) is performed at comparatively much lower frequency and consumes

much less time.

Generally speaking, FashionRec takes more iterations to converge than VBPR

due to learning the temporal dynamics. Training on our Women’s Clothing dataset takes

around 20 hours (in which epoch fitting accounting for around 45 minutes in total) on

our commodity desktop machine.

4.4 Experiments and Analyses

4.4.1 Datasets, Features, and Statistics

To evaluate the strength of our methods at modeling visual signals and capturing

fashion dynamics, we are interested in real-world datasets that (1) are broad enough to

capture the general tastes of the public, and (2) temporally span a long period so that

there are discernibly different visual decision factors at play during different times.
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Table 4.1: Dataset Statistics

Dataset #users #items #feedback Timespan

Women’s Clothing 99,748 331,173 854,211 Mar. 2003 - Jul. 2014
Men’s Clothing 34,212 100,654 260,352 Mar. 2003 - Jul. 2014

Total 133,960 431,827 1,114,563 Mar. 2003 - Jul. 2014

Datasets

The two datasets we use are from Amazon.com, as introduced in [77]. We consider

two large categories that naturally encode fashion dynamics (within the U.S.) over the

past decade, namely Women’s and Men’s Clothing & Accessories, each consisting of

a comprehensive vocabulary of clothing items. The images available from this dataset

are of high quality (typically centered on a white background) and have previously

been shown to be effective for recommendation tasks (though different from the one we

consider here).

We process each dataset by taking users’ review histories as implicit feedback

and extracting visual features ~fi from one image of each item i. We discard users u who

have performed fewer than 5 actions, i.e., for whom |I+
u |< 5. Statistics of our datasets

after this processing are shown in Table 4.1.

Visual Features

To extract a visual feature vector ~fi for each item i in the above datasets, we em-

ploy a pre-trained Convolutional Neural Network, namely the Caffe reference model [44],

which has previously been demonstrated to be useful at capturing the properties of im-

ages of this type [77]. This model implements the architecture proposed by [56] with

5 convolutional layers followed by 3 fully-connected layers and was pre-trained on 1.2

million ImageNet (ILSVRC2010) images. We obtain our F = 4,096 dimensional visual

features by taking the output of the second fully-connected layer (i.e., FC7).
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4.4.2 Evaluation Methodology

Given a user-item pair (u, i), the preference of u toward i is a function of time,

i.e., the recommended item ranking for u is time-dependent. Therefore for a held-out

triple (u, i, tu,i), our evaluation consists of calculating how accurately item i is ranked for

user u at time tu,i.

Each of our datasets is split into training/validation/test sets by uniformly sam-

pling for each user u from I+
u an item i (associated with a timestamp tu,i) to be used for

validation Vu and another for testing Tu. The rest of the data Pu is used for training, i.e.,

I+
u = Pu∪Vu∪Tu.

All methods are then evaluated on Tu with the widely used AUC (Area Under the

ROC curve) measure:

AUC =
1
|U|∑u

1
|E(u)| ∑

(i, j)∈E(u)
I
(
x̂u,i(tu,i)> x̂u, j(tu,i)

)
, (4.17)

where the indicator function I(b) returns 1 iff b is true, and the evaluation goes through

the pair set of each user u:

E(u) = {(i, j) | i ∈ Tu∧ j ∈ I \ I+
u }. (4.18)

For all methods we select the best hyperparameters using the validation set

V = ∪u∈UVu and report the corresponding performance on the test set T = ∪u∈UTu.

4.4.3 Comparison Methods

Matrix Factorization (MF) based methods are currently state-of-the-art for mod-

eling implicit feedback datasets (e.g. [57, 91, 97]). Therefore we mainly compare against

state-of-the-art MF methods in this area, including both point-wise and pairwise MF
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models.

1. Popularity (PopRec): Items are ranked according to their popularity.

2. Weighted Matrix Factorization (WR-MF): A state-of-the-art point-wise MF

model for implicit feedback proposed by [39]. It assigns confidence levels to

different feedback instances and afterwards factorizes a corresponding weighted

matrix.

3. Bayesian Personalized Ranking (BPR-MF): Introduced by [97], is a state-of-

the-art method for personalized ranking on implicit feedback datasets. It uses

standard MF (i.e., Eq. (2.1)) as the underlying predictor.

4. BPR-TMF: This model extends BPR-MF by making use of taxonomies and tem-

poral dynamics; that is, it adds a temporal category bias as well as a temporal item

bias in the standard MF predictor (using the techniques introduced in Section 4.3.1).

5. Visual Bayesian Personalized Ranking (VBPR): Our visually-aware method. It

models raw visual signals for recommendation, but does not capture any temporal

dynamics.

6. Temporally-aware VBPR (FashionRec#): This method models visual dimen-

sions and captures visual temporal dynamics using the temporally-evolving visual

factors & bias techniques we introduced earlier, but does not account for any

non-visual dynamics.

7. Fashion-aware Recommendation (FashionRec): Compared to FashionRec#,

this method further captures non-visual temporal dynamics (see Subsection 4.3.1)

to improve predictive performance and help with interpretability, i.e., it makes use

of all the terms in Eq. (4.13).
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Table 4.2: Models. P: Personalized? V: Visually-aware? T: Temporally-aware? X:
taXonomy-aware?

Property PopRec WR-MF BPR-MF BPR-TMF VBPR FashionRec# FashionRec

P 8 4 4 4 4 4 4

V 8 8 8 8 4 4 4

T 8 8 8 4 8 4 4

X 8 8 8 4 8 8 4

Ultimately these methods are designed to evaluate (1) the performance of the

current state-of-the-art non-visual methods (BPR-MF); (2) the value to be gained by

using raw visual signals (VBPR); (3) the importance of visual temporal dynamics (Fash-

ionRec#); and (4) further performance enhancements from incorporating non-visual

temporal dynamics (FashionRec). For clarity, we compare all above models in terms of

whether they are ‘personalized’, ‘visually-aware’, ‘temporally-aware’, and ‘taxonomy-

aware’, as shown in Table 4.2. All time-aware methods are trained with our proposed

coordinate ascent procedure.

Most of our baselines are from MyMediaLite [28]. To make fair comparisons,

our experiments always use the same total number of dimensions for all MF models.

Additionally, all visually-aware MF models adopt a fifty-fifty split for visual vs. non-

visual dimensions for simplicity. All our experiments were performed on a standard

desktop machine with 4 physical cores and 32GB main memory.

4.4.4 Performance and Quantitative Results

Settings: Overall & Cold-Start

We evaluate all methods in two settings: ‘Overall’ and ‘Cold-Start’. ‘Overall’

measures the overall ranking accuracy, including both warm-start and cold-start scenarios.

However, it is desirable for a system to be able to recommend cold-start items effectively,
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especially in the domains we consider where new items are constantly added to the

system and the data is incredibly long-tailed. Therefore, we also evaluate our model in

‘Cold-Start’ settings.

To this end, our ‘Overall’ setting evaluates the average AUC on the full test set

T , while ‘Cold-Start’ is evaluated by only keeping the cold-start items in T , i.e., items

that had fewer than five positive feedback instances in the training set P . It turns out that

such cold-start items account for around 60% of the test set. This means that to achieve

acceptable performance on sparse real-world datasets, one must be able to deal with their

inherent cold-start nature.

Results & Analysis

Table 4.3 compares the performance of different models with the total number of

dimensions set to 20. Due to the sparsity of our datasets, no MF-based model observed

significant performance improvements when increasing the number of dimensions beyond

this point. We make a few comparisons to better explain and understand our findings as

follows:

1. Being a state-of-the-art method for personalized ranking from implicit feedback,

BPR-MF beats the point-wise method WR-MF and the popularity-based baseline

PopRec. PopRec is especially ineffective in cold-start settings since cold items are

inherently ‘unpopular’.

2. Further improvement over BPR-MF can be obtained by using taxonomy (i.e.,

category) information and by modeling temporal dynamics, as we see from the

improvement of BPR-TMF over BPR-MF, i.e., on average 1.5% for ‘Overall’ and

4.3% for ‘Cold-Start’.

3. More significant improvements over BPR-MF are obtained by making use of
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Table 4.3: AUC on the test set T (higher is better). ‘Overall’ evaluates the overall
accuracy, while ‘Cold-Start’ evaluates the ability to recommend/rank cold-start items.
The best performance for each setting is boldfaced. All temporal methods (d, f, and g)
use 10 epochs, though we also report the performance with 5 epochs (g5) for comparison.

ID Method
Women’s Clothing Men’s Clothing

Overall Cold-Start Overall Cold-Start

(a) PopRec 0.5726 0.3214 0.5772 0.3159
(b) WR-MF 0.6441 0.5195 0.6228 0.5124
(c) BPR-MF 0.7020 0.5281 0.7100 0.5512
(d) BPR-TMF 0.7259 0.5749 0.7069 0.5498
(e) VBPR 0.7834 0.6813 0.7841 0.6898
(f) FashionRec# 0.8117 0.7325 0.8064 0.7314

(g5) FashionRec 0.8148 0.7355 0.8074 0.7373
(g) FashionRec 0.8210 0.7469 0.8084 0.7459

Imprv. (e) vs. (c) 11.6% 29.0% 10.4% 25.1%
Imprv. (g) vs. (d) 13.1% 29.9% 14.6% 35.7%
Imprv. (g) vs. (e) 4.8% 9.6% 3.1% 8.1%

additional visual signals, as is done by VBPR. This leads to as high as an 11.6%

improvement on Women’s Clothing and 10.4% on Men’s Clothing. These visual

signals are especially helpful in cold-start settings where BPR-MF does not have

enough observations to learn reliable item factors. In ‘Cold-Start’ settings, VBPR

beats BPR-MF by as much as 29.0% on Women’s Clothing and 25.1% on Men’s

Clothing.

4. Although VBPR can benefit from modeling visual signals, it is limited by its

inability to capture temporal dynamics in the system. However in data such as

ours (where feedback spans more than a decade) it is necessary to make use of

a finer-grained model to capture evolving opinion dynamics. Here FashionRec#

captures three types of ‘fashion dynamics’ (see Section 4.3) and yields significant

improvements over VBPR.

5. FashionRec incorporates non-visual dynamics into FashionRec# to further account
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for the variety of temporal factors at play. FashionRec outperforms VBPR by 4.8%

on Women’s Clothing and 3.1% on Men’s Clothing for the ‘Overall’ setting, and

even more for the ‘Cold-Start’ setting (9.6% and 8.1% respectively).

Additionally, all temporal models observed comparably larger improvements on

Women’s Clothing than Men’s Clothing; presumably this is due to the size and variability

of the dataset (see Table 4.1) or richer temporal dynamics exhibited by women’s clothing.

Reproducibility

In all cases, regularization hyperparameters are tuned to perform the best on the

validation set V . The best regularization hyperparameter was λΘ = 100 for WR-MF, and

λΘ = 1 for other MF-based methods. For visually-aware methods, the embedding matrix

E and visual bias vector~β′ are not regularized as they introduce only a constant (and

small) number of parameters to the model. In FashionRec# and FashionRec, ∆E(ep),

~w(ep) and~b(ep) are regularized with regularization parameter 0.0001. Complete code

for all our experiments and baselines is available at https://sites.google.com/a/eng.ucsd.

edu/ruining-he/.

4.4.5 Visualization and Qualitative Analysis

Visual Dimensions

Our first visualization consists of demonstrating the visual dimensions uncovered

by our method, i.e., what kind of characteristics people consider when evaluating items,

as well as the evolution of their weights throughout the years.

A simple visualization of the learned visual dimensions is to find which items

https://sites.google.com/a/eng.ucsd.edu/ruining-he/
https://sites.google.com/a/eng.ucsd.edu/ruining-he/
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exhibit maximal values for each dimension. That is, we select items according to

argmax
i

Ek,:~fi,

for each row of the embedding matrix E in Eq. (4.10), corresponding to a visual dimension

k. This tells us which items most exhibit, or are ‘most representative’ of a particular

visual aspect discovered by the model.

Figure 4.3 shows such items for our FashionRec model. Two things are notable

here. Firstly, the visual dimensions uncovered by our method seem to be meaningful,

and capture combinations of color, shape and textural features (e.g. tees in the third row

vary in shape but are similar in pattern). Secondly, human notions seem to be revealed

by our method, e.g. semi-formal versus casual in rows 1 and 2, graphic designs versus

patterns in rows 3 and 5 etc. It is this ability to discover visual characteristics that are

correlated with human decision factors that explains the success of our model. Note that

at first glance these dimensions may seem to pick up more than just fashion trends (like

model poses or photo setups). Considering the size of the dataset we are experimenting

on, this may be simply due to the amount of visually similar items available in the corpus.

Examining longer ranked-lists for those dimensions helped assure us that they indeed

focus on capturing characteristics of the clothes in the pictures.

In addition to the visual dimensions, our formulation of item visual factors (i.e.,

θi(t) in Eq. (4.10)) also models how the weight of each visual dimension has evolved

during these years, with a weighting vector ~w(t). We also show such evolution in

Figure 4.3. Due to the sparsity of the data in earlier years, we demonstrate the learned

weights of the nine epochs from Aug. 2004 to Jul. 2014. As we can see from this figure,

each visual dimension evolves roughly continuously as time progresses, although there

do occasionally exist comparatively abrupt changes.
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Figure 4.3: Demonstration of ten visual dimensions discovered by FashionRec on
Amazon Women’s Clothing data. Here we focus on a single subcategory, ‘tees,’ for
a clear comparison. Each row shows the top ranked tees for a particular dimension k
(i.e., argmaxi Ek,:~fi), as well as the evolution of the weight (i.e., ~wk(t) in Eq. (4.10)) for
this dimension across epochs (x-axis). Note that for many styles the weight evolves
non-linearly.

