
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Parallel and Scalable Architectures for Video Encoding

Permalink
https://escholarship.org/uc/item/0b85h9xk

Author
Zhao, Zhuo

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0b85h9xk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Parallel and Scalable Architectures for Video Encoding

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Zhuo Zhao

December 2010

Dissertation Committee:

Dr. Ping Liang , Chairperson
Dr. Ilya Dumer
Dr. Zhengyuan Xu

Copyright by
Zhuo Zhao

2010

The Dissertation of Zhuo Zhao is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

The printed pages of this dissertation hold far more than the culmination

of years of study. These pages also reflect the relationships with many generous and

inspiring people I have met since beginning my graduate work. The list is long, but I

cherish each contribution to the completion of my dissertation.

The work described in this thesis could not have been accomplished without

the help and support of others. Foremost, I would like to thank my research advisor

Professor Ping Liang for his guidance and support. I am especially grateful to you.

To my committee members Dr. Ilya Dumer, Dr. Zhengyuan Xu for their

encouraging words, thoughtful criticism, and time and attention during busy semesters.

To my colleagues for sharing their enthusiasm for and comments on my work:

Mohammad Ahmad, Jun Dai, Sheng Wang, Mehran Ramezani and Vahid Ordoubadian.

To the Department staffs for assisting me with the administrative tasks nec-

essary for completing my doctoral program: Adrienne L. Thomas, Steven D. Haughton

and William Bingham.

To my invaluable network of supportive, generous and loving friends: Yufan

Li, Lili Huang, Yi Huang, Zhen Zhang, Lucy Zhou, Zhenyu Qi and Ning Liu.

To my parents and family for their love, support and understanding during the

long years of my education.

And finally, to Ying Gao, my girlfriend. Thank you for always there giving me

support and cheering me up and stood by me through the good times and bad.

iv

To my parents for all the support.

v

ABSTRACT OF THE DISSERTATION

Parallel and Scalable Architectures for Video Encoding

by

Zhuo Zhao

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2010

Dr. Ping Liang , Chairperson

As the latest video compression standard, H.264/AVC exhibits great compres-

sion performance than its previous ancestors. Many new features are used to achieve

much better rate-distortion efficiency and subjective quality, but the high computational

complexity and intensive memory access are the penalties. Such high requirement of

memory and computational resources leads to long processing cycles and high power

consumption. This made real-time encoding of H.264/AVC hard to implement.

To address these difficulties, this thesis is focused on fast algorithm, data reuse

and parallel architectures of H.264/AVC encoder. For data reuse, we proposed a par-

tially forward processing algorithm (PFPA) which reuses the reference information to

avoid duplicated reference data loading. For fast algorithms, we studied the statistical

features of fractional motion estimation (FME) and proposed a FME mode reduction

scheme. For parallel architectures, we proposed two solutions for block level and MB

level parallelization respectively. At the block level, we proposed a FME parallel archi-

tecture which achieved both memory and processing cycle efficiency (reduced about 67%

memory accesses and about 50% processing cycles compared with most of state of the

art architectures). At the MB level, we proposed wavefront architecture. Theoretically,

vi

this architecture can extend a multi-core encoder to a system with any desired number

of cores without sacrificing encoding quality.

Both JM model and Tensilica XTMP are used to verify the proposed architec-

tures. Architecture implementation detail are discussed and cycle-accurate test results

show good performance improvements with very small overhead. From dual-core to

three-core and quad-core, the overhead of the P-Core performance are 0.8% and 1.3%

for I-frames; 1.7% and 2.4% for P-frames. The speed-ups from dual-core to three-core

and quad-core are 1.49 and 1.97 for I-frames; 1.47 and 1.95 for P-frames. System up-

scaling methodologies are also covered at the end of this thesis.

vii

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 H.264/AVC Overview . 1
1.2 Intra-Prediction . 7

1.2.1 4× 4 Luma Prediction Modes . 8
1.2.2 16× 16 Luma Prediction Modes 9
1.2.3 8× 8 Chroma Prediction Modes 10

1.3 Inter-Prediction . 10
1.3.1 Tree structured motion compensation 11
1.3.2 Sub-pixel motion vectors . 13
1.3.3 Motion vector prediction . 14

1.4 Transform and Quantization . 15
1.4.1 4× 4 Residual Transform and Quantization (Blocks 0-15, 18-25) 16

1.4.1.1 Development from the 4× 4 DCT 17
1.4.1.2 Quantization . 19
1.4.1.3 Rescaling . 21
1.4.1.4 4 × 4 Luma DC coefficient transform and quantization

(16× 16 Intra-mode only) 22
1.4.1.5 2× 2 chroma DC coefficient transform and quantization 23

1.5 Deblock-Filter . 25
1.5.1 Reconstruction filter . 25
1.5.2 Boundary Strength . 26
1.5.3 Filter algorithm . 27

1.6 Entropy Coding . 28
1.6.1 Coded elements . 28
1.6.2 Variable length coding (VLC) . 30
1.6.3 Exp-Golomb entropy coding . 30
1.6.4 Context-based adaptive variable length coding (CAVLC) 32

1.6.4.1 Encode the number of coefficients and trailing ones . . 33
1.6.4.2 Encode the sign of each T1 34
1.6.4.3 Encode the levels of the remaining non-zero coefficients 34
1.6.4.4 Encode the total number of zeros before the last coefficient 35
1.6.4.5 Encode each run of zeros 35

viii

2 Fast Algorithms and Data Reuse 37
2.1 Frame-level Data Re-use & Mode Decision Strategy 37

2.1.1 Inter-Prediction in H.264/AVC 38
2.1.2 Partially forward processing algorithm (PFPA) 39
2.1.3 Mode decision for PFPA . 42
2.1.4 Simulation Results . 46

2.2 FME Mode Reduction . 47
2.2.1 Motin Estimation in H.264/AVC 48

2.2.1.1 Variable Block-size Motion Search 48
2.2.1.2 Integer Motion Search 49
2.2.1.3 Fractional Motion Search 50

2.2.2 Relationship between SAD and SATD 50
2.2.3 Relationship between full-pixel SATD and quarter-pixel SATD . 56
2.2.4 Impacts of Motion Vectors . 60
2.2.5 Scheme for FME mode reduction and simulation results 61

2.3 Parallel Architecture for FME . 70
2.3.1 H.264/AVC FME Observations 72

2.3.1.1 Encoding with INTER 8x8 mode or above 72
2.3.1.2 Statistic charactistics of motion vectors 73

2.3.2 The Proposed Architecture . 73
2.3.2.1 Reference Pixel Array 74
2.3.2.2 Integer Pixel Sampler in Reference Array 76
2.3.2.3 14-Input FME Engine 77
2.3.2.4 Data Processing Order 79
2.3.2.5 3-Stages Processing . 81

2.3.3 Simulation Results . 82

3 Typical Parallel Architecture for Video Encoding 84
3.1 Task-Level Decomposition . 84
3.2 Data-Level Decomposition . 85

3.2.1 GOP-Level Parallelism . 86
3.2.2 Frame-Level Parallelism for Independent Frames 86
3.2.3 Slice-Level Parallelism . 87
3.2.4 Macroblock-Level Parallelism . 89
3.2.5 Block-Level Parallelism . 89

4 Wavefront Configurable Parallel Architecture 90
4.1 Primary Data dependencies in H.264/AVC 92

4.1.1 Predicted Motion Vector & Inter-prediction 92
4.1.2 Quarter-pel interpolation and deblock-filtering 93
4.1.3 4× 4 & 16× 16 intra-prediction & mode decision 93
4.1.4 Context-adaptive variable length coding (CAVLC) 93

4.2 Data partition and task priority . 94
4.2.1 Data partition . 94
4.2.2 Task assigning and priorities . 96

4.3 Software simulation . 98

ix

5 System Simulation using Tensilica XTMP 100
5.1 XTENSA Processors . 100

5.1.1 Processor Architectures . 100
5.1.2 Primary Features . 104

5.2 XTMP Introduction . 109
5.2.1 Basic XTMP Components and Connections 111

5.2.1.1 Simulation Clocks . 111
5.2.1.2 TIE Ports, Queues and Lookups 111
5.2.1.3 Memory-Mapped Devices 111

5.3 System Architecture . 112
5.3.1 HW/SW Partition . 112
5.3.2 Development Flow . 113

5.3.2.1 Hardware Development Flow 113
5.3.2.2 Software Development Flow 116

5.3.3 Components in System Architecture 118
5.3.3.1 SC-Core and P-Cores 118
5.3.3.2 Bus Bridge . 118
5.3.3.3 Memories . 119
5.3.3.4 Camera Module . 120
5.3.3.5 PIF System Control Unit (SCU) 121
5.3.3.6 Direct Memory Access Controller (DMAC) 125
5.3.3.7 Interrupt Controller (INTC) 125
5.3.3.8 Intra Luma 4× 4 Module 127
5.3.3.9 Intra Luma 16× 16 Module 127
5.3.3.10 Intra Chroma Module 128
5.3.3.11 Inter-Prediction Module 128
5.3.3.12 Post Processor (PP) . 130
5.3.3.13 Stream Packer (SP) . 133

