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Coherent patterns in noisy data: gene expression

 Functional genomics confronts researchers with a deluge of new functional genomic experiments 
and technologies aimed at understanding biological function on the genome scale. For example, the Ge-
nomes to Life (GTL) Environmental Stress Pathway Project generates gene expression, gene knockout, 
proteomic, metabolomic, and protein-protein interaction data. How to rationally construct biological inter-
pretations and determine their significance based on many instances of multiple data types?
Biclustering of gene expression data is an analysis that can reveal modules of genes and experiments.   
 These modules serve to analyze gene-gene associations and reconstruct regulatory networks. As 
datasets and data types proliferate it has become advantageous to: a) utilize multiple data types simulta-
neously, b) determine confidence from combined data, and c) systematically form hypothesis from mul-
tiple types of evidence. A recent method, CMONKEY (Reiss et al. BMC Bioinformatics 2006), searches 
for co-regulated genes using simulated annealing and a Markov chain bicluster model with multi-
parametric logistic regression for module membership based on gene expression, association networks, 
and sequence motifs.
 We have developed a random-walk algorithm to search for biological modules that maximize a sum-
mary criterion. The main novelty of the algorithm lies in modeling three common data types: gene-
experiment, gene-gene, and gene-feature. The summary criterion is computed from a weighted linear 
combination of correlation measures. 
 To benchmark module discovery we evaluate this and related methods using a highly annotated 
functional genomic compendium as well as simulated datasets with virtual modules. We also present 
preliminary findings for Saccharomyces cerevisiae and select prokaryotes..
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 The results of functional genomics research are represented by a variety of data types including con-
tinuous measurements, binary ones such as protein-protein interactions, and gene/protein as well as ex-
periment features usually occurring in the form of text labels (e.g., functional annotations) or string repre-
sentations (e.g., phylogenetic profiles). Each data type requires specific infrastructure and statistical frame-
works. We have developed a statistical data mining random walk algorithm that allows to incorporate mul-
tiple datasets and types.  
 Each data type is accommodated using different criteria, which we refer to as subcriteria, geared spe-
cifically for its data structure.  The algorithm searches for coherent patterns within a base data matrix of 
gene by experiment.  Our search criterion is a weighted linear combination of the subcriteria.  The weights 
are user specified and determine the overall importance of each subcriteria, providing the user some con-
trol over the search process such as down-weighting less relevant or less confident datasets. 

 To evaluate the performance of our bicluster search method we assessed the results of  bicluster 
searches with known Saccharomyces cerevisiae regulons (MacIsaac et al. 2006 BMC Bioinformatics). As 
the gene expression data for the search we used data on 173 conditions from Gasch et al. Mol. Biol. Cell 
2002. Shown are summary statistics based on 10 independent runs per regulon (80 regulons total, the 11 
largest and 24 smallest ones were excluded). Each plot lists regulons on the x-axis sorted by highest to 
lowest percentage of regulon genes in the final bicluster. Values are the mean for the regulon and errors 
bars indicate the standard deviation. For the ‘1/4 Regulon + Random’ and ‘Random’ results, searches 
were performed using the same random experiments as selected for ‘Regulons’. The percentage of 
genes from the regulon present in the final bicluster is largely determined by regulon size, however inter-
mediate size regulons vary widely in their behavior. Larger regulons tend to keep fewer of the initial 
(randomly selected) experiment and also require fewer algorithm moves.

 The increasing volume and diversity of experimental and sequence-based datasets requires efficient 
and flexible statistical methods to discern significant patterns and to validate biological hypothesis. We 
have developed a multi-purpose algorithm which searches multiple datasets and data types simultane-
ously, allowing to identify inter-dataset relationships and to enrich biological hypothesis with significant data 
patterns.

 The series of regulon random walk searches allows to assign an occupancy for each gene with re-
spect to the final bicluster identified in each search. Most genes in large regulons have high occupancy, 
meaning that they are nearly always present in the final bicluster. Genes in smaller regulons generally have 
much lower occupancy. Large regulons are more likely to be completely defined (or over-defined) while 
smaller ones are more likely to be under-defined. Since the gene expression compendium used did not 
sample many possible conditions, it is possible that under the tested conditions some of the regulons are 
not differentially expressed.

Regulon stability
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Criterion = ∑Sub-Criteria

Mean Squared Error (MSE),
Row MSE, Correlation
• Significance score calculated from

an empirical null distribution created
from random draws of all allowed 
bicluster sizes.

• Probability that a value as extreme or
more extreme would occur if 
bicluster was randomly sampled.

Gene by Experiment

Cross-validated R2

• Calculated using data-adaptive
software with polynomial spline fitting.

• Selects subset of features using 
cross-validation.

Gene/Experiment by Feature

Proportion score

Protein by Protein

 Shown are examples of coherent gene expression data patterns. The first pattern is the case of con-
stant values across genes and experiments, with ribosomal genes being an example. The second pat-
tern is characterized by a gradient in the experiment dimension, indicating a concerted change in expres-
sion over a series of experimental conditions such as time points or stressor concentrations. The third pat-
tern is characterized by a gradient in the experiment dimension and this is expected for sets of genes 
which are co-expressed at different levels. 
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Regulons 1/4 Regulons + 3/4 Random Random

293/R-131 (1024)

The Saccharomyces cerevisiae regulatory network (MacIsaac et al. BMC BIoinformatics 2006).

‘Polymerase’ ‘RNA’ ‘Protease’

Desulfovibrio vulgaris Hildenborough biclustered sets of genes whose annotations match keywords 
(www.microbesonline.org).

Modules allow to reconstruct transcriptional networks

 Current subcriteria are restricted to significance scores and cross-validated R-squared mea-
sures of association. Significance scores are calculated with respect to a null distribution from ran-
domly sampling the space of biclusters of all allowed sizes. Currently, significance scores are used 
for the following subcriteria: bicluster expression mean squared error, bicluster expression 
column/row mean square error, and proportion of interacting genes within the set of genes. To incor-
porate feature data from the gene or experiment set, we use the cross-validated R-square of asso-
ciation of bicluster membership with a set of gene and/or experiment feature data using data-
adaptive software. The data-adaptive algorithm, currently a polynomial spline based algorithm is 
used (polymars), allow to use all features or merely a subset of features.
 With multiple subcriteria the algorithm can identify multiple potentially overlapping global 
maxima, each with distinct contributions from specific sub-criteria and datasets. To date our algo-
rithm supports compendia of continuous measurements of the form gene-by-experiment, gene-by-
gene binary data, and gene-by-experiment features.

Limitations:
-  Uses  information from all experi-
ments.
- Each gene/experiment pair can only 
be assigned to one module.
- Liimted to a single dataset of a single 
type.