Shifts in Fashion

Next we visualize the distribution of fashionable versus non-fashionable appear-

ances as well as the subtle shifts as time progresses. This enables us to see not only

how people weigh each specific dimension/aspect over time (as we did in Figure 4.3),

but rather to comprehensively evaluate fashion as a whole by combining the dynamics
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from all dimensions. To achieve this goal, we need a metric to qualitatively measure the

overall visual popularity of a product image, which we term its ‘visual score’.

The visual score of item i in epoch ep, VisualScore(i,ep) is calculated by averag-

ing the ‘visual component’ of the predictor (i.e., Eq. (4.13)) for all users, which naturally

gives us the overall visual popularity of an item during epoch ep:

VisualScore(i,ep) =
1
|U| ∑

u∈U
〈~θu,~θi(ep)〉+ 〈~β′(ep), ~fi〉. (4.19)

Then we can visualize how fashion has shifted using a normalized visual score as the

metric, i.e., by subtracting the average visual score of all items in each epoch.

By modeling the visual dimensions that best explain users’ opinions, our method

uncovers a low-dimensional ‘visual space’ where items that users evaluate similarly

(i.e., with similar visual styles) are embedded to nearby positions. By definition, nearby

items in the space will have similar visual scores. Then our visualization consists

of demonstrating the visual space, as well as the time-dependent visual scores (i.e.,

popularity) attached to each of those items in the space.

After training our FashionRec model with 10 epochs on Women’s Clothing, we

take the base portion of the embedding, i.e., E~fi in Eq. (4.10), to map all items into a

visual space. The purpose is to help visualize items that have similar visual evaluation

characteristics (or styles). Next, we use t-SNE [117] to embed a random sample of 30,000

items from the test set T into a 2-d space. Figure 4.4 shows the embedding we obtain. As

expected, items from the same category tend to be mapped to nearby locations, since they

share common features in terms of appearance. What is interesting and useful about the

embedding is it can learn (1) a smooth transition across categories, and (2) ‘sub-genres’

in terms of appearance similarity. This is important since the available taxonomy is

limited in its ability to differentiate between items within categories and in its ability to
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Aug. 2005 Jul. 2014 

Figure 4.4: Demonstration of the 2-d t-SNE [117] embedding of the visual space
learned by FashionRec on Amazon Women’s Clothing. Images are 30,000 random
samples from the test set T . Each cell randomly selects one image to show in case of
overlaps. At the bottom we also demonstrate the heat maps describing the normalized
visual scores of these images over eight fashion epochs since Aug. 2005. Warmer means
more popular, i.e., larger visual score. The circled area shows an example of a certain
style which became popular but lost its appeal over time.

discover connections (especially visual ones) among items across categories.

To demonstrate how fashion has shifted over the life-span of the dataset, for each

item i in the embedding we calculate its normalized visual score during every discovered

epoch ep, which can then be used to build a ‘heat map’ demonstrating which items/styles

were considered popular during each epoch.

These heat maps are also presented in Figure 4.4, from which we can observe

the gradual evolution of users’ tastes. We highlight a particular example where a certain

style of shoe gradually gained popularity, which then diminished in recent years (see the

circled area in Figure 4.4).
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Figure 4.5: On the left we show query images each representing a resurgent style in
men’s fashion in the late 2000s. According to FashionRec trained on Men’s Clothing,
nearest neighbors of these images in our style space are shown in the middle and
normalized visual scores (i.e., visual popularity) in the past decade on the right. We can
see that our model captures such a resurgence especially since 2009.

4.4.6 Case Study: Men’s Fashion in the 2000s

To help demonstrate that FashionRec has captured interpretable visual dynamics,

we take a review of fashion trends in the 2000s as ground-truth and conduct a case study

on men’s clothing. The model used for this case study is FashionRec trained on Amazon

Men’s Clothing.

1950s and 1980s fashions resurfaced for men in the late 2000s.4 Representative

items include Ed Hardy T-shirts with low necklines, Hawaiian shirts, ski jackets, straight

leg jeans, black leather jackets, windbreakers, and so forth. A simple evaluation then

consists of visualizing the visual popularity of such items to see if there is any discernible

resurgence around the late 2000s, as history tells us there ought to be.

To this end, we randomly selected four query items (from outside of the dataset we

trained on, i.e., not from Amazon.com) representing each of Ed Hardy T-shirts, Hawaiian

4https://en.wikipedia.org/wiki/2000s in fashion, retrieved on Oct. 1, 2015.

https://en.wikipedia.org/wiki/2000s_in_fashion
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shirts, black leather jackets, and ski jackets respectively. In Figure 4.5, first we visualize

our visual space by retrieving nearest-neighbors for each of the query items (in the middle

of the figure), and then compute the normalized visual score of each query image in each

fashion epoch.

From Figure 4.5 we can see that, as expected, these styles are indeed predicted by

our model to be gaining popularity especially since 2009, no matter how they performed

prior to this period. This to some degree confirms that our proposed method can capture

real-world fashion dynamics successfully.

4.5 Conclusion

Modeling visual appearance and its evolution is key to gaining a deeper un-

derstanding of users’ preferences, especially in domains like fashion. In this chapter,

we built scalable models on top of large-scale product images and user feedback to

capture people’s visual preferences and the temporal drifts of fashion. We found that

deep CNN features are useful for modeling visual dimensions as well as the associated

temporal dynamics. Low-rank structures learned on top of such features are efficient at

capturing fashion dynamics and help our method significantly outperform state-of-the-art

approaches. Visualization using our trained models helped demonstrate the non-linear

characteristics of the evolution of different visual dimensions, as well as how fashion has

shifted over the past decade.
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Chapter 5

Modeling Sequential Signals for

Context-aware Recommendation

5.1 Introduction

In this chapter, we are interested in modeling sequential signals in implicit

feedback data (e.g. purchase histories) to predict personalized sequential behavior, e.g. the

next product to purchase, movie to watch, or place to visit. To achieve this goal, it is

essential to model the ‘third-order’ interactions between a user, the item(s) she recently

consumed (i.e., the context), and the item to visit next. It is a challenging task as long- and

short-term dynamics need to be combined carefully to account for both personalization

and sequential transition patterns. Besides the complexity of the interactions themselves,

the model also needs to handle the scale and inherent sparsity of real-world data.

The first part of this chapter introduces our new sequential model, Vista, for a

popular social art website Behance.net, an online art community with millions of users

and artistic images.1 There are several aspects that make modeling this data interesting

1https://www.behance.net/
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and challenging. First, on Behance.net users are both content creators and content

evaluators, meaning that there is a need to model who appreciates what, as well as

who appreciates whom (‘social’ dynamics). Not that here we focus on modeling the

ownership signal, namely the interactions between a viewer and the creator of an item,

which is different from traditional social network data (see Section 3.2). Second is the

need to model sequential and visual dynamics, in terms of users’ tendency to interact with

consistent content within and across sessions, and their preferences toward individual

art styles. And third is simply the scale and sparsity of the data involved; with data on

the order of millions of users and items we must expend considerable effort developing

methods that scale.

The second part of this chapter presents our two new models for the classical (i.e.,

general) sequential recommendation setting. Factorized Personalized Markov Chains

(FPMC) models the third-order relationships between user u, previous item i, and next

item j by the summation of two separate pairwise relationships: one for the compatibility

between u and j, and another for the sequential continuity between item i and j, both

captured by means of inner products [98]. Recently, there have been two lines of works

that aim to improve FPMC. Personalized metric embedding methods replace the inner

products in FPMC with Euclidean distances, where the metricity assumption—especially

the triangle inequality—enables the model to generalize better [27, 83, 124]. However,

these works still adopt the framework of modeling the user preference component and

sequential continuity component separately, which may be disadvantageous as the two

components are inherently correlated. Another line of work [121] leverages operations

like average/max pooling to aggregate the representations of the user u and the previous

item i, before their compatibility with the next item j is measured. These works partially

address the issue of modeling the correlation of the two key components, though are hard

to interpret and can not take advantage of the generalization ability of metric embeddings.
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To tackle the challenges faced by existing methods, we first propose a new

approach, Fossil, that fuses similarity-based methods with Markov Chains to naturally

learn a personalized weighting scheme over the sequence of items to simultaneously

characterize users in terms of both preferences and the strength of sequential behavior.

The resulting model is unified, accurate and interpretable. To further benefit from

metric embeddings, we propose another unified sequential method, TransRec, which

embeds items as points in a ‘transition space’ and represents each user as a ‘translation

vector’ in the same space. The third-order interactions mentioned earlier are captured

by a personalized translation operation: the coordinates of previous item~γi, plus the

translation vector~tu of user u determine (approximately) the coordinates of the next item

~γ j.

5.1.1 Our Contributions

Specifically, our main contributions include:

1. We build new models to capture the large-scale dynamics of artistic preferences.

Methodologically we build upon techniques that model short-term, session-level

dynamics, and our visually-aware method for modeling item content, to capture the

notion of visual consistency between successive actions. Since users of Behance.net

are themselves content creators, we capture both preferences toward particular art

styles, as well as particular artists.

2. We further propose two new methods for the general sequential prediction setting,

including one integrating similarity-based methods with Markov Chains, and

another based on translation embeddings. Both methods naturally capture third-

order interactions between users and items with unified components and have good

interpretability.
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3. Empirical results on a wide spectrum of large, real-world datasets demonstrate that

our models are able to outperform state-of-the-art measures significantly. In addi-

tion, we visualize our learned models and analyze the sequential and personalized

dynamics captured.

5.2 Vista: A Sequential Artistic Recommendation Model

In this section we build a new sequential method to model the large-scale dy-

namics of a vibrant online community, Behance.net, comprising tens of millions of

interactions (i.e., clicks and appreciates) of users toward digital art.

5.2.1 Problem Formulation

Formally, let U represent the set of users and I the set of items (i.e., artistic

images). Each item i ∈ I is created by a certain user oi ∈U (or in some cases a few users

Oi ⊆U). For each user u, a sequential action history (e.g. items clicked/appreciated by

u) S u is known: S u = (S u
1 ,S u

2 , . . . ,S u
|Su|) where S u

k ∈ I . The action history of all users

is denoted by S = {S u1,S u2, . . . ,S u|U|}. Additionally, each item i is associated with an

explicit feature vector ~fi, e.g. in our case visual features extracted from images. Given the

above data, our task is to make personalized recommendations based on their predicted

future actions.

5.2.2 The Vista Model

According to FPMC, the transition of user u from item i (at t−1) to item j (at t)

can be explained from two aspects: (1) the interaction between user u and item j, which

captures the long-term preferences of user u; and (2) the interaction between the previous

item i and item j, which captures the temporary interest of user u (i.e., context). FPMC
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is essentially the combination of MF and factorized MC:

Prob( j | u, i) ∝ 〈~pu,~q j〉︸ ︷︷ ︸
Matrix Factorization

+ 〈~mi,~n j〉︸ ︷︷ ︸
Markov Chain

, (5.1)

where Prob( j | u, i) denotes the probability of user u transitions from item i to j. User

embeddings ~pu and item embeddings~q j, ~mi,~n j are parameters learned from the data.

Following this intuition, we extend FPMC and propose to factorize the personal-

ized Markov Chain (MC) on Behance.net with the following formulation:

Prob( j | u, i) ∝

artist
appreciation︷ ︸︸ ︷
〈~φu,~φo j〉 +

item
appreciation︷ ︸︸ ︷
〈~γu,~γ j〉︸ ︷︷ ︸

personalization

+ wu · (

artist similarity︷ ︸︸ ︷
〈~φo j ,~φoi〉 +

item similarity︷ ︸︸ ︷
〈~ψ j,~ψi〉︸ ︷︷ ︸

sequential continuity

), (5.2)

where we use three latent spaces to capture the interactions between users and items,

users and users, items and items respectively: (1) Space Γ: Vectors~γu ∈ Γ and~γi ∈

Γ are employed to capture user u’s latent preferences and item i’s latent properties

respectively; (2) Space ϒ: Each user u is associated with a vector~φu ∈ ϒ for measuring

affinity/similarity with other users; and (3) Space Ξ: Each item i is associated with a

vector~ψi ∈ Ξ for measuring affinity/similarity with other items. Inner products of vectors

from the three spaces measure the corresponding user-item, user-user, and item-item

affinity/similarity respectively.

In Eq. (5.2), the interaction between u and j consists of two parts: how much

user u appreciates—or is ‘similar’ to—the creator/owner o j of j (term one), and how

much u likes the specific item created by o j (term two). Likewise, the similarity of i and

j comprises two components as well: the similarity between their creators (term three)

and the two items themselves (term four). wu is a parameter to capture the statistical

short-term consistency of the actions of the specific user u. Intuitively, a bigger value of
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wu will favor short-term interests, which means u tends to interact with items similar to

those they just interacted with, instead of those that most fit their long-term preferences.

Modeling ownership data and user interactions can help address both user cold-

start and item cold-start issues in real-world recommender systems:

1. For a cold user u who has very few actions in the system, the representation of

u in space ϒ (i.e.,~φu) can still be learned as long as some users have interacted

with items created by u. When predicting the actions for u,~φu will help rank items

created by similar users higher.