5.3.4 Task Scheduling Algorithm Design 133
5.3.5 Communications between Cores 133
5.3.6 Data Reuse and Memory Savings 137

5.3.6.1 Reference Buffer Saving 137
5.3.6.2 Local Shared Memory Saving 139
5.3.6.3 Reference Data Reuse in Inter Prediction Module . . . 140

5.3.7 Load Balancing . 140
5.4 Simulation Results . 141

5.4.1 MB Processing Gaps . 142
5.4.2 MB Processing Time . 146
5.4.3 System Upscaling . 149

5.4.3.1 System Control Algorithm Up-scaling 150
5.4.3.2 Global Shared Memory Up-scaling 150

6 Conclusions 153
6.0.4 Research Summary . 153
6.0.5 Future Work . 154

Bibliography 156

x

List of Figures

1.1 Original macroblock and 4× 4 luma block to be predicted 8
1.2 Labelling of prediction samples (4× 4) 8
1.3 4× 4 luma prediction modes . 9
1.4 H.264/AVC Intra 16 × 16 prediction modes (all predicted from pixels H

and V) . 9
1.5 Macroblock partitions: 16× 16, 8× 16, 16× 8, 8× 8 12
1.6 Macroblock sub-partitions: 8× 8, 4× 8, 8× 4, 4× 4 12
1.7 Residual (without MC) showing optimum choice of partitions 13
1.8 Example of integer and sub-pixel prediction 14
1.9 Scanning order of residual blocks within a macroblock 16
1.10 Edge filtering order in a macroblock . 25
1.11 Pixels adjacent to vertical and horizontal boundaries 26
1.12 Boundary strength assignment flow . 27

2.1 Variable block sizes in H.264/AVC . 39
2.2 Data dependency for multiple reference prediction 40
2.3 Timing diagram for an encoding period 40
2.4 Saving ratio . 42
2.5 Multiple reference for 8x8 mode . 43
2.6 Predicted Motion Vector determination 43
2.7 Pseudo-code for PMV computation . 44
2.8 R-D Curves for different test sequences 46
2.9 MB Level SAD vs. SATD . 51
2.10 Statistics of Rd (“Mobile.SIF”/40 Frms/QP=24) 52
2.11 Statistics of Rd and the corresponding Laplace Distribution 54
2.12 CDF of RSAD (α = 1000, λ = 41.67) . 55
2.13 Probabilities of δd . 57
2.14 CDF of δd . 58
2.15 CDF of RSATDf . 59
2.16 CDF of RSAD (RSATD = 1.05) . 59
2.17 MV Impacts on Motion Cost . 60
2.18 ”IME Best Mode Miss-Rate” vs QP . 62
2.19 Luminance PSNR curve for ”Foreman” 63
2.20 Luminance PSNR curve for ”Trevor” . 63
2.21 Luminance PSNR curve for ”Highway” 64
2.22 Luminance PSNR curve for ”Ice” . 64

xi

2.23 Luminance PSNR curve for ”Stefan” . 65
2.24 Luminance PSNR curve for ”Mobile” . 65
2.25 Luminance PSNR curve for ”Crew” . 66
2.26 Luminance PSNR curve for ”Soccer” . 66
2.27 Luminance PSNR curve for ”Crowd Run” 67
2.28 Mode statistics for STEPHEN.SIF . 72
2.29 IMV Statistics for COASTGUARD.QCIF 74
2.30 FME System Architecture . 75
2.31 FME Reference Array . 76
2.32 Sampler Line Mux . 77
2.33 Two 14-Input FME Engine . 77
2.34 Interpolation Unit inside FME Engine 78
2.35 FME Processing Flow Option 0 . 80
2.36 FME Processing Flow Option 1 . 80
2.37 Processing Cycles Distributions . 83

3.1 H.264/AVC Data Structure . 86

4.1 Intra- & inter-frame data dependencies 92
4.2 Intra-prediction data dependencies . 94
4.3 Concurrently processed MBs . 95
4.4 Processing units in a frame . 96
4.5 Theoretical processing time per frame for QCIF 96
4.6 Number of concurrently processed frames (QCIF) 97
4.7 Task assignment timing diagram . 97

5.1 Xtensa LX3 Processor Architectural Block Diagram 101
5.2 System Simulation Methods . 110
5.3 A Typical XTMP MP System . 110
5.4 Architecture for XTMP Wavefront Simulation 114
5.5 XTMP Hardware Development Components 115
5.6 XTMP Software Development Components 117
5.7 Interrupt Based System Control Flow 122
5.8 Reference Pixels Scan Order . 129
5.9 Neighboring MBs in Deblock-filtering . 132
5.10 Task scheduling flow . 134
5.11 Inter-Core communication ring . 135
5.12 Shared memory between two peripheral cores 135
5.13 Reference Buffer Saving . 138
5.14 Co-located MB in the reference frame 138
5.15 Local Shared Memory Saving . 139
5.16 Sliding Window for Reference Data . 140
5.17 MB Processing Time and Gaps . 143
5.18 MPG of a Dual-Core System (CIF, YUV420, Intra-Frame) 144
5.19 MPG of a Dual-Core System (CIF, YUV420, Inter-Frame) 144
5.20 MPG of a Three-Core System (CIF, YUV420, Intra-Frame) 144
5.21 MPG of a Three-Core System (CIF, YUV420, Inter-Frame) 145
5.22 MPG of a Quad-Core System (CIF, YUV420, Intra-Frame) 145
5.23 MPG of a Quad-Core System (CIF, YUV420, Inter-Frame) 145

xii

5.24 MPT of a Dual-Core System (CIF, YUV420, Intra-Frame) 147
5.25 MPT of a Dual-Core System (CIF, YUV420, Inter-Frame) 147
5.26 MPT of a Three-Core System (CIF, YUV420, Intra-Frame) 148
5.27 MPT of a Three-Core System (CIF, YUV420, Inter-Frame) 148
5.28 MPT of a Quad-Core System (CIF, YUV420, Intra-Frame) 148
5.29 MPT of a Quad-Core System (CIF, YUV420, Inter-Frame) 149
5.30 A Solution for Global Shared Memory Up-scaling 152

xiii

List of Tables

1.1 Quantization step sizes in H.264/AVC CODEC 20
1.2 PF Value for different Positions . 20
1.3 Deblocking filter summary . 29
1.4 Parameters to be encoded . 30
1.5 Exp-Golomb codewords . 31
1.6 Part of coded block pattern table . 32
1.7 Choice of look-up table for coeff token 34
1.8 Thresholds for determining whether to increment Level table number . . 35

2.1 Statistical data for H.264/AVC inter-prediction modes 45
2.2 Experimental Data for FME Mode Reduction 69
2.3 PART OF THE SIMULATION RESULTS 82

4.1 Simulation Result for ”Grandma.yuv” (QCIF) 97
4.2 Simulation Result for ”Paris.yuv” (CIF) 97

5.1 Primary Core Configurations . 116
5.2 Register Definitions of Camera Module 121
5.3 Register Definitions of PIF SCU . 124
5.4 Register Definition of DMAC . 126
5.5 Register Definition of INTC . 126
5.6 Register Definitions of INTRA 4× 4 Module 128
5.7 Register Definitions of Inter-Prediction Module 130
5.8 Register Definition of PP . 132
5.9 Inter-Core Shared Information (YUV420) 136
5.10 Average MB Processing Gaps (CIF YUV420) 143
5.11 Average MB Processing Time (CIF YUV420) 147

xiv

Chapter 1

Introduction

1.1 H.264/AVC Overview

In early 1998, the Video Coding Experts Group (VCEG) ITU-T SG16 Q.6 is-

sued a call for proposals on a project called H.26L, with the target to double the coding

efficiency (which means halving the bit rate necessary for a given level of fidelity) in

comparison to any other existing video coding standards for a broad variety of applica-

tions. The first draft design for that new standard was adopted in October of 1999. In

December of 2001, VCEG and the Moving Picture Experts Group (MPEG) ISO/IEC

JTC 1/SC 29/WG 11 formed a Joint Video Team (JVT), with the charter to finalize the

draft new video coding standard for formal approval submission as H.264/AVC in March

2003. As of today, H.264/AVC is still the newest international video coding standard

[14].

Before discussing encoding algorithms and parallel architectures, we will present

an overview of the H.264 protocol in this chapter, whose primary features include:

• Variable block-size motion compensation with small block sizes: This

standard supports more flexibility in the selection of motion compensation block

1

sizes and shapes than any previous standard, with a minimum luma motion com-

pensation block size as small as 4× 4.

• Quarter-sample-accurate motion compensation: Most prior standards en-

able half-sample motion vector accuracy at most. The new design improves up

on this by adding quarter-sample motion vector accuracy, as first found in an ad-

vanced profile of the MPEG-4 Visual (part-2) standard, but further reduces the

complexity of the interpolation processing compared to the prior design.

• Motion vectors over picture boundaries: While motion vectors in MPEG-2

and its predecessors were required to point only to areas within the previously-

decoded reference picture, the picture boundary extrapolation technique first found

as an optional feature in H.263 is included in H.264/AVC.

• Multiple reference picture motion compensation:Previous video coding

standards use only one previous picture to predict the values in an incoming pic-

ture. H.264/AVC allows an encoder to select the reference frames among a large

number of pictures that have been decoded an stored in the decoder.

• Decoupling of referencing order from display order: In prior standards,

the display order and reference order have a strict dependency. In H.264/AVC,

these restrictions are largely removed.

• Decoupling of picture representation methods from picture referenc-

ing capability: In previous standards, B-frame cannot be used as references for

prediction of other pictures. H.264/AVC removed this restriction to gain more

flexibility and closer approximation in the prediction.

• Weighted prediction: This is a new feature in H.264/AVC, which can dramat-

2

ically improve the coding efficiency for scenes containing fades, and can also be

used flexibly for other purposes as well.

• Improved ”skipped” and ”direct” motion inference: In previous standards,

a ”skipped” area of a predictively-coded picture could not motion in the scene con-

tent. H.264/AVC introduced motion for ”skipped” areas to remove the detrimental

effects when coding video containing global motion.

• Directional spatial prediction for intra coding: A new technique of extrap-

olating the edges of the previously-decoded parts of the current picture is applied

in regions of pictures that are coded as intra (i.e., coded without reference to the

content of some other picture). This improves the quality of the prediction signal,

and also allows prediction from neighboring areas that were not coded using intra

coding.

• In-the-loop deblocking filtering: Block-based video coding produces artifacts

known as blocking artifacts. These can originate from both the prediction and

residual difference coding stages of the decoding process. Application of an adap-

tive deblocking filter is a well-known method of improving the resulting video qual-

ity, and when designed well, this can improve both objective and subjective video

quality. Building further on a concept from an optional feature of H.263+, the de-

blocking filter in the H.264/AVC design is brought within the motion-compensated

prediction loop, so that this improvement in quality can be used in inter-picture

prediction to improve the ability to predict other pictures as well.

• Small block-size transform: All major prior video coding standards used a

transform block size of 8× 8, while the new H.264/AVC design is based primarily

3

on a 4 × 4 transform. This allows the encoder to represent signals in a more

locally-adaptive fashion, which reduces artifacts known colloquially as ”ringing”.

• Hierarchical block transform: While in most cases, using the small 4 × 4

transform block size is perceptually beneficial, there are some signals that contain

sufficient correlation to call for some method of using a representation with longer

basis functions. The H.264/AVC standard enables this in two ways: 1) by using

a hierarchical transform to extend the effective block size use for low-frequency

chroma information to an 8 × 8 array and 2) by allowing the encoder to select a

special coding type for intra coding, enabling extension of the length of the luma

transform for low-frequency information to a 16× 16 block size in a manner very

similar to that applied to the chroma.

• Short word-length transform: All prior standard designs have effectively re-

quired encoders and decoders to use more complex processing for transform com-

putation. While previous designs have generally required 32-bit processing, the

H.264/AVC design requires only 16-bit arithmetic.

• Exact-match inverse transform: In previous video coding standards, the trans-

form used for representing the video was generally specified only within an error

tolerance bound, due to the impracticality of obtaining an exact match to the

ideal specified inverse transform. As a result, each decoder design would produce

slightly different decoded video, causing a ”drift” between encoder and decoder

representation of the video and reducing effective video quality. Building on a

path laid out as an optional feature in the H.263++ effort, H.264/AVC is the first

standard to achieve exact equality of decoded video content from all decoders.

4

• Arithmetic entropy coding: An advanced entropy coding method known as

arithmetic coding is included in H.264/AVC. While arithmetic coding was previ-

ously found as an optional feature of H.263, a more effective use of this technique

is found in H.264/AVC to create a very powerful entropy coding method known

as CABAC (context-adaptive binary arithmetic coding).

• Context-adaptive entropy coding: The two entropy coding methods applied in

H.264/AVC, termed CAVLC (context-adaptive variable-length coding) and CABAC,

both use context-based adaptivity to improve performance relative to prior stan-

dard designs.

• Parameter set structure: The parameter set design provides for robust and

efficient conveyance header information. As the loss of a few key bits of informa-

tion (such as sequence header or picture header information) could have a severe

negative impact on the decoding process when using prior standards, this key in-

formation was separated for handling in a more flexible and specialized manner in

the H.264/AVC design.

• NAL unit syntax structure: Each syntax structure in H.264/AVC is placed into

a logical data packet called a NAL unit. Rather than forcing a specific bitstream

interface to the system as in prior video coding standards, the NAL unit syntax

structure allows greater customization of the method of carrying the video content

in a manner appropriate for each specific network.

• Flexible slice size: Unlike the rigid slice structure found in MPEG-2 (which

reduces coding efficiency by increasing the quantity of header data and decreasing

the effectiveness of prediction), slice sizes in H.264/AVC are highly flexible, as was

5

the case earlier in MPEG-1.

• Flexible macroblock ordering (FMO): A new ability to partition the picture

into regions called slice groups has been developed, with each slice becoming an

independently- decodable subset of a slice group. When used effectively, flexible

macroblock ordering can significantly enhance robustness to data losses by man-

aging the spatial relationship between the regions that are coded in each slice.

(FMO can also be used for a variety of other purposes as well.)

• Arbitrary slice ordering (ASO): Since each slice of a coded picture can be

(approximately) decoded independently of the other slices of the picture, the

H.264/AVC design enables sending and receiving the slices of the picture in any

order relative to each other. This capability, first found in an optional part of

H.263+, can improve end-to-end delay in real-time applications, particularly when

used on networks having out-of-order delivery behavior (e.g., internet protocol net-

works).

• Redundant pictures: In order to enhance robustness to data loss, the H.264/AVC

design contains a new ability to allow an encoder to send redundant representations

of regions of pictures, enabling a (typically somewhat degraded) representation of

regions of pictures for which the primary representation has been lost during data

transmission.

• Data Partitioning: Since some coded information for representation of each

region (e.g., motion vectors and other prediction information) is more important

or more valuable than other information for purposes of representing the video

content, H.264/AVC allows the syntax of each slice to be separated into up to

6

three different partitions for transmission, depending on a categorization of syntax

elements. This part of the design builds further on a path taken in MPEG-4 Visual

and in an optional part of H.263++. Here, the design is simplified by having

a single syntax with partitioning of that same syntax controlled by a specified

categorization of syntax elements.

• SP/SI synchronization/switching pictures: The H.264/AVC design includes

a new feature consisting of picture types that allow exact synchronization of the

decoding process of some decoders with an ongoing video stream produced by other

decoders without penalizing all decoders with the loss of efficiency resulting from

sending an I picture. This can enable switching a decoder between representations

of the video content that used different data rates, recovery from data losses or

errors, as well as enabling trick modes such as fast-forward, fast-reverse, etc.

In the following sections, we will only introduce primary new features of H.264/AVC.

For more detail or other features, please refer to [14].

1.2 Intra-Prediction

If a block or macroblock is encoded in intra mode, a prediction block is formed

based on previously encoded and reconstructed (but un-filtered) blocks. This prediction

block P is subtracted from the current block prior to encoding. For the luminance

(luma) samples, P may be formed for each 4× 4 subblock or for a 16× 16 macroblock.

There are a total of 9 optional prediction modes for each 4 × 4 luma block; 4 optional

modes for a 16 × 16 luma block; and one mode that is always applied to each 4 × 4

chroma block.

7

Figure 1.1: Original macroblock and 4× 4 luma block to be predicted

Figure 1.2: Labelling of prediction samples (4× 4)

1.2.1 4× 4 Luma Prediction Modes

Figure.1.1 shows a luminance macroblock in a QCIF frame and a 4 × 4 luma

block that is required to be predicted. The samples above and to the left have previously

been encoded and reconstructed and are therefore available in the encoder and decoder

to form a prediction reference. The prediction block P is calculated based on the samples

labelled A-M in Figure.1.2, as follows. Note that in some cases, not all of the samples

8

Figure 1.3: 4× 4 luma prediction modes

Figure 1.4: H.264/AVC Intra 16× 16 prediction modes (all predicted from pixels H and
V)

A-M are available within the current slice: in order to preserve independent decoding of

slices, only samples within the current slice are available for prediction. DC prediction

(mode 0) is modified depending on which samples A-M are available; the other modes

(1-8) may only be used if all of the required prediction samples are available (except

that, if E, F, G and H are not available, their value is copied from sample D).