2. For a cold item i with very few interactions, we can still model it reasonably well

as long as we can know about the artist who created it, i.e.,~φoi . Fortunately, two

sources of signals are available in the system for inferring~φoi: both actions made

by oi (active) and the interactions received by all other items created by oi (passive).

These signals are relatively abundant and unlikely to suffer from sparsity issues.

Handling Multiple Creators

In certain cases an item i may be collaboratively created by multiple users in the

system Oi ⊆U. In such scenarios we take the average of their associated vectors as the

corresponding vectors (i.e.,~φoi and~φo j) in Eq. (5.2). Note that this will not affect the

training efficiency as an owner sampling scheme can be used, which we will detail later.

Modeling Higher-Order Markov Chains

The formulation in Eq. (5.2) only models a personalized MC of order one, with

the assumption that a user’s next action is independent of any historical actions if given

the most recent one. However, this may suffer from noise and can not capture longer-term

consistency (e.g. earlier clicks in a session). This inspires us to try modeling MC with
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higher orders.

Due to the large scale and sparsity of real-world data, a light-weight yet expressive

model is required. To this end, we model high-order personalized MCs by extending our

first-order formulation with a personalized decaying scheme, as shown below:

Prob( j | u,S u
t−1,S u

t−2, . . . ,S u
t−N) ∝

〈~φu,~φo j〉+ 〈~γu,~γ j〉︸ ︷︷ ︸
interaction between u and j

+
N

∑
k=1

wk
u︸︷︷︸

personalized
decaying weight

·
(
〈~φo j ,~φoSu

t−k
〉+ 〈~ψ j,~ψSu

t−k
〉︸ ︷︷ ︸

interaction between j and
the k-th previous item

)
. (5.3)

The first part still measures the affinity between a user u and the next item j; while

the second part computes the weighted sum of the similarities of item j to each of the

previous items. There are two main intuitions behind the proposed formulation: (1)

recent actions should be more correlated with future actions, which is why we employ

a decaying term; and (2) different users may differ in behavior so that personalization

should be taken into account. We model the personalized decay scheme as follows:

wk
u =

1
eau·(k−1)+bu

, k = 1,2, . . . ,N, for u ∈U. (5.4)

Note that the above formulation only introduces two additional parameters (i.e., au and

bu) for each user u, which allows us to model users’ differing behavior in a light-weight

manner.

Incorporating Content-Based Features

Up to now, our formulation only makes use of the collaborative data, without

being aware of the underlying content of the items themselves.2 Such a formulation may

2Without loss of generality, we take item features as an illustrative example. User features can be
handled in a similar manner.
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suffer from item cold-start issues where there are not enough historical observations

to learn accurate representations of each item. Modeling the content of the items can

provide auxiliary signals in cold-start settings and alleviate such issues.

Intuitively, content-based features of items should be informative of the two latent

vectors:~γi and ~ψi. Given the explicit feature vector ~fi of item i, we have demonstrated in

Chapter 4 that embedding techniques are successful at incorporating (high-dimensional)

content-based features into the CF framework. In particular, we augment the vector

representations of items as follows:

~γi = ~γ′i +EΓ
~fi, (5.5)

~ψi = ~ψ′i +EΞ
~fi. (5.6)

Here EΓ and EΞ are two embedding matrices that project item i into space Γ and Ξ

respectively. The new formulation for each vector in the corresponding space (e.g.~γi)

now consists of two parts: the base part from the item content (EΓ
~fi), and the residue (~γ′i).

For warm-start items, the residue part is expressive and can represent the item accurately;

for cold-start items, the residue part will be regularized (toward 0) and the base part will

still be able to provide reasonably good approximations of the true representations. By

substituting the augmented vector representations Eq. (5.5) and Eq. (5.6) into Eq. (5.3),

the new formulation will be able to benefit from the content-based features.

Note that the two matrices are shared by all items which means that only a modest

number of parameters are added to the model.
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5.3 Fossil: A Similarity-based Sequential Model

In this section, we present our similarity-based model, Factorized Sequential

Prediction with Item Similarity Models (Fossil), for tacking sequential recommendation

at large scale.

The task we are addressing in this section (as well as the following section) are

formulated as follows. Let U denote the set of users and I the set of items. Each user u is

associated with a sequence of items (or ‘actions’) Su, e.g. items purchased by u, or places

u has checked in: S u = (S u
1 ,S u

2 , . . . ,S u
|Su|), where S u

k ∈ I . We use I+
u to denote the set

of items in S u where the sequential signal is ignored. Using the above data exclusively,

our objective is to predict the next action of each user and thus make recommendations

accordingly.

5.3.1 Similarity-based Item Recommendation

There is a similarity-based method, called Sparse Linear Methods (SLIM), that

has been developed for traditional item recommendation task by learning an item-to-item

similarity matrix S from the user action history (e.g. purchase logs) [87]. It predicts the

user-item affinity as follows:

x̂u,i = ∑
j∈I+

u \{i}
S j,i, (5.7)

where I+
u is the set of items u has interacted with. S j,i is the element at the j-th row

and i-th column of matrix S, denoting the similarity of item j to item i. The underlying

rationale it follows is that the more j is similar to those items already consumed/liked by

u, the more likely j will be a preferable choice for u.

Without parameterizing each user explicitly, SLIM relaxes the low-rank assump-

tion enforced on user representations and has achieved state-of-the-art recommendation

accuracy (see [87] for details). The major challenge faced by SLIM comes from the large
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Sequential

predict

action sequence of a certain user

Figure 5.1: An example of how our method, Fossil, makes recommendations. Harry
Potter 2 is recommended to the user because it (1) is similar to content already watched
(i.e., fantasy movies), and (2) frequently follows the recently-watched movie Harry
Potter 1. The former is modeled with a similarity-based method and the latter Markov
Chains.

amount of parameters (|I |× |I |) to be estimated from the sparse user-item interactions.

SLIM approaches this issue by exploring the sparsity characteristic of S using L1-norm

regularization when inferring the parameters. Another direction is to capitalize on the

low-rank potential of the similarity matrix by decomposing S into the product of two

independent low-rank matrices [46]:

S = PQT , (5.8)

where P and Q are both |I |×K matrices and K� |I |. This method is called Factored

Item Similarity Models (FISM) and brings two benefits: (1) It significantly reduces the

number of parameters and has been shown to generate state-of-the-art performance on

a series of sparse datasets; and (2) Compared to SLIM, it is stronger at capturing the

transitive property of item similarities.3 When it comes to real-world datasets which

are usually highly sparse, the above benefits contribute considerably to recommendation

performance.
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5.3.2 The Fossil Model

In contrast to FPMC that combines MF and MC, here we take another direction

and investigate combining similarity-based methods and MC to approach the sequential

prediction task (see Figure 5.1). In particular, we take FISM as our starting point, in light

of its ability to handle the sparsity issues in real-world datasets. The basic form of our

model is as follows:

Prob( j | u, i) ∝

personalization︷ ︸︸ ︷
∑

j′∈I+
u \{ j}

〈~p j′,~q j〉 + wu︸︷︷︸
personalized

weighting factor

·
sequential dynamics︷ ︸︸ ︷
〈~mi,~n j〉, (5.9)

where each user is parameterized with only a single scalar wu that controls the relative

weights of the long- and short-term dynamics.

The above formulation parameterizes each item with four vectors, i.e., ~pi,~qi, ~mi,

and~ni. Considering the limited number of parameters we can afford in the sparse datasets

we are interested in, we reduce the four matrices to two by enforcing ~p = ~m and~q =~n.

This makes sense since ultimately sequentially-related items are also ‘similar’ to one

another. Adding a bias term β j and normalizing the long-term dynamics component, we

arrive at a new formulation as follows:

Prob( j | u, i) ∝ β j + 〈
1

|I+
u \{ j}|α ∑

j′∈I+
u \{ j}
~p j′+wu ·~pi, ~q j〉. (5.10)

Note that in above equation the third-order interactions between u, i, and j are naturally

modeled by a single component.

3For instance, if items a and b, b and c are two co-purchase pairs in the training data but (a,c) is not,
SLIM will erroneously estimate the similarity of a and c to be 0.
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Modeling Higher-order Markov Chains

Up to now we have used first-order MC to model short-term temporal dynam-

ics. Next, we extend our formulation to consider high-order MC to capture smooth-

ness across multiple time steps. Given the most recent N items user u has consumed

(S u
t−1,S u

t−2, . . . ,S u
t−N), the new formulation predicts the probability of item j being the

next item (at t) with an Nth order MC as shown in Eq. (5.11):

Prob( j | u,S u
t−1,S u

t−2, . . . ,S u
t−N) ∝ β j + 〈

personalization︷ ︸︸ ︷
1

|I+
u \{ j}|α ∑

j′∈I+
u \{ j}

~p j′ +
N

∑
k=1

wu
k ·~pSu

t−k︸ ︷︷ ︸
sequential dynamics

, ~q j〉.

(5.11)

Like in Eq. (5.3), each user is associated with a vector (wu
1,w

u
2, . . . ,w

u
N). The rationale

behind this idea is that each of the previous N actions should contribute with different

weights to the high-order smoothness.

5.4 TransRec: A Translation-based Sequential Model

In this section, we introduce a novel method called Translation-based Recom-

mendation (TransRec) for large-scale sequential recommendation. The key idea behind

TransRec is presented in Figure 5.2. The advantages of such an approach are three-fold:

(1) TransRec naturally models third-order interactions with a single component; (2)

As a metric embedding method, TransRec also enjoys the generalization benefits from

the implicit metricity assumption; and (3) TransRec can easily handle large sequences

(e.g. millions of instances) due to its simple form.
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User      

User      

User 

Translation operation: 

Figure 5.2: The high-level idea of TransRec model: Items are embedded into a ‘transi-
tion space’ where each user is modeled by a translation vector. The transition of a user
from one item to another is captured by a user-specific translation operation. Here we
demonstrate the historical sequences S u1 , S u2 , and S u3 of three users. Given the same
starting point, the movie Mission: Impossible I, u1 went on to watch the whole series,
u2 continued to watch drama movies by Tom Cruise, and u3 switched to similar action
movies.

5.4.1 The TransRec Model

We learn a transition space Φ, where each item i is represented with a point/vector

~γi ∈Φ.~γi can be latent, or transformed from certain explicit features of item i, e.g. the

output of a neural network. Without loss of generality, we take~γi as latent vectors in this

work. Recall that the historical sequence S u of user u is a series of transitions u has made

from one item to another. To model the personalized sequential behavior, we represent

each user u with a translation vector ~tu ∈Φ to capture u’s inherent intent or ‘long-term

preferences’ that influenced her to make these decisions. In particular, if u transitioned

from item i to item j, what we want is

~γi +~tu ≈~γ j, (5.12)

which means~γ j should be a nearest neighbor of~γi +~tu in Φ according to some distance

metric d(x,y), e.g. L1 distance.

Note that we are uncovering a metric space where (1) neighborhood captures
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the notion of similarity, and (2) translation encapsulates various semantically complex

transition relationships amongst items. In both cases, the inherent triangle inequality

assumption plays an important role in helping the model to generalize well, as it does in

canonical metric learning scenarios. For instance, if users tend to transition from item a

to two items b and c, then TransRec will also put b close to c. This is a desirable property

especially when data sparsity is a major concern. One plausible alternative is to use the

inner product of~γi +~tu and~γ j to model their ‘compatibility.’ However, this way item b

and c in our above example might be far from each other because inner products do not

guarantee the triangle inequality condition.

Due to the sparsity of real-world datasets, it might not be affordable to learn

separate translation vectors~tu for each user. Therefore we add another translation vector

~t to capture the ‘global’ transition dynamics across all users, and we let

~tu =~t +~t ′u. (5.13)

This way~t ′u can be seen as an offset vector associated with user u. The advantages are

(1) We can still learn personalized sequential behavior as users are being parameterized

separately; and (2) vectors of cold-start users will be regularized toward 0 and we are

essentially using~t—the ‘average’ behavior—to make predictions for these users.

Finally, the probability that a given user u transitions from the previous item i to

the next item j is predicted by

Prob( j | u, i) ∝ β j−d(~γi +~tu,~γ j),

subject to γi ∈Ψ⊆Φ, for i ∈ I .
(5.14)

Ψ is a subspace in Φ, e.g. a unit ball, a technique which has been shown to be helpful for

mitigating ‘curse of dimensionality’ issues (e.g. [10, 61, 122]). In the above equation a
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bias term β j is added to capture overall item popularity.

5.4.2 Connection to Knowledge Graph Models

Although different from recommendation, there has been a large body of work

in knowledge bases that focuses on modeling multiple, complex relationships between

various entities, e.g. Turing was born in England (‘was born in’ is the relation between

‘Turing’ and ‘England’). Recently, partially motivated by the findings made by word2vec

[79], translation-based methods (e.g. [10,61,122]) have achieved state-of-the-art accuracy

and scalability, in contrast to those achieved by traditional embedding methods relying on

tensor decomposition or collective matrix factorization (e.g. [85,86,107]). Such methods

embed entities as points and relations as translation vectors such that the relationship

between two entities is captured by the corresponding translation operation. In the

previous example, if we represent ‘Turing’, ‘England’, and ‘was born in’ with vectors
−−→
head,

−→
tail, and

−−−−→
relation respectively, then the following is desired:

−−→
head+

−−−−→
relation≈

−→
tail.