The arrows in Figure.1.3 indicate the direction of prediction in each mode. For

modes 3-8, the predicted samples are formed from a weighted average of the prediction

samples A-Q. The encoder may select the prediction mode for each block that minimizes

the residual between P and the block to be encoded.

1.2.2 16× 16 Luma Prediction Modes

As an alternative to the 4× 4 luma modes described above, the entire 16× 16

luma component of a macroblock may be predicted. Four modes are available, shown

in diagram form in Figure.1.4:

9

• Mode 0 (vertical): extrapolation from upper samples (H).

• Mode 1 (horizontal): extrapolation from left samples (V).

• Mode 2 (DC): mean of upper and left-hand samples (H+V).

• Mode 4 (Plane): a linear ”plane” function is fitted to the upper and left-hand

samples H and V. This works well in areas of smoothly-varying luminance.

1.2.3 8× 8 Chroma Prediction Modes

Each 8×8 chroma component of a macroblock is predicted from chroma samples

above and/or to the left that have previously been encoded and reconstructed. The 4

prediction modes are very similar to the 16 × 16 luma prediction modes described in

section 3 and illustrated in Figure.1.4, except that the order of mode numbers is different:

DC (mode 0), horizontal (mode 1), vertical (mode 2) and plane (mode 3). The same

prediction mode is always applied to both chroma blocks.

1.3 Inter-Prediction

Inter prediction creates a prediction model from one or more previously en-

coded video frames. The model is formed by shifting samples in the reference frame(s)

(motion compensated prediction). The H.264/AVC CODEC uses block-based motion

compensation, the same principle adopted by every major coding standard since H.261.

Important differences from earlier standards include the support for a range of block

sizes (down to 4×4) and fine sub-pixel motion vectors (1/4 pixel in the luma component).

10

1.3.1 Tree structured motion compensation

H.264/AVC supports motion compensation block sizes ranging from 16 × 16

to 4 × 4 luminance samples with many options between the two. The luminance com-

ponent of each macroblock (16 × 16 samples) may be split up in 4 ways as shown in

Figure.1.5:16×16, 16×8, 8×16 or 8×8. Each of the sub-divided regions is a macroblock

partition. If the 8×8 mode is chosen, each of the four 8×8 macroblock partitions within

the macroblock may be split in a further 4 ways as shown in Figure.1.6: 8×8, 8×4, 4×8

or 4×4 (known as macroblock sub-partitions). These partitions and sub-partitions give

rise to a large number of possible combinations within each macroblock. This method of

partitioning macroblocks into motion compensated sub-blocks of varying size is known

as tree structured motion compensation.

A separate motion vector is required for each partition or sub-partition. Each

motion vector must be coded and transmitted; in addition, the choice of partition(s)

must be encoded in the compressed bitstream. Choosing a large partition size (e.g.

16 × 16, 16 × 8, 8 × 16) means that a small number of bits are required to signal the

choice of motion vector(s) and the type of partition; however, the motion compensated

residual may contain a significant amount of energy in frame areas with high detail.

Choosing a small partition size (e.g. 8× 4, 4× 4, etc.) may give a lower-energy residual

after motion compensation but requires a larger number of bits to signal the motion

vectors and choice of partition(s). The choice of partition size therefore has a significant

impact on compression performance. In general, a large partition size is appropriate for

homogeneous areas of the frame and a small partition size may be beneficial for detailed

areas.

The resolution of each chroma component in a macroblock (Cr and Cb) is

11

Figure 1.5: Macroblock partitions: 16× 16, 8× 16, 16× 8, 8× 8

Figure 1.6: Macroblock sub-partitions: 8× 8, 4× 8, 8× 4, 4× 4

half that of the luminance (luma) component. Each chroma block is partitioned in the

same way as the luma component, except that the partition sizes have exactly half the

horizontal and vertical resolution (an 8 × 16 partition in luma corresponds to a 4 × 8

partition in chroma; an 8× 4 partition in luma corresponds to 4× 2 in chroma; and so

on). The horizontal and vertical components of each motion vector (one per partition)

are halved when applied to the chroma blocks.

Figure.1.7 shows a residual frame (without motion compensation). The H.264/AVC

reference encoder selects the best partition size for each part of the frame, i.e. the

partition size that minimizes the coded residual and motion vectors. The macroblock

partitions chosen for each area are shown superimposed on the residual frame. In areas

where there is little change between the frames (residual appears grey), a 16 × 16 par-

tition is chosen; in areas of detailed motion (residual appears black or white), smaller

partitions are more efficient.

12

Figure 1.7: Residual (without MC) showing optimum choice of partitions

1.3.2 Sub-pixel motion vectors

Each partition in an inter-coded macroblock is predicted from an area of the

same size in a reference picture. The offset between the two areas (the motion vector)

has 1/4 pixel resolution (for the luma component). The luma and chroma samples at

sub-pixel positions do not exist in the reference picture and so it is necessary to create

them using interpolation from nearby image samples. Figure.1.8 gives an example. A

4× 4 sub-partition in the current frame (a) is to be predicted from a neighboring region

of the reference picture. If the horizontal and vertical components of the motion vector

are integers (b), the relevant samples in the reference block actually exist (grey dots).

If one or both vector components are fractional values (c), the prediction samples (grey

dots) are generated by interpolation between adjacent samples in the reference frame

(white dots).

Sub-pixel motion compensation can provide significantly better compression

performance than integer-pixel compensation, at the expense of increased complexity.

Quarter-pixel accuracy outperforms half-pixel accuracy.

13

Figure 1.8: Example of integer and sub-pixel prediction

In the luma component, the sub-pixel samples at half-pixel positions are gen-

erated first and are interpolated from neighboring integer-pixel samples using a 6-tap

Finite Impulse Response filter. This means that each half-pixel sample is a weighted

sum of 6 neighboring integer samples. Once all the half-pixel samples are available, each

quarter-pixel sample is produced using bilinear interpolation between neighboring half-

or integer-pixel samples.

If the video source sampling is 4:2:0, 1/8 pixel samples are required in the

chroma components (corresponding to 1/4 pixel samples in the luma). These samples

are interpolated (linear interpolation) between integer-pixel chroma samples.

1.3.3 Motion vector prediction

Encoding a motion vector for each partition can take a significant number of

bits, especially if small partition sizes are chosen. Motion vectors for neighboring par-

titions are often highly correlated and so each motion vector is predicted from vectors

of nearby, previously coded partitions. A predicted vector, MVp, is formed based on

previously calculated motion vectors. MVd, the difference between the current vector

and the predicted vector, is encoded and transmitted. The method of forming the pre-

diction MVp depends on the motion compensation partition size and on the availability

of nearby vectors. The ”basic” predictor is the median of the motion vectors of the

14

macroblock partitions or subpartitions immediately above, diagonally above and to the

right, and immediately left of the current partition or sub-partition. The predictor is

modified if (a) 16 × 8 or 8 × 16 partitions are chosen and/or (b) if some of the neigh-

boring partitions are not available as predictors. If the current macroblock is skipped

(not transmitted), a predicted vector is generated as if the MB was coded in 16 × 16

partition mode.

At the decoder, the predicted vector MVp is formed in the same way and added

to the decoded vector difference MVd. In the case of a skipped macroblock, there is no

decoded vector and so a motion compensated macroblock is produced according to the

magnitude of MVp.

1.4 Transform and Quantization

Each residual macroblock is transformed, quantized and coded. Previous stan-

dards such as MPEG-1, MPEG-2, MPEG-4 and H.263 made use of the 8 × 8 Discrete

Cosine Transform (DCT) as the basic transform. The ”baseline” profile of H.264/AVC

uses three transforms depending on the type of residual data that is to be coded: a

transform for the 4× 4 array of luma DC coefficients in intra macroblocks (predicted in

16× 16 mode), a transform for the 2× 2 array of chroma DC coefficients (in any mac-

roblock) and a transform for all other 4× 4 blocks in the residual data. If the optional

”adaptive block size transform” mode is used, further transforms are chosen depending

on the motion compensation block size (4× 8, 8× 4, 8× 8, 16× 8, etc).

Data within a macroblock are transmitted in the order shown in Figure.1.9. If

the macroblock is coded in 16×16 Intra mode, then the block labelled ”-1” is transmitted

first, containing the DC coefficient of each 4 × 4 luma block. Next, the luma residual

15

Figure 1.9: Scanning order of residual blocks within a macroblock

blocks 0-15 are transmitted in the order shown (with the DC coefficient set to zero in

a 16× 16 Intra macroblock). Blocks 16 and 17 contain a 2× 2 array of DC coefficients

from the Cb and Cr chroma components respectively. Finally, chroma residual blocks

18- 25 (with zero DC coefficients) are sent.

1.4.1 4× 4 Residual Transform and Quantization (Blocks 0-15, 18-25)

This transform operates on 4×4 blocks of residual data (labelled 0-15 and 18-25

in Figure 1-1) after motion-compensated prediction or Intra prediction. The transform

is based on the DCT but with some fundamental differences:

• It is an integer transform (all operations can be carried out with integer arithmetic,

without loss of accuracy).

• The inverse transform is fully specified in the H.264/AVC standard and if this

specification is followed correctly, mismatch between encoders and decoders should

not occur.

• The core part of the transform is multiply-free, i.e. it only requires additions and

shifts.

16

• A scaling multiplication (part of the complete transform) is integrated into the

quantizer (reducing the total number of multiplications).

1.4.1.1 Development from the 4× 4 DCT

The 4× 4 DCT of an input array X is given by:

Y = AXAT =



a a a a

b c −c −b

a −a −a a

c −b b −c


[
X

]


a b a c

a c −a −b

a −c −a b

a −b a −c


(1.1)

where:

a = 1
2 , b =

√
1
2cos(

π
8), c =

√
1
2cos(

3π
8)

This matrix multiplication can be factorized to the following equivalent form:

Y = (CXCT)⊗E =





1 1 1 1

1 d −d −1

1 −1 −1 1

d −1 1 −d


[X]



1 1 1 d

1 d −1 −1

1 −d −1 1

1 −1 1 −d




⊗



a2 ab a2 ab

ab b2 ab b2

a2 ab a2 ab

ab b2 ab b2


(1.2)

CXCT is a ”core” 2-D transform. E is a matrix of scaling factors and the

symbol ⊗ indicates that each element of (CXCT) is multiplied by the scaling factor in

the same position in matrix E (scalar multiplication rather than matrix multiplication).

The constants a and b are as before; d is c/b (approximately 0.414).

To simplify the implementation of the transform, d is approximated by 0.5. To

ensure that the transform remains orthogonal, b also needs to be modified so that:

17

a = 1
2 , b =

√
2
5 , d = 1

2

The 2nd and 4th rows of matrix C and the 2nd and 4th columns of matrix CT

are scaled by a factor of 2 and the post-scaling matrix E is scaled down to compensate.

(This avoids multiplications by 1/2 in the ”core” transform CXCT which would result

in loss of accuracy using integer arithmetic). The final forward transform becomes:

Y = CfXC
T
f ⊗ Ef (1.3)

=





1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1


[X]



1 2 1 1

1 1 −1 −2

1 −1 −1 2

1 −2 1 −1




⊗



a2 ab/2 a2 ab/2

ab/2 b2/4 ab/2 b2/4

a2 ab/2 a2 ab/2

ab/2 b2/4 ab/2 b2/4


(1.4)

This transform is an approximation to the 4× 4 DCT. Because of the change

to factors d and b, the output of the new transform will not be identical to the 4 × 4

DCT.

The inverse transform (defined in [14]) is given by:

X ′ = CTi (Y ⊗ Ei)Ci (1.5)

=



1 1 1 1/2

1 1/2 −1 −1

1 −1/2 −1 1

1 −1 1 −1/2




[Y]⊗



a2 ab a2 ab

ab b2 ab b2

a2 ab a2 ab

ab b2 ab b2







1 1 1 1

1 1/2 −1/2 −1

1 −1 −1 1

1/2 −1 1 −1/2


(1.6)

This time, Y is pre-scaled by multiplying each coefficient by the appropriate

18

weighting factor from matrix Ei . Note the factors ±1/2 in the matrices C and CT ;

these can be implemented by a right-shift without a significant loss of accuracy because

the coefficients Y are pre-scaled.

The forward and inverse transforms are orthogonal, i.e. T−1(T (X)) = X.

1.4.1.2 Quantization

H.264/AVC uses a scalar quantizer . The definition and implementation are

complicated by the requirements to (a) avoid division and/or floating point arithmetic

and (b) incorporate the post- and pre-scaling matrices Ef and Ei described above.

The basic forward quantizer operation is as follows:

Zij = round(Yij/Qstep)

where Yij is a coefficient of the transform described above, Qstep is a quantizer

step size and Zij is a quantized coefficient.

A total of 52 values of Qstep are supported by the standard and these are

indexed by a Quantization Parameter, QP . The values of Qstep corresponding to each

QP are shown in Table 2-1. Note that Qstep doubles in size for every increment of 6

in QP ; Qstep increases by 12.5% for each increment of 1 in QP . The wide range of

quantizer step sizes makes it possible for an encoder to accurately and flexibly control

the trade-off between bit rate and quality. The values of QP may be different for luma

and chroma; both parameters are in the range 0-51 but QPChroma is derived from QPY

so that it QPC is less that QPY for values of QPY above 30. A user-defined offset

between QPY and QPC may be signalled in a Picture Parameter Set.

The post-scaling factor a2, ab2 or b2/4 is incorporated into the forward quan-

tizer. First, the input block X is transformed to give a block of unscaled coefficients

19

Table 1.1: Quantization step sizes in H.264/AVC CODEC

QP 0 1 2 3 4 5 6 7 8 9

QPstep 0.625 0.6875 0.8125 0.875 1 1.125 1.25 1.375 1.625 1.75

QP 10 11 12 ... 18 ... 24 ... 30 ...

QPstep 2 2.25 2.5 ... 5 10 20

QP 36 ... 42 ... 48 ... 51

QPstep 40 80 160 224

Table 1.2: PF Value for different Positions

Position PF

(0,0),(2,0),(0,2)or(2,2) a2

(1,1),(1,3),(3,1)or(3,3) b2/4

Other ab/2

W = CXCT . Then, each coefficient Wij is quantized and scaled in a single operation:

Zij = round

(
Wij ·

PF

Qstep

)
(1.7)

PF is a2, ab/2 or b2/2 depending on the position (i, j) as Table.1.2.

The factor PF/Qstep is implemented in the H.264 reference model software [1]

as a multiplication by MF (a multiplication factor) and a right-shift, thus avoiding any

division operations:

Zij = round

(
Wij ·

MF

2qbits

)
(1.8)

where MF
2qbits

= PF
Qstep

and qbits = 15 + floor (QP/6).

In integer arithmetic, the equation above can be implemented as follows:

|Zij | = (|Wij | ·MF + f) >> qbits (1.9)

20

sign (Zij) = sign (Wij) (1.10)

where >> indicates a binary shift right. In the reference model software, f is

2qbits/3 for Intra blocks or 2qbits/6 for Inter blocks.

1.4.1.3 Rescaling

The basic rescale (or ”inverse quantizer”) operation is:

Y ′ij = Zij ·Qstep (1.11)

The pre-scaling factor for the inverse transform (matrix Ei , containing values

a2, ab and b2 depending on the coefficient position) is incorporated in this operation,

together with a further constant scaling factor of 64 to avoid rounding errors:

W ′ij = Zij ·Qstep · PF · 64 (1.12)

W ′ij is a scaled coefficient which is then transformed by the ”core” inverse

transform (CTi WCi). The values at the output of the inverse transform are divided by

64 to remove the scaling factor (this can be implemented using only an addition and a

right-shift).

The H.264 standard does not specify Qstep or PF directly. Instead, the pa-

rameter V = (Qstep · PF · 64) are defined for 0 ≤ QP ≤ 51 and each coefficient position

and the rescaling operation is:

W ′ij = Zij . · Vij · 2floor(QP/6) (1.13)

21

1.4.1.4 4×4 Luma DC coefficient transform and quantization (16×16 Intra-

mode only)

If the macroblock is encoded in 16×16 Intra prediction mode (where the entire

16× 16 luminance component is predicted from neighboring pixels), each 4× 4 residual

block is first transformed using the ”core” transform described above (CfXC
T
f). The

DC coefficient of each 4 × 4 block is then transformed again using a 4 × 4 Hadamard

transform:

YD =





1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1


[WD]



1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1




/2 (1.14)

WD is the block of 4×4 DC coefficients and YD is the block after transformation.

The output coefficients YD(i,j) are divided by 2 (with rounding).

The output coefficients YD(i,j) are then quantized to produce a block of quan-

tized DC coefficients:

|ZD(i,j)| = (|YD(i,j)| ·MF(0,0) + 2f) >> (qbits+ 1) (1.15)

sign(ZD(i,j)) = sign(YD(i,j)) (1.16)

where MF , f and qbits are defined as before and MF depends on the position

(i, j) within the 4× 4 DC coefficient block as before.

At the decoder, an inverse Hadamard transform is applied followed by rescaling

(note that the order is not reversed as might be expected):

22

WQD =





1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1


[ZD]



1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1




(1.17)

If QP is greater than or equal to 12, rescaling is performed by:

W ′D(i,j) = WQD(i,j) · V(0,0) · 2floor(QP/6)−2 (1.18)

If QP is less than 12, rescaling is performed by:

W ′D(i,j) = [WQD(i,j) · V(0,0) + 21−floor(QP/6)] >> (2− floor(QP/6)) (1.19)

V is defined as before. The rescaled DC coefficients W ′D are then inserted into

their respective 4 × 4 blocks and each 4 × 4 block of coefficients is inverse transformed

using the core DCT-based inverse transform (CTi W
′Ci).