Our work is inspired by those findings, and we tackle the challenges from model-

ing large-scale, personalized, and complicated sequential data. This is the first work that

explores this direction to the best of our knowledge.

5.5 Learning the Sequential Models

The ultimate goal of the sequential prediction task is to rank observed (or ground-

truth) items as high as possible so that the recommender system can make plausible

recommendations. This means it is natural to derive a personalized total order >u,t (at

each step t) to minimize a ranking loss such as sequential Bayesian Personalized Ranking

(S-BPR) [98]. Here j >u,t j′ means that item j is ranked higher than item j′ for user u at

step t given the item sequence before t.
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For each user u and for each time step t, S-BPR employs a sigmoid function

σ(x̂u,t,Su
t − x̂u,t, j′) (x̂u,t,· is a shorthand for the prediction in Eq. (5.3), Eq. (5.11), or

Eq. (5.14)) to characterize the probability that ground-truth item S u
t is ranked higher than

a ‘negative’ item j′ given the model parameters Θ, i.e., Prob(S u
t >u,t j′|Θ). Assuming

independence of users and time steps, model parameters Θ are inferred by optimizing the

following maximum a posteriori estimation:

Θ̂ = argmax
Θ

ln ∏
u∈U

|Su|

∏
t=2

∏
j′∈I\I+

u

Prob(S u
t >u,t j′|Θ) Prob(Θ)

= argmax
Θ

∑
u∈U

|Su|

∑
t=2

∑
j′∈I\I+

u

lnσ(x̂u,t,Su
t − x̂u,t, j′)−Ω(Θ),

(5.15)

where the pairwise ranking between the ground-truth and all negative items goes through

all users and all time steps.4

We adopt Stochastic Gradient Ascent (SGA) to learn our sequential models. First,

we uniformly sample a user u from U as well as a time step t from {2,3, . . . , |S u|}. Next,

a negative item j′ is uniformly sampled, which forms a training triple (u, t, j′). Finally,

the optimization procedure updates parameters in the following fashion:

Θ←Θ+ ε ·
(
σ(x̂u,t, j′− x̂u,t,Su

t ) ·
∂(x̂u,t,Su

t − x̂u,t, j′)

∂Θ
−λΘ ·Θ

)
, (5.16)

where ε is the learning rate and λΘ is a regularization hyperparameter.

Due to the space constraint, TransRec needs one additional step after the updating

of parameters; that is we re-normalize~γi,~γ j, and~γ j′ to be vectors in Ψ. For example, if

we let Ψ be the unit L2-ball, then~γ←~γ/max(1,‖~γ‖).
4Note that due to the ‘additive’ characteristic, our formulation can allow t to run from 2 (instead of

N +1) to the last item in S u. Prob(Θ) is a Gaussian prior over the model parameters.
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5.6 Experiments and Analyses

In this section, we first introduce baselines and evaluation methodology, and

then we evaluate our sequential artistic model, Vista, on Behance.net, as well as the two

general models, Fossil and TransRec, on a variety of real-world datasets.

5.6.1 Comparison Methods

1. Popularity (PopRec): This is a naı̈ve baseline that ranks items according to

their popularity, i.e., it recommends the most popular items to users and is not

personalized.

2. Bayesian Personalized Ranking (BPR-MF) [97]: is a state-of-the-art item rec-

ommendation model which takes Matrix Factorization as the underlying predictor.

It ignores the sequential signals in the system.

3. Factored Item Similarity Models (FISM) [46]: is a similarity-based algorithm

for personalized item recommendation. Our Fossil model is built on top of it to

tackle the sequential prediction task.

4. Factorized Markov Chain (FMC): captures the ‘global’ sequential dynamics by

factorizing the item-to-item transition matrix (shared by all users), but does not

capture personalized behavior.

5. Factorized Personalized Markov Chain (FPMC) [98]: uses a predictor that

combines Matrix Factorization and factorized Markov Chains so that personalized

Markov behavior can be captured (see Eq. (5.1)).

6. Hierarchical Representation Model (HRM) [121]: extends FPMC by using

aggregation operations like pooling to blend users’ preferences (~pu) and their
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recent activities (~qi):

Prob( j | u, i) ∝ 〈aggregation(~pu,~qi), ~q j〉. (5.17)

We compare against HRM with both max pooling and average pooling, denoted by

HRMmax and HRMavg respectively.

7. Personalized Ranking Metric Embedding (PRME) [27]: models personalized

Markov behavior by the summation of two Euclidean distances: one for measuring

user-item affinity and another for sequential continuity. A hyperparameter (ζ) is

used to balance the two components:

Prob( j | u, i) ∝ −
(
ζ · ‖~pu−~p j‖2

2 +(1−ζ) · ‖~qi−~q j‖2
2
)
. (5.18)

8. Visually, Socially, and Sequential-aware Artistic recommendation (Vista): Our

method for sequential artistic recommendation on Behance.net (see Section 5.2).

Markov Chains of different orders will be experimented with and compared against

other methods.

9. Factorized Sequential Prediction with Item Similarity Models (FISM): Our

similarity-based method for classical sequential recommendation (see Section 5.3).

Markov Chains of different orders will be experimented with and compared against

other methods.

10. Translation-based Recommendation (TransRec): Our metric embedding method

for classical sequential recommendation task (see Section 5.4). In experiments we

try both L1 and squared L2 distance5 for the predictor.

5Note that this can be seen as optimizing an L2 distance space, similar to the approach used by
PRME [27].
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Table 5.1: Models. P: Personalized? S: Sequentially-aware? M: Metric-based? U:
Unified model of third-order interactions?

Property PopRec BPR-MF FISM FMC FPMC HRM PRME Vista Fossil TransRec

P 8 4 4 8 4 4 4 4 4 4

S 8 8 8 4 4 4 4 4 4 4

M 8 8 8 8 8 8 4 8 8 4

U 8 8 8 8 8 4 8 8 4 4

Table 5.1 examines the properties of different methods. The ultimate goal of the

baselines is to demonstrate (1) the performance achieved by state-of-the-art sequentially-

unaware item recommendation models (BPR-MF and FISM) and purely sequential

models without modeling personalization (FMC); (2) the benefits of combining person-

alization and sequential dynamics in a ‘linear’ (FPMC) and non-linear way (HRM), or

using metric embeddings (PRME); (3) the strength of our sequential artistic recommen-

dation model by modeling ownership as well as content-based features (Vista); and (4)

the effectiveness of using a single component to model the third-order interactions with

similarity-based methods (FISM) and translations (TransRec).

5.6.2 Evaluation Methodology

For each dataset, we partition the historical sequence S u for each user u into three

parts: (1) the most recent one S u
|Su| for test, (2) the second most recent one S u

|Su|−1 for

validation, and (3) all the rest for training. Hyperparameters in all cases are tuned by grid

search with the validation set. Finally, we report the performance of each method on the

test set in terms of the following ranking metrics:

Area Under the ROC Curve (AUC):

AUC =
1
|U| ∑

u∈U

1
|I \ I+

u | ∑
j′∈I\I+

u

I(Ru,gu < Ru, j′),
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Hit Rate at position 50 (Hit@50):

Hit@50 =
1
|U| ∑

u∈U
I(Ru,gu ≤ 50),

where gu is the ‘ground-truth’ item associated with user u at the most recent time step,

Ru,i is the rank of item i for user u (smaller is better), and I(b) is the indicator function

that returns 1 if the argument b is true; 0 otherwise.

5.6.3 Experiments on Sequential Artistic Recommendation

Behance Dataset

Behance.net is a popular online community where millions of professional pho-

tographers, designers and artists share their work, organized as projects, with others.

The contents of these projects vary significantly, ranging from photographs to animation,

fashion, interior design, paintings, sculpting, calligraphy, cartoons, culinary arts, etc.

Each project is created by a user or a few users and consists of a collection of images

(as well as videos in certain cases). The creator/owner of the project selects the most

representative image which the website presents to all users as the cover image. On the

website, users browse through large numbers of cover images, click through attractive

projects, and ‘appreciate’ those they like.

From Behance.net we collected two large corpora of timestamped user actions: (1)

clicks comprising 381,376 users, 972,181 items (i.e., projects), and 48,118,748 clicks; and

(2) appreciates consisting of 373,771 users, 982,002 items, and 11,807,103 appreciates.

52.7% users have created their own projects, and 2.3% items are created by multiple

users. In our experiments, appreciates and clicks are used as two separate datasets to

evaluate the efficacy of all methods on different types of feedback.

For each item, we extract a 4,096-dimensional feature vector from its cover image
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with a pre-trained VGG neural network [106] as the content-based features ~fi. Such

features have been shown to generate state-of-the-art results on visually-aware item

recommendation tasks (see Chapter 4).

Speeding Up

Training with large volumes of content-based features can be time-consuming

due to the need to update the embedding matrices. To speed up the training procedure,

we make the following two observations and employ two modifications accordingly.

Sampling. Matrices EΓ and EΨ are global parameters and only account for a tiny

fraction of the parameter set (e.g. 0.29% for Behance.net). This means that less training

data is needed to accurately estimate EΓ and EΨ. In other words, they are updated more

often than needed if we update them for each training instance. As such, we lower their

updating frequency by flipping a biased coin for each training triple to decide whether or

not to update EΓ and EΨ. Likewise, we can also sample a single owner and only update

their associated parameters in multiple-owner cases due to the rich user interactions

available.

Asynchronous SGA. Notably, only a tiny fraction of parameters will be updated

for each training triple (u, t, j), i.e., representations of u and a few relevant items, and they

are unlikely to overlap.6 It has been pointed out that in such cases lock-free parallelization

of SGA could be employed to achieve fast convergence [88].

Experimentally, this naı̈ve sampling and asynchronous SGA procedure can help

finish training on huge datasets within reasonable time on commodity machines without

losing prediction accuracy.

6The sampling scheme also helps reduce collisions when updating the embedding matrices.
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Performance and Analysis

We compare all methods in terms of overall accuracy (denoted by ‘Overall’)

in terms of AUC and Hit@50. Overall accuracy is evaluated with the full test set as

introduced in Section 5.6.2. In addition, we also decompose the full test set into subsets

according to whether the previous item (at t−1) of the action being tested (at t) is created

by a different artist (i.e., artist transition), or whether the action is the start of a new

session7 (i.e., session transition). This gives us four settings: ‘Artist Trans.’ vs. ‘Same

Artist,’ and ‘Session Trans.’ vs. ‘Same Session’ to thoroughly evaluate the ability of all

models under various transitioning circumstances.

For all methods, we use 10 dimensions for all representations, e.g. Vista uses

10 dimensions for~γu, ~φu, ~γi, and ~ψi. Using additional dimensions yielded marginal

performance improvement for all methods. Results on the two datasets are shown in

Tables 5.2 and 5.3. We make a few comparisons and analyze our findings as follows:

BPR-MF vs. FMC vs. FPMC. Ultimately, BPR-MF and FMC focus on mod-

eling user preferences and sequential dynamics respectively. BPR-MF ranks items

according to what the given user likes from a long-term perspective, which makes it

relatively strong when a user’s action differs significantly from the previous one (‘Artist

Trans.’ and ‘Session Trans.’). In contrast, FMC ranks items based on the transition matrix,

i.e., ‘similarity’ of the next item to the previous item. Such short-term awareness makes

FMC strong in cases where action consistency is maximally demonstrated, i.e., ‘Same

Artist’ and ‘Same Session.’ FPMC is inherently a combination of BPR-MF and FMC,

which makes it the strongest among the three, though it is not necessarily the best in all

settings.

Vista vs. Other Models and Cold-Start. By modeling ownership signals and

7Since no session metadata is available, sessions are obtained by temporally partitioning each user’s
clicks/appreciates with gaps larger than 1 hour.
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content-based features, Vista beats all other methods in all settings significantly (see the

last column of Table 5.2 and 5.3). Note that appreciate data can be seen as a ‘cold-start’

version of the click data, i.e., people appreciate a subset of items they have clicked—about

a quarter from the statistics. From the two tables we can see that the improvements

of Vista on appreciate data over other methods are comparatively larger in almost all

settings.

Order of Markov Chains. Vista benefits from using higher-order MCs consid-

erably on both datasets, especially in terms of Hit@50. Using a small order seems to be

good enough, presumably since the few most recent actions capture enough information

to predict future actions.

Convergence. Next, we demonstrate the accuracy on the full test set (i.e., ‘Over-

all’ setting) of all comparison methods as the number of training iterations increases.

Each iteration consists of processing training samples with the size of the whole training

corpus. All baselines, except PopRec, are trained with multiple iterations until conver-

gence or observance of overfitting on the validation set. As shown by Figure 5.3 and 5.4,

Vista can converge in a few iterations due to the rich interactions being modeled.

Complexity Analysis

We analyze the time complexity of the Nth-order Vista as follows. Recall that we

use a sampling scheme to handle multiple creators. Let K be the dimensionality of the

user/item representations. For a given user u, time step t, and item j, the prediction x̂u,t, j

takes O(K×F+K) to compute the interactions between u and j, and O(N×(K+K×F))

for the interactions between j and N previous items. Therefore for each sampled training

triple (u, t, j), the calculation of x̂u,t, j will take O(K×F+K+N×(K+K×F))=O(N×

K×F). According to Eq. (5.16), computing the partial derivatives and updating relevant

parameters also have the time complexity of O(N×K×F) (when the two embedding
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Figure 5.3: Performance comparison of different methods with number of training
iterations on Behance click data.
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Figure 5.4: Performance comparison of different methods with number of training
iterations on Behance appreciate data.

matrices are updated). Summing up all above components, it takes O(N×K×F) to

process each training triple. Since F is fixed to 4,096 in our case, the final time complexity

becomes O(N×K). Using our lock-free asynchronous SGA training procedure with

sampling, multiple triples are trained simultaneously. In our experiments, we used a

sampling probability of 5% for Vista to update the two embedding matrices. Benefiting

from multi-threading, each training iteration takes around 20 minutes to train our third-

order Vista model on click data.
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Figure 5.5: A t-SNE [117] visualization of space Ξ learned by Vista on Behance click
data. We randomly sample a user and visualize three of their click sessions in the space,
denoted by three paths with different colors on the grid view. There is a tendency that
clicks are around a specific region in the space (i.e., near the green arrows), which
reflects the long-term preference of the user. And each click sequence shows a certain
amount of consistency, encoding the transition of short-term interests.

Latent Space Visualization

We proceed by visualizing the latent space Ξ learned by Vista, which is used to

measure the similarity between different items. To this end, we take our model trained on

Behance click data and further use t-SNE [117] to embed the 10-d space into 2-d. Figure

5.5 demonstrates a grid view of 972,181 items in the 2-d space. From this figure we can

see that items with similar contents and styles tend to be neighbors in the latent space,

e.g. culinary arts on the lower-left patch, and sports on the lower-right. Notably, items on

the same patch may visually deviate from each other significantly.

On the grid view, we also demonstrate a few click sessions of a randomly selected

user. The click sequence of each session is represented by a directed path with a unique

color (red/yellow/green). We make a few observations as follows.

1. Clicks tend to occur around a specific region in the space, near the green and red
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arrows. This reflects the long-term preferences of the user as people ultimately

tend to explore items that they like.

2. Each click sequence demonstrates consistency to a certain degree (e.g. red and

yellow) and encodes the transition of short-term interests (e.g. green).

3. Finally, the choice made at each click is a combination of long- and short-term

preferences, due to which there are both long jumps and short jumps. Therefore, it

is essential to capture both long- and short-term dynamics simultaneously in order

to be successful at addressing our prediction task.

Visualizing Sessions

Users differ in habitual patterns especially in a dataset as large as ours. For

example, for some users their short-term dynamics are more important. This means

they tend to click/appreciate items similar to those they just interacted with. In contrast,

there are also users whose long-term preferences are more emphasized, demonstrating

less short-term consistency during a session. This characteristic is captured by the

personalized weighting factor wu in Eq. (5.2) (and wk
u in Eq. (5.3)).

In Figure 5.6, we show a few sample sessions of the above two types of users, with

different session lengths. Sampled sessions of users with the largest wu (i.e., argmaxu wu)

are shown in Figure 5.6a, with each row demonstrating the list of items clicked during the

corresponding session. We can see some consistency from these sessions: logo designs,

a certain style of cartoon characters, interior designs, and fashion models respectively.

On the right is the corresponding recommendation with the highest score predicted by

the Vista model.

In contrast, in Figure 5.6b we also demonstrate a few sessions from users with the

least wu, i.e., for whom long-term dynamics are more important. As expected, contents in
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each session demonstrate comparatively larger variance, though the long-term preference

toward object designs, logos, cartoons, and characters (respectively) are captured by the

Vista model.

5.6.4 Experiments on General Sequential Recommendation

In this subsection, we aim to fully evaluate the capability and applicability of

Fossil and TransRec on the classical sequential recommendation task, e.g. predicting the

next movie to watch, product to consume, or place to visit.

Datasets and Statistics

We include a wide range of publicly available datasets varying significantly in

domain, size, data sparsity, and variability/complexity.

Amazon.8 The first group of datasets, comprising large corpora of reviews

and timestamps on various products, were recently introduced by [77]. These data

are originally from Amazon.com and span May 1996 to July 2014. Top-level product

categories on Amazon were constructed as separate datasets. Here we take a series of

large categories including ‘Automotive,’ ‘Cell Phones and Accessories,’ ‘Clothing, Shoes,

and Jewelry,’ ‘Electronics,’ ‘Office Products,’ ‘Toys and Games,’ and ‘Video Games.’

This set of data is notable for its high sparsity and variability.

Foursquare.9 Is originally from Foursquare.com, containing a large number of

check-ins of users at different venues from December 2011 to April 2012. This dataset

was collected by [60] and is widely used for evaluating next point-of-interest prediction

methods. Note that the setting here is to compare all methods using collaborative data

exclusively; making use of side signals like geographical data is beyond the scope here.

8http://jmcauley.ucsd.edu/data/amazon/
9https://archive.org/details/201309 foursquare dataset umn

http://jmcauley.ucsd.edu/data/amazon/
https://archive.org/details/201309_foursquare_dataset_umn
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User Sequence                                                    Recommendation

(a) Sample sessions of users with the largest wu (i.e., strong short-term consistency)

(b) Sample sessions of users with the least wu (i.e., weak short-term consistency)

Figure 5.6: Demonstration of click sessions with different lengths (on the left) and the
corresponding recommendations made by Vista (on the right).
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Table 5.4: Dataset Statistics (in ascending order of item density).

Dataset #users #items #actions avg. #actions
/user

avg. #actions
/item

Automotive 34,316 40,287 183,573 5.35 4.56
Google 350,811 505,516 2,591,026 7.39 5.13
Office 16,716 22,357 128,070 7.66 5.73
Toys 57,617 69,147 410,920 7.13 5.94
Clothing 184,050 174,484 1,068,972 5.81 6.13
Cellphone 68,330 60,083 429,231 6.28 7.14
Games 31,013 23,715 287,107 9.26 12.11
Electronics 253,996 145,199 2,109,879 8.31 14.53
Foursquare 43,110 13,335 306,553 7.11 22.99
Total 1,039,959 1,054,123 7,515,331 - -

Google Local. The last dataset is from Google.com which contains 11,453,845

reviews and ratings from 4,567,431 users on 3,116,785 local businesses. There are as

many as 48,013 categories of local businesses distributed over five continents, ranging

from restaurants, hotels, parks, shopping malls, movie theaters, schools, military re-

cruiting offices, bird control, mediation services (etc.). The vast vocabulary of items,

variability, and data sparsity make it a challenging dataset to examine the effectiveness of

a model.

For each of the above datasets, we discard users and items with fewer than 5

associated actions in the system. In cases where star-ratings are available, we take all of

them as users’ positive feedback, since we are dealing with implicit feedback settings

and care about purchases/check-in actions (etc.) rather than the specific ratings. Statistics

of our datasets (after pre-processing) are shown in Table 5.4.

Performance and Quantitative Analysis

Results are collated in Table 5.5. Due to the sparsity of the datasets in consid-

eration, the number of dimensions K of all latent vectors in all cases is set to 10 for
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simplicity. The main findings from this table are summarized as follows:

1. BPR-MF, FISM and FMC achieve considerably better results than the popularity-

based baseline in most cases, in spite of modeling personalization and sequential

patterns in isolation. This means that uncovering the underlying user-item and

item-item relationships is key to making meaningful recommendations.

2. BPR-MF and FISM are two powerful methods to model users’ personalized prefer-

ences, i.e., long-term dynamics. Although ultimately they all factorize a matrix at

their core, they differ significantly both in terms of the rationales they follow and

performance they achieve. According to our experimental results, FISM exhibits

significant improvements over BPR-MF mainly on sparse datasets in terms of AUC,

which makes it a reasonable building-block for our sequential model.

3. FPMC and HRM are essentially combinations of MF and FMC. FPMC beats

BPR-MF and FMC mainly on relatively dense datasets like Toys and Foursquare,

and loses on sparse datasets—possibly due to the large number of parameters it

introduces. From Table 5.5 we can see that HRM achieves strong results amongst

all baselines in most cases, presumably from the aggregation operations.

4. PRME replaces the inner products in FPMC by distance functions. It beats FPMC

in most cases, though loses to HRM due to different modeling strategies. Note

that like FPMC, PRME turns out to be quite strong at handling dense datasets like

Foursquare. We speculate that the two models could benefit from the considerable

amount of additional parameters they use when data is dense.

5. By fusing FISM, which is strong at modeling long-term dynamics on sparse

data, and FMC, Fossil enhances the performance of FISM by as much as 2.5%

and 133.9% in terms of AUC and Hit@50 respectively. Comparing Fossil with
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Figure 5.7: Performance comparison of different methods with number of training iter-
ations on Automotive and Foursquare, representing sparse and dense data respectively.

FPMC/HRM/PRME, we found that Fossil beats them all on almost all datasets,

with the average improvement of 1.2% (AUC) and 10.3% (Hit@50) over the best

baseline performances.

6. TransRec outperforms all baselines in all cases (on average 1.6% in terms of AUC

and 14.8% in terms of Hit@50). The improvements seem to be correlated with

variability. TransRec achieves large improvements (32.54% and 24.71% in terms of

Hit@50) on Google Local and Clothing, two datasets with the largest vocabularies

of items in our collection. Taking Google Local as an example, it includes all

kinds of restaurants, bars, shops (etc.) as well as a global user base, which requires

the ability to handle the vast variability. On the other hand, TransRec beats all

baselines especially on comparatively sparser datasets like Automotive and Google,

which shows its ability to tackle cold-start data. In addition, we find that (squared)

L2 distance typically outperforms L1 distance, though the latter also beats baselines

in most cases.
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Convergence

In Figure 5.7 we demonstrate (test) AUCs with increasing training iterations on

two datasets—Automotive and Foursquare, representing sparse and dense data respec-

tively. Simple baselines like FMC and BPR-MF converge faster than other methods on

sparse datasets, presumably due to the relatively simpler dynamics they capture. FPMC

also converges fast on such datasets as a result of its tendency to overfit (recall that we

terminate once no further improvements are achieved on the validation set). On dense

datasets like Foursquare, all methods tend to converge at comparable speeds due to the

need to unravel denser relationships amongst different entities.

Visualizing Fossil

Here we visualize the learned Fossil model and qualitatively analyze our findings.

We choose to visualize the results achieved on ‘Clothing, Shoes and Jewelry’ dataset

from Amazon.com due to its large size, significant variability, and the convenience to

demonstrate user actions. The model we use for visualization is the first-order Fossil

model trained on the dataset with K set to 10.

First, we visualize the transition among items to answer questions like ‘What

kind of outfits are compatible with this outdoor cap?’. Fossil encodes this dynamic by the

inner product of ~pi and~q j where i is the item already consumed and j the item considered

for recommendation. Quantitatively, given a ‘query’ item i at the current time step, items

that are most likely to appear at next step are computed according to

argmax
j∈I

〈~pi,~q j〉. (5.19)

For demonstration, we take a few samples from the above dataset, as shown on

the left of the separator in Figure 5.8. Next, we use them as queries to get corresponding
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Figure 5.8: Demonstration of item transitions learned by Fossil. On the left are a
few sampled items (or queries) from the Amazon Clothing dataset. On the right are
the top-ranked items (from the same dataset) that each query is likely to transition to,
according to argmax j∈I 〈~pquery,~q j〉.

recommendations according to Eq. (5.19). Items retrieved for each query are shown on

the right. We make two observations from this figure. On the one hand, although the

model is unaware of the identity of items, it learns the underlying homogeneity correctly,

as we see from the first row (i.e., the Star Wars theme) and last three rows (i.e., watches,

shirts and jewelry respectively). On the other hand, items from different subcategories

are surfaced to generate compatible outfits, e.g. rows 2 and 5.

In Figure 5.9 we demonstrate recommendations made for a few users. Here the
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User Sequence                                  Recommendation

Figure 5.9: Demonstration of recommendations made by Fossil to users with large w0
u

values, indicating strong ‘sequential consistency.’

users are sampled from those with the largest wu
0 and at least 5 actions in the training set.

The threshold is used so that wu
0 is forced to capture the sequential consistency of user u

to some degree, instead of merely the user sparsity involved. From Figure 5.9 we can

observe a certain amount of such consistency within each sequence. E.g., jewelry (row

1), wearables for boys (row 4) and business men (row 5).

In conclusion, it is precisely the ability to carefully accommodate multiple types

of dynamics that makes Fossil a successful method to address the sequential recommen-

dation task.
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User Sequence                                 Recommendation

Figure 5.10: Demonstration of recommendations made by TransRec to a random
sample of users on Amazon Electronics data.
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Visualizing TransRec

In Figure 5.10 we demonstrate some recommendations made by TransRec (K =

10) on Electronics data from Amazon.com. We randomly sample a few users from

the datasets and show their historical sequences on the left, and demonstrate the top-1

recommendation on the right. As we can see from these examples, TransRec can capture

long-term dynamics successfully. For example, TransRec recommends a tripod to the

first user who appears to be a photographer. The last user bought multiple headphones

and similar items in history; TransRec recommends new headphones after the purchase of

an iPod accessory. In addition, TransRec also captures short-term dynamics. For instance,

it recommends a desktop case to the fifth user after the purchase of a motherboard.

Similarly, the sixth user is recommended a HDTV after recently purchasing a home

theatre receiver/speaker.

5.7 Conclusion

In this chapter, we built three new algorithms for large-scale sequential recom-

mendation. The first algorithm, Vista, is designed for predicting personalized sequential

behavior toward artistic items on a popular social art website, Behance.net. We found

that our visually- and socially-aware Markov Chains are particularly effective at tackling

multiple types of signals on a large scale, on both click and appreciate data. Additionally,

our techniques for speeding up the training procedure as well as modeling high-order

Markov Chains are successful and lead to improved performance.