In an intra-coded macroblock, much of the energy is concentrated in the DC

coefficients and this extra transform helps to de-correlate the 4×4 luma DC coefficients

(i.e. to take advantage of the correlation between the coefficients).

1.4.1.5 2× 2 chroma DC coefficient transform and quantization

Each chroma component in a macroblock is made up of four 4 × 4 blocks of

samples. Each 4 × 4 block is transformed as described in the sections above. The DC

coefficients of each 4× 4 block of coefficients are grouped in a 2× 2 block (WD) and are

further transformed prior to quantization:

23

YD =

 1 1

1 −1

 [WD]

 1 1

1 −1

 (1.20)

Quantization of the 2× 2 output block YD is performed by:

|ZD(i,j)| = (|YD(i,j)| ·MF(0,0) + 2f) >> (qbits+ 1) (1.21)

sign(ZD(i,j)) = sign(YD(i,j)) (1.22)

where MF , f and qbits are defined as before. During decoding, the inverse

transform is applied before rescaling:

WQD =

 1 1

1 −1

 [ZD]

 1 1

1 −1

 (1.23)

If QP is greater than or equal to 6, rescaling is performed by:

W ′D(i,j) = WQD(i,j) · V(0,0) · 2floor(QP/6)−1 (1.24)

If QP is less than 6, rescaling is performed by:

W ′D(i,j) = [WQD(i,j) · V(0,0)] >> 1 (1.25)

The rescaled coefficients are replaced in their respective 4×4 blocks of chroma

coefficients which are then transformed as above (CTi W
′Ci). As with the Intra luma DC

coefficients, the extra transform helps to de-correlate the 2 × 2 chroma DC coefficients

and hence improves compression performance.

24

Figure 1.10: Edge filtering order in a macroblock

1.5 Deblock-Filter

A filter is applied to every decoded macroblock in order to reduce blocking

distortion. The deblocking filter is applied after the inverse transform in the encoder

(before reconstructing and storing the macroblock for future predictions) and in the de-

coder (before reconstructing and displaying the macroblock). The filter has two benefits:

(1) block edges are smoothed, improving the appearance of decoded images (particu-

larly at higher compression ratios) and (2) the filtered macroblock is used for motion-

compensated prediction of further frames in the encoder, resulting in a smaller residual

after prediction. (Note: intra-coded macroblocks are filtered, but intra prediction is

carried out using unfiltered reconstructed macroblocks to form the prediction). Picture

edges are not filtered.

1.5.1 Reconstruction filter

Filtering is applied to vertical or horizontal edges of 4 × 4 blocks in a mac-

roblock, in the following order:

25

Figure 1.11: Pixels adjacent to vertical and horizontal boundaries

• Filter 4 vertical boundaries of the luma component (in order a,b,c,d in Figure.1.10)

• Filter 4 horizontal boundaries of the luma component (in order e,f,g,h, Figure.1.10)

• Filter 2 vertical boundaries of each chroma component (i,j)

• Filter 2 horizontal boundaries of each chroma component (k,l)

Each filtering operation affects up to three pixels on either side of the boundary.

Figure.1.11 shows 4 pixels on either side of a vertical or horizontal boundary in adjacent

blocks p and q (p0,p1,p2,p3 and q0,q1,q2,q3). Depending on the current quantizer,

the coding modes of neighboring blocks and the gradient of image samples across the

boundary, several outcomes are possible, ranging from (a) no pixels are filtered to (b)

p0, p1, p2, q0, q1, q2 are filtered to produce output pixels P0, P1, P2, Q0, Q1 and Q2.

1.5.2 Boundary Strength

The choice of filtering outcome depends on the boundary strength and on the

gradient of image samples across the boundary. The boundary strength parameter Bs

is chosen according to the rules in Figure.1.12.

26

Figure 1.12: Boundary strength assignment flow

The filter is ”stronger” at places where there is likely to be significant blocking

distortion, such as the boundary of an intra coded macroblock or a boundary between

blocks that contain coded coefficients.

1.5.3 Filter algorithm

Edges with Bs = 0 will not be filtered. For edges with non-zero Bs, a set of

quantization dependent parameters, defined as α and β, are evaluated that each set of

samples (p0 ∼ p2, q0 ∼ q2) is filtered only if all the following conditions all hold true:

Bs 6= 0 (1.26)

|p0 − q0| < α(IndexA) (1.27)

|p1 − p0| < β(IndexB) (1.28)

27

|q1 − q0| < β(IndexB) (1.29)

|p0 − q0| < α(IndexA) >> 2 + 2 (1.30)

|p2 − p0| < β(IndexB) (1.31)

|q2 − q0| < β(IndexB) (1.32)

A summary of all the filtering cases of Bs = 1 4 in Table.1.3. For more details

about basic algorithm of deblocking filter in H.264/AVC, please refer to [14] and [21].

1.6 Entropy Coding

The standard [14] specifies two types of entropy coding: Context-based Adap-

tive Binary Arithmetic Coding (CABAC) and Variable-Length Coding (VLC). In this

thesis, we only use the Variable-Length Coding scheme, which is a part of the baseline

Profile of H.264/AVC.

1.6.1 Coded elements

Parameters that require to be encoded and transmitted include the following.

Above the slice layer, syntax elements are encoded as fixed- or variable-length

binary codes. At the slice layer and below, elements are coded using either variable-

length codes (VLCs) [6] or contextadaptive arithmetic coding (CABAC) [23] depending

on the entropy encoding mode.

28

Table 1.3: Deblocking filter summary

Bs = 4 Luma p0 (1.30)&(1.31) p′0 = (p2 + 2p1 + 2p0 + 2q0 + q1 + 4) >> 3
∼ both true p′1 = (p2 + p1 + p0 + q0 + 2) >> 2
p2 p′2 = (2p3 + 3p2 + p1 + p0 + q0 + 4) >> 3

(1.30)&(1.31) p′0 = (2p1 + p0 + q1 + 2) >> 2
not both true p1 and p2 unchanged

q0 (1.30)&(1.32) q′0 = (q2 + 2q1 + 2q0 + 2p0 + p1 + 4) >> 3
∼ both true q′1 = (q2 + q1 + q0 + p0 + 2) >> 2
q2 q′2 = (2q3 + 3q2 + q1 + q0 + p0 + 4) >> 3

(1.30)&(1.32) q′0 = (2q1 + q0 + p1 + 2) >> 2
not both true q1 and q2 unchanged

Chroma p0 p′0 = (2p1 + p0 + q1 + 2) >> 2
∼ - p1 and p2 unchanged
p2
q0 q′0 = (2q1 + q0 + p1 + 2) >> 2
∼ - q1 and q2 unchanged
q2

Bs = 1 Luma p0 p′0 = p0 + ∆0

/2/3 & - q′0 = q0 −∆0

q0 ∆0 = min(max(−c0,∆0i), c0)
∆0i = [4(q0 − p0) + (p1 − q1) + 4] >> 3
c0 = c1 + [(1.30)?1 : 0] + [(1.31)?1 : 0]
c1: LUT operation

p1 (1.31)true p′1 = p1 + ∆p1

∆p1 = min[max(−c1,∆p1i), c1]
∆p1i = [p2 + (p0 + q0 + 1) >> 1− 2p1] >> 1
c1: LUT operation

(1.31)true p1 unchanged
q1 (1.32)true q′1 = q1 + ∆q1

∆q1 = min[max(−c1,∆q1i), c1]
∆q1i = [q2 + (q0 + p0 + 1) >> 1− 2q1] >> 1
c1: LUT operation

(1.32)false q1 unchanged
p2 - unchanged
q2 - unchanged

Chroma p0 p′0 = p0 + ∆0

& - q′0 = q0 −∆0

q0 ∆0 = min[max(−c0,∆0i), c0]
∆0i = [4(q0 − p0) + (p1 − q1) + 4] >> 3
c1: LUT operation

p1 - unchanged
q1 - unchanged
p2 - unchanged
q2 - unchanged

29

Table 1.4: Parameters to be encoded

Parameters Description

Sequence-, picture- and
slice-layer syntax elements

Macroblock type mb type Prediction method for each coded macroblock

Coded block pattern Indicates which blocks within a
macroblock contain coded coefficients

Quantizer parameter Transmitted as a delta value from
the previous value of QP

Reference frame index Identify reference frame(s) for
inter prediction

Motion vector Transmitted as a difference (mvd)
from predicted motion vector

Residual data Coefficient data for each
4× 4 or 2× 2 block

1.6.2 Variable length coding (VLC)

When entropy coding mode in the spec [14] is set to 0, residual block data

is coded using a context-adaptive variable length coding (CAVLC) scheme and other

variable-length coded units are coded using Exp-Golomb codes.