The other two algorithms, Fossil and TransRec, are designed for the standard/general

sequential recommendation setting. We found that by modeling user’s transitioning be-

havior in a ‘unified’ manner, our two algorithms both achieved state-of-the-art results on

a series of large, real-world datasets.
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In addition, we visualized our learned models and observed that they capture

sequential and personalized dynamics in a reasonable way, along with the favorable

quantitative results achieved.
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Chapter 6

Modeling Relational Signals for

Item-to-item Recommendation

6.1 Introduction

Identifying and understanding relationships between items is a key component

of any modern recommender system. Knowing which items are ‘similar,’ or which

otherwise may be substitutable or complementary, is key to building systems that can

understand a user’s context, recommend alternative items from the same style [38], or

generate bundles of items that are compatible [62, 77, 130].

Typically, identifying these relationships means defining (or otherwise learning

from training data) an appropriate distance or similarity measure between items. This is

appropriate when the goal is to learn some notion of ‘equivalence’ between items, e.g. in

order to recommend an item that may be a natural alternative to the one currently being

considered. However, identifying such a similarity measure may be insufficient when

there is substantial heterogeneity between the items being considered. For example, the

characteristics that make clothing items, electronic components, or even romantic partners

92
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compatible exhibit substantial heterogeneity: for a pair of such items to be compatible

they should be systematically similar in some ways, but systematically different in others.

Recently, a line of work has aimed to model such heterogeneous relationships,

e.g. to model co-purchasing behavior between products based on their visual appearance

or textual descriptions [75, 77, 118]. In spite of the substantial heterogeneity in the data

used for training (a large dataset of co-purchase ‘dyads’ from Amazon.com) and the

complexity of the models used, these works ultimately follow an established metric-

learning paradigm: (1) Collect a large dataset of related (and unrelated) items; (2) Propose

a parameterized similarity function; and (3) Train the parameterized function such that

related items are more similar than non-related items. Such metric-learning approaches

can be incredibly flexible and powerful, and have been used to identify similarities

between items ranging from music [108] to members of the same tribe [20]. Such

methods work to some extent even in the presence of heterogeneity, since they learn to

‘ignore’ dimensions where similarity should not be preserved. But we argue that ignoring

such dimensions discards valuable information that ought to be used for prediction and

recommendation.

In this chapter, we propose new models and algorithms to identify relationships

amongst items for item-to-item recommendation. In particular, we relax the metricity

assumption present in recent work, by proposing more flexible notions of ‘relatedness’

while maintaining the same levels of speed and scalability. Specifically, we hope to

overcome the following limitations of previous work:

1. The similarity measures learned by previous approaches ultimately project cate-

gories as clusters into a metric space (albeit potentially via a complex embedding),

since an item is inherently more similar to those from the same category than others

(as we show later in Figure 6.5). This means that cross-category recommendations

can only be made by exploiting an explicit category tree (e.g. ‘find the shoes
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nearest to these jeans’). Not only do such approaches require explicit category

labels, but they are also subject to any noise or deficiencies in the category data.

Our method can make cross-category recommendations without any dependence

on the presence (or quality) of explicit category information.

2. Other assumptions made by metric learning approaches are also too strict for

recommendation: an item is not necessarily compatible with itself (identity), nor

are the types of relationships we want to learn necessarily symmetric (e.g. a spare

battery is a good add-on item for a laptop, but not vice-versa). Other assumptions

hidden in previous approaches (such as transitivity) may also be too strict, e.g. an

iPhone is dissimilar from a Surface, though both are related to an iPad. Our

approach is flexible enough to capture such complex and non-metric relationships.

3. Previous approaches learned a single ‘global’ (albeit complex) notion of relatedness,

neglecting any ‘local’ notions that could be equally important. In contrast, we

capture multiple (and possibly competing) notions of relatedness simultaneously.

This is also key to generating diverse sets of recommendations. E.g. a shirt may be

compatible with (1) a similar shirt from a different brand, (2) a similar shirt with a

different color, (3) a complementary pair of pants, or (4) a complementary pair of

shoes. By learning relatedness as a mixture of multiple competing notions, we can

handle diverse sets of recommendations naturally.

We propose a novel method, Mixtures of Non-Metric Embeddings for Recom-

mendation, or Monomer for short, that addresses the above limitations. We demonstrate

our idea in Figure 6.1 (we later show an example on real data in Figure 6.2). Here we

embed the first item x (the query) into one space (the ‘anchor space’), and embed its

potential match y into a series of N additional spaces. Now, the relatedness between x

and y is measured in terms of multiple notions, each captured by one of the N spaces
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...

 Visual Space 0 (anchor)  Visual Space 1    Visual Space 2           Visual Space N

                                                                                         

 point
reference

Figure 6.1: Illustration of the high-level ideas of Monomer. The query item (a t-shirt)
is embedded into visual space 0 (the anchor space) whose position we superimpose
into the other spaces. The potential match (a shoe) is embedded to N visual spaces
and within each of them Euclidean distance between the pair is computed. Finally,
the mixtures-of-experts framework is adopted to model the relative importance of the
different components w.r.t. the given query. We show this on a real example in Figure
6.2.

involved. Furthermore, the N spaces are weighted according to a mixtures-of-experts

type framework, determining to what extent each of the N embeddings is ‘relevant’ to a

particular query.

Note in particular that the method described in Figure 6.1 can learn non-metric

relationships since we are measuring the distance between two different embeddings.

The learned relationships are not necessarily symmetric, nor do identity and transitivity

necessarily hold; on the other hand the model is flexible enough such that a metric

embedding could be learned if that was what the data supported.

6.1.1 Our Contributions

For clarity, our contributions are summarized as follows:

1. We propose a new scalable method, Monomer, for heterogeneous item-to-item

recommendation. The presented mixtures-of-embeddings framework allows it to

learn non-metric relationships, thereby overcoming multiple limitations present in

existing work.
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2. We demonstrate quantitatively that Monomer is effective at learning notions of

‘relatedness’ from heterogeneous dyads of co-purchases from Amazon.com, and

in particular that it does so more accurately than recent approaches based on

metric/similarity learning.

3. We qualitatively show that Monomer can effectively learn multiple, semantically

complex notions of ‘relatedness,’ and that these can be useful to generate rich,

heterogeneous, and diverse sets of recommendations.

6.2 Preliminaries

6.2.1 Visual Features

In this chapter, we mainly consider the case of using high-level visual features

for relationship prediction. This is particularly useful for clothing recommendation

(for example), a natural domain in which learning heterogeneous relationships between

items across categories is particularly important. Our visual features are extracted from

a Convolutional Neural Network pre-trained on 1.2 million ImageNet (ILSVRC2010)

images, the same one we previously used in Chapter 4. In particular, we used the Caffe

reference model [44], which has 5 convolutional layers followed by 3 fully-connected

layers, to extract F = 4,096 dimensional visual features from the second fully-connected

layer (i.e., FC7).

Note however that our proposed method is agnostic to the type of features used,

and as we show later can handle other types of features (e.g. text) in order to address

more general settings.
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6.2.2 Mahalanobis Transform

In order to model subtle notions like ‘compatibility’ upon the raw visual features,

we need expressive transformations that are capable of relating feature dimensions to

explain the relationships between pairs of items. To this end, we follow the approach from

[77]: there, a Mahalanobis Distance is used to measure the distance (or ‘dissimilarity’)

between items within the feature space according to the knowledge of how different

feature dimensions relate to each other. Let M denote the matrix that parameterizes the

Mahalanobis Distance, then the distance between an item pair (x,y) is defined by

dM(x,y) = (~fx−~fy)
T M(~fx−~fy), (6.1)

where ~fx and ~fy are the features vectors of x and y respectively. Although such an

approach defines a distance function (and therefore suffers from the issues we are hoping

to address), we use this method as a building block and ultimately relax its limitations.

6.2.3 Mixtures-of-Experts

Mixtures of Experts (MoEs) are a classical machine learning method to aggregate

the predictions of a set of (weak) learners, known as experts [40]. What is particu-

larly elegant about this approach is that it allows each learner to focus on classifying

instances about which it is relevant (i.e., expert), without being penalized for making

misclassifications elsewhere.

For regression tasks such as the one we consider, each learner (denoted by l)

outputs a prediction value Predl(X) for the given input X . These predictions are then

aggregated to generate the final prediction by associating weighted ‘confidence’ scores

with each learner. Here we are interested in probabilistically modeling such confidences
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to be proportional to the expertise of the learners:

Pred(X)︸ ︷︷ ︸
final prediction

= ∑
l

confidence in l’s expertise︷ ︸︸ ︷
Prob(l|X) · Predl(X)︸ ︷︷ ︸

l’s prediction

. (6.2)

In our model, each expert shall correspond to a single notion of relatedness

between items. Thus, for a given pair of items that are potentially related, we can

determine (1) which notions of relatedness are relevant for these items (Prob(l|X));

and (2) whether or not they are related according to that notion (Predl(X)). These two

functions are learned jointly, such that the model automatically uncovers multiple notions

of relatedness simultaneously.

6.3 Problem Formulation

Formally, we are given a dataset D comprising a large corpus of items and the

pairwise relationships R between items from different subcategories, i.e., if (x,y) ∈ R

then (1) item x and y are related, and (2) x and y are not from the same subcategory (e.g.

a shirt and a matching pair of pants). We choose such cross-category recommendations

to highlight the ability of our model to generate recommendations between heteroge-

neous pairs of items. This matches the training instance selection approach from [118].

Additionally, a high-dimensional feature vector ~fx associated with each item x is also

provided (encoding e.g. its image or the text of its reviews). We seek a scalable method

to model such relationships with a set of parameterized transform functions d(x,y) such

that related items ((x,y) ∈ R ) are assigned higher probabilities than non-related ones

((x,y) /∈ R ).
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6.4 The Monomer Model

First we describe how Mahalanobis transforms have previously been applied to

this task, and can be used as a building block for this task, before describing our proposed

non-metric method.

6.4.1 Low-rank Mahalanobis Metric

Considering the high dimensionality of the visual features we are modeling

(feature dimension F = 4,096 in our case), learning a full rank positive semi-definite

matrix M as in Eq. (6.1) is neither computationally tractable for existing solvers nor

practical given the size of the dataset.

Recently it was shown in [77] that a low-rank approximation of a Mahalanobis

matrix works very well on visual datasets for the tasks considered here. Specifically, the

F×F Mahalanobis matrix is approximated by M≈ ET E, where E is an K×F matrix

and K� F . Then the distance between a pair (x,y) is calculated by

dE(x,y) = (~fx−~fy)
T ET E(~fx−~fy) = ||E~fx−E~fy||22. (6.3)

This can be viewed as embedding the high-dimensional feature space (F-d) into a much

lower-dimensional one (K-d) within which the squared Euclidean distance is measured.

Note that the low rank property reduces the number of model parameters and increases

the training efficiency significantly.

6.4.2 Multiple, Non-Metric Embeddings

There are two key limitations from using a low-rank Mahalanobis embedding

approach like the one above. First, it can capture only a single set of dimensions (or
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the ‘statistically dominant reason’) that determines whether two given items are related

or not. However, there might be multiple reasons relevant to the link discrimination

task in question. For example, a shirt and a pair of pants might go well together due

to complementary colors, compatible textures, or simply some common characteristics

they share (such as both having pockets/buttons, etc.). This drives us to use a group of

embeddings, parameterized by N matrices E1, . . . ,EN each with dimensionality K×F

for the prediction task, with each capturing a different set of factors or ‘reasons’ that

items may be related.

Another limitation of the single Mahalanobis embedding method, or more gen-

erally any metric-based method, is that it assumes that the closest neighbor of a given

item is always itself, which is inappropriate for our task of placing many different cate-

gories of items close to the target. To overcome this shortcoming, we propose to use an

anchor embedding (denoted by E0, again, with dimensionality K×F) to learn the feature

mappings in a non-metric manner.

In our model, E0 projects item x to a reference point E0~fx in the corresponding

space, referred to as the anchor space as it will be used as the basis for further comparisons.

Next, embeddings Ek (for k = 1,2, . . . ,N) map the potential match y and correspond to a

particular notion of relatedness, such that E0~fx will be close to Ek~fy (for some k) if x and

y are related.

That is, the predicted distance dk(x,y) by the k-th learner is

dk(x,y) = ||

x’s position in the anchor space︷︸︸︷
E0~fx − Ek~fy︸︷︷︸

y’s position in the k-th ‘pseudo’ space

||22. (6.4)

For clarity, we call the N spaces defined by Ek (k > 0) ‘pseudo spaces’ as all distance

calculations are still performed within one actual space, i.e., the anchor space.

The above definition supports learning directed relationships as the model is not
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required to be symmetric; but, it is flexible enough to learn symmetric (or even metric)

embeddings if such structures are exhibited by the data.

6.4.3 Probabilistic Mixtures of Embeddings

Now we introduce how we aggregate the predictions from different embeddings.

Given an item pair (x,y), we build our model upon the MoEs framework to learn a

probabilistic gating function to ‘switch’ among different embeddings. Considering our

asymmetric setting where the query item x in the pair is used as the reference point, we

model the probability that the k-th embedding is used for the given pair (x,y) with a

softmax formulation:

Prob
(
k|(x,y)︸︷︷︸

the given item pair

)
=

only depends on x︷ ︸︸ ︷
Prob(k|x) =

exp(Uk,:~fx)

∑i exp(Ui,:~fx)
, (6.5)

where U is a newly-introduced N×F parameter matrix with Uk,: being its k-th row.

Briefly, the idea is to compute the probability distribution over the N learners given the

characteristics of the ‘pivot’ item x. Note that our formulation is efficient as it only

introduces a small number of parameters given that N is usually a small number (e.g. on

the order of 4 or 5 in our experiments).

Finally, our model calculates the distance of an item pair (x,y) by the probabilistic

expectation:

d(x,y) =
N

∑
k=1

Prob
(
k|(x,y)

)
·dk(x,y). (6.6)

Note that our ‘distance’ definition is a non-metric method as it only preserves the

non-negativity and is relaxing the symmetry, identity, and triangle inequality properties.
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6.4.4 Learning the Model

With the distance function defined above, we model the probability that a pair is

related by a shifted sigmoid function (in a way similar to [77]):

Prob
(
(x,y) ∈ R

)
= σc

(
−d(x,y)

)
=

1
1+ exp

(
d(x,y)− c

) . (6.7)

Next, we need to randomly select a negative set of relationships R̄ . To this end, we use a

procedure from [80] which randomly rewires the positive set in such a way that (1) the

degree sequence of items is preserved and (2) each negative pair consists of items from

two categories.

Then we proceed by fitting the parameters by maximizing the log-likelihood of

the training corpus:

Θ̂ = argmax
Θ

L(R , R̄ |Θ) = ∑
(x,y)∈R

log
(

Prob
(
(x,y) ∈ R

))
+ ∑

(x,y)∈R̄
log
(

1−Prob
(
(x,y) ∈ R

))
−Ω(Θ),

(6.8)

where Θ is the full parameter set {E0,E1, . . . ,EN ,U,c}, and Ω(Θ) is an L2 regularizer.

The total number of parameters is F× (N×K +K +N)+1. Since N and K are small

numbers (see Section 6.5), the log-likelihood as well as the derivatives can be computed

efficiently.

Monomer is learned with L-BFGS [66], a quasi-Newton method for non-linear

optimization of problems with a large number of variables. Our log-likelihood and the

full derivative computations can be naı̈vely parallelized over all training pairs (x,y) ∈

R ∪ R̄ . This means the optimization can easily benefit from multi-threading and even

parallelization across multiple machines (e.g. [18]).
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6.4.5 Scalability Analysis

In Monomer, each embedding matrix has K×F parameters, which means there

are in total F×K× (N+1) embedding parameters. Since Monomer does not need to use

more embedding parameters to outperform the Low-rank Mahalanobis Transform (LMT)

method that uses only a single embedding matrix (as we show later in Section 6.5), we

focus on comparing Monomer and LMT under the same total number of embedding

parameters, in terms of the amount of multiplications involved.

For complete clarity, we denote the embedding dimension of LMT and Monomer

by K′ and K respectively (F ×K′ = F ×K× (N + 1)). For each training pair (x,y),

LMT takes O(F ×K′) to compute the distance between them and the corresponding

derivatives. While for Monomer, it takes O(F ×K′) to project x and y to the multiple

spaces. Afterwards the distance will be calculated in O(N×K)+O(N×F), where the

former is for computing N distance components and the latter is spent on the probabilistic

weights. In total, it takes O(F×K′)+O(N×K)+O(N×F) = O(F×K′) for Monomer

to finish distance computation. Likewise, it’s easy to verify that the corresponding

derivatives can also be computed in O(F×K′) time. To sum up, training Monomer and

LMT will have the same time complexity when using the same amount of embedding

parameters.

6.5 Experiments and Analyses

6.5.1 Datasets and Statistics

To fully evaluate the ability of Monomer to handle real-world tasks, we want

to experiment on the largest dataset available. To this end, we adopt the dataset from

Amazon.com recently introduced by [77]. We focus on five large top-level categories
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Table 6.1: Statistics of a few representative categories from the Amazon ‘Clothing,
Shoes, and Jewelry’ dataset (using visual features).

Dataset #subcategories #items
Relationship (#edges)

co-purchase co-browsing

Men’s Clothing 56 306,215 1,075,547 635,610
Women’s Clothing 116 659,566 1,923,952 1,691,121
Boys’s Clothing 41 42,156 169,503 75,689
Girls’s Clothing 44 56,593 191,964 97,881
Baby’s Clothing 6 36,588 96,253 95,784

Total 263 1,101,118 3,457,219 2,596,085

under the category tree rooted with ‘Clothing, Shoes, and Jewelry,’ i.e., Men’s, Women’s,

Boys’, Girls’, and Baby’s Clothing & Accessories. Statistics are shown in Table 6.1.

For each of the above categories, we experiment with two important types of

relationships: ‘users who bought x also bought y,’ and ‘users who viewed x also viewed y,’

denoted by ‘co-purchase’ and ‘co-browsing’ respectively for brevity. Such relationships

are a key source of data to learn from in order to recommend items of potential interests

to customers. Ground-truth for these relationships is also introduced in [77], and are

originally derived from co-purchase and co-browsing data from Amazon.com.

6.5.2 Evaluation Methodology

Recall that our objective is to learn heterogeneous relationships so as to support

cross-category recommendation. Across the entire Clothing, Shoes, and Jewelry dataset,

such relationships are noisy, sparse, and not always meaningful. To address issues of

noise and sparsity to some extent, it is sensible to focus on the relationships within the

scope of a particular top-level category, e.g. Women’s Clothing, Men’s Clothing etc. We

then consider relationships between ‘2nd-level’ categories, e.g. women’s shirts, women’s

shoes, etc.

In summary, our evaluation protocol is as follows:



105

1. A single experiment consists of a specific category (e.g. Men’s Clothing) and a

graph type (e.g. co-purchase).

2. For each experiment, the relationships (R ) and a random sample of non-relationships

(R̄ , see Section 6.4.4) are pairs of items connecting different subcategories of the

category we are experimenting on. Note that |R |= |R̄ | and they share the same

distribution over the items.

3. For each experiment, we use an 80/10/10 random split of the dataset (R ∪ R̄ ) with

the training set being at most two million pairs. Our goal is then to predict the

relationships and non-relationships correctly, i.e., link prediction.

4. For all methods, the validation set is used for tuning the regularization hyperpa-

rameters, and finally the learned models are evaluated on the test set in terms of

error/misclassification rate.

For example, one experiment is to predict co-purchase relationships for Men’s

Clothing. There are 56 subcategories under Men’s Clothing (see Table 6.1), so our goal is

to distinguish edges from non-edges connecting items from among these subcategories.

All experiments were performed on a single machine with 64GB memory and

8 cores. Our largest experiment required around 40 hours to train, though most were

completed in a few hours.

6.5.3 Comparison Methods

1. Weighted Nearest Neighbor (WNN): uses a weighted Euclidean distance in the

raw feature space to measure similarity between items:

d~w(x,y) = ‖~w◦ (~fx−~fy)‖2
2.
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Here ◦ is the Hadamard product and ~w is a weighting vector learned from the data.

2. Category Tree (CT): computes a matrix of co-occurrences between subcategories

from the training data. Then a pair (x,y) is predicted to be positive if the subcate-

gory of y is one of the top 50% most commonly connected subcategories to the

subcategory of x.

3. Low-rank Mahalanobis Transform (LMT): is a state-of-the-art method for

learning visual similarities among different items (possibly between categories) on

large-scale datasets [77]. LMT learns a single low-rank Mahalanobis embedding

matrix to embed all items into a low-dimensional space (see Section 6.4.1). Then

it predicts the links between a given pair based on the Euclidean distance within

the embedded space (i.e., Eq. (6.3)).

4. Mixtures of Non-metric Embeddings (Monomer): Our method. It learns a

mixture of low-rank transforms/embeddings to uncover groups of underlying

reasons that explain the relationships between items. It measures the distance (or

dissimilarity) between items in a non-metric manner (i.e., Eq. (6.6)).

Ultimately, our baselines are designed to demonstrate that (1) the raw feature

space is not directly suitable for learning the notions of relationships (i.e., WNN);

(2) using category metadata directly and not using other features (i.e., CT) results in

relatively poor performance; and that (3) our proposed model is an improvement over the

state-of-the-art method on our task (i.e., LMT).

6.5.4 Performance and Quantitative Analysis

Error rates on the test set for all experiments are reported in Table 6.2. To perform

a fair comparison between LMT and Monomer, the following setting is used for all

experiments:
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Table 6.2: Test errors of the link prediction task (i.e., predicting co-purchase and
co-browsing relationships between items) using visual features (4,096-d) on clothing
categories of the Amazon dataset. The best performing method in each case is boldfaced.
Lower is better.

Dataset Relationship
(a) (b) (c) (d) % Imprv.

WNN CT LMT Monomer (d) vs. (c)

Men’s Clothing
co-purchase 34.95% 47.71% 9.20% 6.48% 30%
co-browsing 18.98% 47.40% 6.78% 6.58% 3%

Women’s Clothing
co-purchase 30.50% 49.73% 11.52% 7.87% 32%
co-browsing 20.50% 49.48% 7.90% 7.34% 7%

Boys’s Clothing
co-purchase 31.16% 46.02% 8.80% 5.71% 35%
co-browsing 21.52% 46.22% 6.72% 5.35% 20%

Girls’s Clothing
co-purchase 31.10% 47.63% 8.33% 5.78% 31%
co-browsing 22.36% 46.43% 6.46% 5.62% 13%

Baby’s Clothing
co-purchase 37.26% 48.01% 12.48% 7.94% 36%
co-browsing 30.89% 47.72% 11.88% 9.25% 22%

Avg. 27.92% 47.64% 9.00% 6.79% 22.9%

1. It has been shown by [77] that LMT can achieve better accuracy when using a

reasonably large number of embedding dimensions (K). Therefore in all cases

we choose K large enough such that LMT obtains the best possible (validation)

performance.

2. In all cases we try to compare LMT and Monomer under the same total number of

model parameters. For example, if we set the number of dimensions K to 100 for

LMT, then a fair setting for Monomer would be K = 20 and N = 4. This way both

of them are using 100F embedding parameters.1

For experiments on co-purchase relationships, LMT uses K = 100 dimensions and

Monomer uses K = 20 and N = 4. While for experiments on co-browsing relationships,

K is set to 50 for LMT and K = 10 and N = 4 for Monomer. Note that co-browsing

relationships are almost twice as sparse as co-purchase relationships and thus a model
1Recall that N is the number of embeddings (excluding the anchor embedding).
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with fewer parameters performed better at validation time (as shown in Table 6.1). We

make a few observations to explain and understand our findings as follows:

1. WNN is particularly inaccurate for our task. We also observed relatively high

training errors with this method for most experiments. This confirms our conjecture

that raw similarity is inappropriate for our task, and that in order to learn the

relationships across (sub)categories, some sort of expressive transforms are needed

for manipulating the raw features.

2. The counting method (CT) performs considerably worse than other methods. This

reveals that the predictive information used by the other models goes beyond

the categories of the products, i.e., that the image-based models are learning

relationships between finer-grained attributes.

3. Note that all models perform better at predicting co-browsing than co-purchase

relationships. This is reasonable since intuitively items that are “also viewed”

indeed tend to share more common characteristics compared to the “also bought”

scenario. The greater heterogeneity between training pairs in the latter task makes

it comparatively harder to address.

4. Monomer outperforms LMT significantly for all experiments, especially for the

harder task of predicting co-purchase dyads.

6.5.5 Visualization and Qualitative Analysis

Visual Embeddings

We proceed by demonstrating the embeddings learned from our largest dataset,

Women’s Clothing, by Monomer. We take the same model trained on co-purchase

relationships from the previous subsection and visualize it in Figure 6.2. In this figure,
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Visual Space 0 (anchor)       Visual Space 1                Visual Space 2                 Visual Space 3               Visual Space 4

Query Image

nearest neighbors of the query in each “pseudo” visual space

Figure 6.2: Visualization of Monomer trained on Women’s Clothing for co-purchase
prediction. Each visual space is demonstrated by a 2-d t-SNE grid view [117] (each cell
randomly selects one image in overlapping cases). According to our distance function
(i.e., Eq. (6.6)), Monomer recommends the nearest neighbors of the query within each
visual space, based on the associated reasons learned from data. Note that each visual
space exhibits different category clusters at the query image’s location, allowing us to
recommend diverse sets of items from the most closely-related categories.

we show each of the 5 visual spaces by a 2-d visualization with t-SNE [117]. Images are

a random sample of size 50,000 from the Women’s Clothing dataset and projected (using

the learned embedding matrices) to each visual space to demonstrate the underlying

structure.

As analyzed in Section 6.4, each embedding (i.e., learner) is capturing a specific

notion of relatedness that explains the relationships of pairs of items in the corpus. In

other words, it means that the nearest neighbors in each of the N pseudo spaces should be

related to the query according to the specific notion captured. Therefore those neighbors

should be recommended as potential matches to the query item, as shown by the example

in Figure 6.2. For the query image (a t-shirt) in this example, Monomer recommends

bundles of similar t-shirts, pants, shoes, and accessories (watches etc.) that resemble

the query in terms of patterns (e.g. space 1), colors (e.g. space 2), and more generally

‘styles’ (e.g. space 3 and 4).2 Such matching between a query image and nearby items in

2The second patch actually contains a few men’s clothing items due to data deficiency—an intrinsic
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alternate spaces directly facilitates the task of recommending visually consistent outfits,

where modeling and understanding the visual compatibility across categories is essential.