1.6.3 Exp-Golomb entropy coding

Exp-Golomb codes (Exponential Golomb codes) are variable length codes with

a regular construction. Table.1.5 lists the first 9 codewords; it is clear from this table

that the codewords progress in a logical order. Each codeword is constructed as follows:

[Mzeros][1][INFO]

where INFO is an M-bit field carrying information. The first codeword has

no leading zero or trailing INFO; codewords 1 and 2 have a single-bit INFO field;

codewords 3-6 have a 2-bit INFO field; and so on. The length of each codeword is

(2M+1) bits.

Each Exp-Golomb codeword can be constructed by the encoder based on its

30

Table 1.5: Exp-Golomb codewords

code num 0 1 2 3 4 5 6 7 8 ...

codeword 1 010 011 00100 00101 00110 00111 0001000 0001001 ...

index code num:

M = log2(code num+ 1)

INFO = code num+ 1− 2M

A parameter v to be encoded is mapped to code num in one of 3 ways as

follows. Each of these mappings (ue, se and me) is designed to produce short codewords

for frequently occurring values and longer codewords for less common parameter values.

• ue(v): Unsigned direct mapping, code num = v. Used for macroblock type,

reference frame index and others.

• se(v): Signed mapping, used for motion vector difference, delta QP and others.

v is mapped to code num as follows:

code num = 2|v| (v < 0)

code num = 2|v| − 1 (v ≥ 0)

• me(v): Mapped symbols; parameter v is mapped to code num according to a

table specified in the standard. This mapping is used for the coded block pattern

parameter. Table.1.6 lists a small part of the table for Inter predicted macroblocks:

coded block pattern indicates which 8×8 blocks in a macroblock contain non-zero

coefficients.

31

Table 1.6: Part of coded block pattern table

coded block pattern (Inter prediction) code num

0 (no none-zero blocks) 0
16 (chroma DC block none-zero) 1
1 (top-left 8× 8 luma block none-zero) 2
2 (top-right 8× 8 luma block none-zero) 3
4 (lower-left 8× 8 luma block non-zero) 4
8 (lower-right 8× 8 luma block non-zero) 5
32 (chroma DC and AC blocks non-zero) 6
3 (top-left and top-right 8× 8 luma blocks non-zero) 7
... ...

1.6.4 Context-based adaptive variable length coding (CAVLC)

This is the method used to encode residual, zig-zag ordered 4 × 4 (and 2 ×

2) blocks of transform coefficients. CAVLC is designed to take advantage of several

characteristics of quantized 4× 4 blocks:

• After prediction, transformation and quantization, blocks are typically sparse (con-

taining mostly zeros). CAVLC uses run-level coding to compactly represent strings

of zeros.

• The highest non-zero coefficients after the zig-zag scan are often sequences of ±1.

CAVLC signals the number of high-frequency ±1 coefficients (”Trailing 1s” or

”T1s”) in a compact way.

• The number of non-zero coefficients in neighbouring blocks is correlated. The

number of coefficients is encoded using a look-up table; the choice of look-up table

depends on the number of non-zero coefficients in neighbouring blocks.

• The level (magnitude) of non-zero coefficients tends to be higher at the start of the

reordered array (near the DC coefficient) and lower towards the higher frequencies.

CAVLC takes advantage of this by adapting the choice of VLC look-up table for

32

the ”level” parameter depending on recently-coded level magnitudes.

1.6.4.1 Encode the number of coefficients and trailing ones

The first VLC, coeff token, encodes both the total number of non-zero co-

efficients (TotalCoeffs) and the number of trailing ±1 values (T1). TotalCoeffs can be

anything from 0 (no coefficients in the 4 × 4 block) 1 to 16 (16 non-zero coefficients).

T1 can be anything from 0 to 3; if there are more than 3 trailing ±1s, only the last 3

are treated as ”special cases” and any others are coded as normal coefficients.

There are 4 choices of look-up table to use for encoding coeff token, described

as Num-VLC0, Num- VLC1, Num-VLC2 and Num-FLC (3 variable-length code tables

and a fixed-length code). The choice of table depends on the number of non-zero coef-

ficients in upper and left-hand previously coded blocks NU and NL. A parameter N is

calculated as follows:

• If blocks U and L are available (i.e. in the same coded slice), N = (NU +NL)/2

• If only block U is available, N = NU ; if only block L is available, N = NL ; if

neither is available, N = 0.

N selects the look-up table (Table.1.7) and in this way the choice of VLC

adapts depending on the number of coded coefficients in neighbouring blocks (context

adaptive). Num-VLC0 is ”biased” towards small numbers of coefficients; low values of

TotalCoeffs (0 and 1) are assigned particularly short codes and high values of TotalCoeff

particularly long codes. Num-VLC1 is biased towards medium numbers of coefficients

(TotalCoeff values around 2-4 are assigned relatively short codes), Num-VLC2 is biased

towards higher numbers of coefficients and FLC assigns a fixed 6-bit code to every value

of TotalCoeff.

33

Table 1.7: Choice of look-up table for coeff token

N 0,1 2,3 4,5,6,7 8 or above

Table for coeff token Num-VLC0 Num-VLC1 Num-VLC2 FLC

1.6.4.2 Encode the sign of each T1

For each T1 (trailing ±1) signalled by coeff token, a single bit encodes the

sign (0=+, 1=-). These are encoded in reverse order, starting with the highest-frequency

T1.

1.6.4.3 Encode the levels of the remaining non-zero coefficients

The level (sign and magnitude) of each remaining non-zero coefficient in the

block is encoded in reverse order, starting with the highest frequency and working back

towards the DC coefficient. The choice of VLC table to encode each level adapts de-

pending on the magnitude of each successive coded level (context adaptive). There are 7

VLC tables to choose from, Level VLC0 to Level VLC6. Level VLC0 is biased towards

lower magnitudes; Level VLC1 is biased towards slightly higher magnitudes and so on.

The choice of table is adapted in the following way:

• Initialize the table to Level VLC0 (unless there are more than 10 non-zero coeffi-

cients and less than 3 trailing ones, in which case start with Level VLC1).

• Encode the highest-frequency non zero coefficient.

• If the magnitude of this coefficient is larger than a pre-defined threshold, move up

to the next VLC table.

In this way, the choice of level is matched to the magnitude of the recently-

encoded coefficients. The thresholds are listed in Table.1.8; the first threshold is zero

34

Table 1.8: Thresholds for determining whether to increment Level table number

Current VLC VLC0 VLC1 VLC2 VLC3 VLC4 VLC5 VLC6
table

Threshold to 0 3 6 12 24 48 N/A
increment table (highest table)

which means that the table is always incremented after the first coefficient level has

been encoded.

1.6.4.4 Encode the total number of zeros before the last coefficient

TotalZeros is the sum of all zeros preceding the highest non-zero coefficient in

the reordered array. This is coded with a VLC. The reason for sending a separate VLC

to indicate TotalZeros is that many blocks contain a number of non-zero coefficients at

the start of the array and (as will be seen later) this approach means that zero-runs at

the start of the array need not be encoded.

1.6.4.5 Encode each run of zeros

The number of zeros preceding each non-zero coefficient (run before) is en-

coded in reverse order. A run before parameter is encoded for each non-zero coefficient,

starting with the highest frequency, with two exceptions:

• If there are no more zeros left to encode (i.e. run before = TotalZeros), it is not

necessary to encode any more run before values.

• It is not necessary to encode run before for the final (lowest frequency) non-zero

coefficient.

The VLC for each run of zeros is chosen depending on (a) the number of zeros

that have not yet been encoded (ZerosLeft) and (b) run before. For example, if there

35

are only 2 zeros left to encode, run before can only take 3 values (0,1 or 2) and so

the VLC need not be more than 2 bits long; if there are 6 zeros still to encode then

run before can take 7 values (0 to 6) and the VLC table needs to be correspondingly

larger.

36

Chapter 2

Fast Algorithms and Data Reuse

2.1 Frame-level Data Re-use & Mode Decision Strategy

The newest video compression standard H.264/AVC exhibits excellent com-

pression ratio due to many brand new features compared with its previous counterparts.

Among these features, multiple reference inter-prediction and variable block-size play

very important roles. Besides the high compression ratio, high memory bandwidth is

required for its real-time implementation. In order to reduce the memory bandwidth,

this thesis presents a partially forward processing algorithm (PFPA) for frame-level data

re-use and a mode decision strategy. Simulation results show that up to 2/3 of the orig-

inal memory access bandwidth can be saved if using 5 reference frames and a search

range of [−64, 64]. Also,the new mode decision method avoid sharply increased memory

size used to store intermediate processing results and at the same time, the PSNR for

decoded sequence is very close to the optimal result produced by the reference software

JM9.0 provided by Joint Video Team (JVT) [14].