Visual Dimensions

Next we demonstrate the visual dimensions learned by Monomer, i.e., what kind

of characteristics the model is capturing to explain the relationships among items. Here

we visualize these dimensions by showing items that exhibit maximal values for each

dimension. In other words, we select items according to

argmax
x

Ek,:~fx,

where Ek,: is the k-th row of the embedding matrix E, corresponding to a visual dimension.

Intuitively, this informs us of items that are most representative of a particular visual

aspect discovered by the model.

We trained Monomer on Men’s Clothing (K = 10, N = 4), predicting co-purchase

relationships. Due to limited space, we randomly select one embedding and demonstrate

its 10 visual dimensions in Figure 6.3. From the figure we can see that (1) Monomer seems

to uncover meaningful visual dimensions, each of which highlights certain fine-grained

item types (e.g. plaid tees and jeans in row 1 and 5); (2) human notions seem to have been

captured, e.g. casual versus formal in rows 2 and 9; and (3) subtle differences between

different characteristics can be distinguished (e.g. tees in rows 2 and 6). Monomer’s

ability to discover and model the correlations among visual characteristics explains its

success.

problem suffered by Amazon.com.
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Figure 6.3: Demonstration of the 10 visual dimensions of one (randomly selected)
visual space learned by Monomer on Men’s Clothing for co-purchase prediction (K =
10, N = 4). Each row shows the top ranked items for a particular dimension i, i.e.,
argmaxx Ek,:~fx where Ek,: is the k-th row of the corresponding embedding matrix E.

Visual Recommendation and Analysis

Beyond achieving high prediction accuracy, we want to test the ability of Monomer

to generate useful recommendations. Again, we mainly compare to the state-of-the-art

metric-based method, LMT. Both methods are able to learn relationships from the data,

so one common setting is to retrieve ‘similar’ items (i.e., maximum probability of being
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related) to a given query.

First we train LMT and Monomer on Women’s Clothing to predict co-purchase

relationships, under the same setting as in Table 6.2. This way the two models will

learn their own similarity (or distance) functions from the data. Next, from Women’s

Clothing we randomly select a few query items, for each of which LMT and Monomer

will retrieve its highest-probability links according to their own similarity functions.

Figure 6.4 demonstrates such queries and the retrieved connections (in all cases ranked

in decreasing order in terms of the probability of the link) by the two models.

As shown in Figure 6.4, the metric-based method (LMT) tends to recommend

items that are very similar to the query, even though for this task it is trained to predict

complementary relationships (i.e., co-purchase). Indeed it is very difficult for a metric-

based method to project items from different subcategories to be nearer than items from

the same category; presumably such methods are limited by their underlying assumption

that the most similar item to a given query is always itself. In [77] this was addressed to

some extent by making explicit use of the category information at test time (e.g. ‘find

the shirt closest to this pair of shoes’), though our model is able to make diverse sets of

recommendations without such a dependence on explicit category information.

Recall that LMT learns an embedding within which the Euclidean distance is

used to distinguish relationships from non-relationships. Visualizing such spaces can

help understand the behavior of LMT. Again we uniformly sample 10,000 items from

the dataset and use t-SNE [117] to visualize their positions in the embedded space. We

are particularly interested in the distribution of different subcategories of items over the

space. Therefore we assign a unique color to each subcategory in the dataset. Figure 6.5

shows results on two representative datasets, Men’s and Women’s Clothing.

From Figure 6.5 we find that subcategories of items tend to become ‘clusters’ in

the embedded space. This can be problematic especially for recommending related items
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Figure 6.4: Comparison between the state-of-the-art metric-based method, LMT, and
our non-metric method Monomer. On the left are a few query images, for each of
which we show its nearest neighbors retrieved by LMT (above the horizontal line)
and Monomer (below the horizontal line) respectively. Both models were trained on
Women’s Clothing for co-purchase prediction (using the same setting as in Table 6.2).
All query images and all neighbors are from Women’s Clothing.
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(a) Amazon Men’s Clothing (b) Amazon Women’s Clothing

Figure 6.5: Demonstration of the distribution of different subcategories in the 100-d
space learned by LMT [77]. For visualization, we use t-SNE [117] to further embed
this space into 2-d. In each subgraph, a color represents a specific subcategory within
the corresponding dataset. The main finding is that LMT tends to project subcategories
to be clusters in the embedded space, which may cause a ‘limited coverage’ problem
for the recommendation task.

across subcategories:

1. From a recommendation perspective, there will be a limited coverage issue because

given a query LMT tends to recommend only those items on the boundaries of the

clusters. There is no way that items located near the center of a cluster will ever be

recommended, since the closest item outside the query’s own category cluster will

be on the fringe of a different category cluster.

2. Recommendations will suffer from mislabeling issues. Note that LMT relies

heavily on the taxonomy metadata at test time to filter out items from the same

subcategory as the query. However, even a tiny number of mislabeled items in the

dataset can poison recommendations, and certainly some such examples exist in

the Amazon dataset [118]. Unexpected items may appear on the recommendation

list when there are mislabeled items that actually come from the same subcategory

as the query.
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Table 6.3: Statistics of a variety of top-level categories from Amazon.com.

Dataset #subcategories #items
Relationship (#edges)

co-purchase co-browsing

Electronics 306 412,082 1,654,552 718,361
Automotive 178 312,642 959,353 1,298,774
Video Games 16 49,801 314,124 54,559
Movies & TV 2 199,737 648,256 49,924
Office Products 245 127,054 448,720 370,630
Home & Kitchen 81 393,781 560,574 960,925
Cell Phones 28 317,965 867,418 225,785

Total 856 1,813,062 5,452,997 3,678,958

Note that Monomer does not suffer from either of above issues since it has

already successfully blended different subcategories, as shown by the nearest neighbors

in Figure 6.4.

6.6 Learning Compatibility from Textual Features

In previous sections, we have shown that Monomer not only performs very well

on link prediction tasks but also that it recommends highly diverse sets of items. However,

above we only considered scenarios in which relationships like co-purchasing can be

predicted from visual features. Following this, a natural question would be “Is Monomer

able to learn relationships from non-visual features and achieve similarly competitive

performance?”

To answer the above question, we perform further experiments on Bag-of-Words

(BoW) features extracted from the text of product reviews, which are also available in

the Amazon dataset. In particular, we experiment with a variety of top-level Amazon

categories, i.e., ‘Electronics,’ ‘Automotive,’ ‘Video Games,’ ‘Movies & TV,’ ‘Office

Products,’ ‘Home & Kitchen,’ and ‘Cell Phones & Accessories.’ Statistics of these

datasets are shown in Table 6.3.
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For each category (e.g. Electronics) we use the following procedure to generate

BoW features for all its items: (1) Remove stop-words and construct a dictionary. Our

dictionary consists of 5,000 nouns or adjectives or adjective-noun bigrams that appear

most frequently in the review corpus being considered. (2) For each item i, a document

doci is generated by bagging all the reviews it has received. (3) The 5,000-d BoW feature

vector ~fi of each item i is computed by normalizing the raw word counts of document

doci to sum to 1. (4) Items without any reviews attached are seen as invalid items and

are dropped from the dataset. In the following experiments, we use the same evaluation

protocol as in the previous visual feature experiments.

Latent Dirichlet Allocation + WNN (LDA): Here we add another baseline for

further comparison. This method first obtains 100 topics with LDA with a vocabulary

of size 5,000,3 and then uses WNN to distinguish relationships from non-relationships

within the 100-d topic space.

Table 6.4 summarizes the error rates on the test sets for all experiments. We

observe that (1) basic methods like WNN and LDA are not particularly accurate for the

task; (2) Monomer outperforms LMT considerably especially on the harder tasks, which

demonstrates its ability to handle textual features; and (3) the comparative hardness of

co-purchase over co-browsing prediction now seems to be dependent on the dataset in

question, presumably due to different semantics of the two link types, or different patterns

of customer behavior, among different categories.

6.7 Conclusion

In this chapter, we introduced Monomer, a method to model heterogeneous

relationships for item-to-item recommendation. We noted that existing methods for item-

3We adopted the implementation in Gensim (default parameters): https://radimrehurek.com/gensim/
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Table 6.4: Test errors of the link prediction task using BoW features (5,000-d) on a
variety of top-level categories of the Amazon dataset. For LMT, K = 100, while for
Monomer, K = 20 and N = 4. Lower is better.

Dataset Relationship
(a) (b) (c) (d) % Imprv.

WNN LDA LMT Monomer (d) vs. (c)

Electronics
co-purchase 37.58% 36.67% 13.73% 10.09% 26%
co-browsing 39.37% 26.60% 16.41% 9.44% 42%

Automotive
co-purchase 42.63% 38.57% 17.94% 14.09% 21%
co-browsing 42.44% 34.37% 21.15% 14.74% 30%

Video Games
co-purchase 44.31% 42.55% 14.43% 12.03% 17%
co-browsing 40.08% 33.22% 16.18% 11.29% 30%

Movies & TV
co-purchase 40.00% 23.51% 11.36% 9.47% 17%
co-browsing 42.01% 26.63% 15.12% 14.98% 1%

Office Products
co-purchase 41.35% 39.05% 18.53% 14.30% 23%
co-browsing 37.33% 28.13% 13.52% 9.72% 28%

Home & Kitchen
co-purchase 39.74% 31.91% 13.96% 12.40% 11%
co-browsing 36.49% 23.09% 13.97% 9.95% 29%

Cell Phones
co-purchase 43.35% 42.73% 29.44% 22.68% 23%
co-browsing 43.70% 34.30% 24.65% 16.04% 35%

Avg. 40.74% 32.95% 17.19% 12.94% 23.8%

to-item recommendation suffer from a few limitations when dealing with heterogeneous

data, due mainly to their reliance on metricity or ‘nearest-neighbor’ type assumptions. To

overcome these limitations, our method made use of mixtures of non-metric embeddings,

which allows us to relax the identity and symmetry assumptions of existing metric-

based methods. The proposed scalable approach generates diverse and cross-category

recommendations effectively that capture more complex relationships than mere visual

similarity. We showed quantitatively that Monomer is accurate at link prediction tasks

using co-purchase and co-browsing dyads from Amazon.com, and qualitatively that it

is able to generate diverse recommendations that are consistent with a particular visual

style.
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Chapter 7

Conclusion

7.1 Summary of Contributions

In this dissertation, we presented our novel algorithms for modeling visual,

sequential, and relational signals in recommender systems at large scale.

In terms of visual signals, we modeled visual appearance and its evolution as a

key to gaining a deeper understanding of users’ preferences. In particular, our models

learn people’s visual preferences and the temporal drifts of fashion from large corpus of

product images, user feedback, and timestamps from Amazon.com. We found that low-

rank structures on top of visual features extracted by Convolutional Neural Networks are

particularly effective for modeling visual dimensions and fashion dynamics, quantitatively

outperforming existing methods significantly. Qualitatively, we found that our model

uncovers meaningful visual dimensions as well as captures their complex, non-linear

evolution over the past decade.

In terms of sequential signals, we built three scalable algorithms for sequential

recommendation. Our visually- and socially-aware Markov Chains are effective at model-

ing people’s artistic preferences and predicting their sequential behavior on Behance.net,

119
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in terms of both next-click prediction and next-appreciate prediction. We noted the

ineffectiveness of existing sequential methods at modeling the third-order interactions

associated with personalized transitioning behavior. As a result, we proposed two new

methods, both of which achieved state-of-the-art performance on a wide range of large,

real-world datasets. We qualitatively visualized our learned models and found that they

capture reasonable dynamics.

In terms of relational signals, we presented new methods for modeling large-scale

heterogeneous relationships for the item-to-item recommendation task. We demonstrated

that existing methods are ineffective when dealing with heterogeneous data, mainly due

to their reliance on metricity assumptions. Our mixtures of non-metric embeddings

tackled this limitation by relaxing the identity and symmetry assumptions of existing

metric-based methods. In addition to their superior quantitative performance at link

prediction tasks, our methods generated diverse and cross-category recommendations

effectively.

7.2 Future Directions

Besides the directions we have explored in this dissertation, we also see potential

research opportunities that are challenging and could be explored in the future.

1. Handling heterogeneous user feedback. There are often multiple types of feedback

in a system; items clicked, liked, bookmarked, shared, rated, purchased etc. by

users could indicate different levels of preferences. For instance, items purchased

by a user may suggest a higher level of preference than items clicked by her.

Leveraging such heterogeneity could lead to enhanced prediction accuracy.

2. Personalizing recommender systems. As people are getting more and more familiar

with, as well as more dependent on, recommender systems, there is an increasing
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need from users to customize the system to make it behave in desired manners. A

simple example would be that users provide rules to prevent certain types of items

from being recommended. Many recommender systems are using parameters to

balance diversity, freshness, popularity, etc. of the recommendations they make [3];

proper techniques shall be developed to take into account users’ feedback toward

both items and the recommender system itself.

3. Designing new recommender systems. Smart personal assistants like Alexa are

gaining popularity in recent years, indicating a need of developing appropriate

recommendation approaches that are suitable for making recommendations in

interactive environments. In addition, technologies like Virtual Reality provide the

opportunity of designing novel recommendation interfaces that are more interesting,

engaging, and/or efficient for exploring large corpora of items.

In addition, we also see the importance of establishing standard datasets for

evaluating different models and helping guide the healthy growth of the recommender

systems community.
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