Established by Joint Video Team (JVT) and Moving Pictures Expert Group

(MPEG), H.264/AVC has great advantage of coding efficiency compared with the suc-

37

cessful prior coding standards. It can save 64.46%, 48.80% and 38.62% bit-rate compared

with that of MPEG-2, H.263++, and MPEG-4 [13]. However, high computational com-

plexity and required bandwidth become two main obstacles for its real-time implemen-

tation. By using well-designed parallel processing architecture, the heavy computational

load can be shared by several low-end processors. Furthermore, if the data-dependencies

are carefully considered, these parallel processing architecture will not bring any visual

quality degradation in the final encoded result [57]. But even in the parallel encoders,

frequent data transmission between processors and external memories is still inevitable.

Here, We will put our concentration on the system bus bandwidth reduction during the

encoding. Section 2.1.1 will give an overview of the inter-prediction in H.264/AVC which

is the most memory consuming part during the encoding, Section 2.1.2 will introduce

our frame-level data re-use algorithm PFPA and Section 2.1.3 will introduce the mode

decision strategy for PFPA, Section 2.1.4 is the supporting simulation results.

2.1.1 Inter-Prediction in H.264/AVC

Inter prediction creates a prediction model from one or more previously en-

coded video frames. The model is formed by shifting samples in the reference frame(s).

Important differences from earlier standards primarily include the support for multiple

reference frames and a range of different block sizes (down to 4× 4).

H.264/AVC supports motion compensation block sizes ranging from 16×16 to

4× 4 luminance samples with many options beteen the two. The luminance component

of each macroblock (MB) (16× 16 samples) may be split up in 4 ways as shown in Fig.

2.1(a): 16×16, 16×8, 8×16 or 8×8. Each of the sub-divided regions is a MB partition.

If the 8× 8 mode is chosen, each of the four 8× 8 MB partitions within the MB may be

38

Figure 2.1: Variable block sizes in H.264/AVC

split in a further 4 ways as show in Fig.2.1(b).These partitions and sub-partitions give

rise to a large number of possible combinations within each MB.

In H.264/AVC, the encoder can search in several different reference frames for

the best match of every sub-partition in a MB. This makes it possible for every sub-

partition with the size greater than 8 × 8 can has its own reference frame. It is very

effective for uncovered backgrounds, repetitive motions, highly textured areas, etc [33].

But the local memory size are almost linearly increased with the number of reference

frame because the search window (SW) and current MB are usually buffered in local

memories to reduce data access from external memories.

2.1.2 Partially forward processing algorithm (PFPA)

Before the processor begins to encode a MB, all the required reference infor-

mation needs to be loaded from the external memory to local buffer. This brings heavy

burden for the data bus connecting local buffer in the processor and the external memory

which stores corresponding reference frames. According to the JVT draft for H.264 [14],

up to 5 reference frames can be used for a H.264/AVC encoder. The motion estimation

39

Figure 2.2: Data dependency for multiple reference prediction

Figure 2.3: Timing diagram for an encoding period

40

core searches all the possible positions for all inter-prediction modes in the specified

range in all these reference frames. Plus the quarter-pixel motion search, it becomes the

most power and memory consuming part during encoding process. This explains why

the reference software, JM7.3, requires computing power of 3.6 tera-operations/s and

memory access of 5.6 tera-bytes/s on a general processor to encode HDTV720P videos

[18].

Fig.2.2 shows the data dependency for inter-prediction using multiple reference

frames. #1, #2 and #3 mark the processing order of three frame. Frame #2 is the

current frame, frame #1 serves as the reference frame for current frame and frame #3

is the next frame in time axis. Obviously, frame #1 is also the reference frame for frame

#3. Intuitively, this can be a clue for us to reuse this reference data.

In multiple reference inter-prediction, the data in one SW is useful for several

co-located MBs in different frames. Here, our proposed PFPA load these SW only once

to reduce unnecessary system bandwidth utilization. Fig.2.3 shows the timing diagram

of encoding a MB. Actually, in such a MB period (encoding time of a MB) of our

algorithm, encoder also processed other co-located MBs in following frames partially.

This means, the life-time of a SW is just one MB encoding period. In this period, all MB

which need this SW will be processed or partially processed. Among all these co-located

MBs in Fig.2.3, only the MB with the smallest frame index are fully encoded, others

just passed the ME+Q+DCT stages. Fig.2.4 shows the system bus bandwidth saving

ratio with the increase of search range. According to this figure, the bandwidth using

PFPA becomes only about one third of the original one in most cases.

41

Figure 2.4: Saving ratio

2.1.3 Mode decision for PFPA

Different from traditional processing order, we start the motion search from

the reference frame with the largest index in the list. However, in PFPA, not all the

reference frames are at the reference buffer at the same time. Thus, we cannot decide

which reference frame is the best during one encoding period. So, we can only compare

the cost with its previous one. If smaller, the intermediate encoding result, the motion

cost & MVs will overwrite its previous counterparts. Once we finished searching all

these reference frames, we may decided which mode & refernce are the optimal.

Changing the search order of these reference frames also post two challenges.

First, the accurate predicted motion vector (PMV) defined in [14] is unavailable if the

MB is doing partial processing since its neighboring MVs have not been finally deter-

mined. Second, every time a MB is partially processed using one reference frame, too

much intermediate information needs to be stored for future use, because we never know

what kind of mode&ref index combination will be the best. A simple example is shown

in Fig.2.5, using different ref index may make 8× 8 become the best prediction mode in

42

Figure 2.5: Multiple reference for 8x8 mode

Figure 2.6: Predicted Motion Vector determination

the final. Intuitively, we have to keep these related information for all the modes. But

increased memory size makes it impractical. Thus, a trade-off must be made between

the efficiency and the final encoding quality.

In order to solve the problems above, we provided two schemes and made a

comparison between them. Fig.2.6 and Fig.2.7 shows how PMV is produced according

to the standard. In Fig.2.7, the meaning of ”available” is three folded: 1. physically,

this block exists; 2. this block has been fully encoded before current block; 3. the

optimal ref index of this block is the same as current reference frame. Here,”cur blk”

43

Figure 2.7: Pseudo-code for PMV computation

can be a sub-block inside a MB with any size. Obviously, for PFPA, condition no.2 and

no.3 are usually unsatisfied. So, in PFPA, we used our own definition of ”available”:

1.the same as above; 2.this block has partially encoded before current block using the

same reference frame. By this definition, ”MV A” to ”MV D” are all motion vectors

based on current reference frame. This is why these motion vectors should be kept as

intermediate motion information. So, the PMVs in partial encoding stage are just sub-

optimal. However, in the full encoding stage of a MB (see Fig.2.3), the motion vector

difference (MVD) should be computed by its neighboring and current optimal MVs.

Our two proposed schemes both keep only one best mode and related MVs,

partial encoding results and motion costs at any time. These motion costs are compared

in partial encoding or full encoding. If the current motion cost is smaller than previous

reference frame, then the corresponding motion information and distortion will overwrite

previous one.

Table.2.1 shows some statistical data for different video test sequences using

JM9.0. These sequences contains many kinds of scenes, from relatively still scene (like

”Akiyo”) to highly motive scene (like ”Mobile calendar”). The second column is the

percentage of MBs which only use the previous neighbored reference (ref index=1). The

third column shows the percentage of MBs which are benefit from multiple references

(ref index>1). The fourth to seventh column are the percentages for 4 main block sizes

44

Sequences % of MBs, % of MBs, 16× 16 16× 8 8× 16 8× 8
ref idx=1 ref idx>1

Akiyo 90.3% 9.7% 19.0% 20.2% 25.7% 35.1%

News 89.4% 10.6% 4.8% 15.0% 18.6% 53.6%

Mother and 86.9% 13.1% 32.3% 22.9% 24.7% 20.1%
Daughter

Silent 84.9% 15.1% 12.1% 12.4% 15.9% 59.6%

Hall Monitor 83.2% 16.8% 24.5% 30.0% 16.3% 29.2%

Foreman 69.3% 30.7% 28.0% 17.0% 21.3% 33.7%

Coastguard 48.1% 51.9% 11.5% 5.7% 4.6% 78.2%

Stefan 45.2% 54.8% 12.1% 14.1% 7.8% 66.0%

Mobile 20.9% 79.1% 8.4% 10.7% 6.9% 74.0%
Calendar

Table 2.1: Statistical data for H.264/AVC inter-prediction modes

if their used a reference frame with ref index>1.

From this table, we found that about 80% of the macroblocks only use their

neighbored reference frames (ref index = 1). Also, we found that 8× 8 occupies almost

50% among these 4 primary modes if ref index>1. Especially, for large-motion video

sequences, such like ”Coastguard”,”Stefan” and ”Mobile Calendar”, 8×8 actually is the

dominant mode when ref index>1. This fact inspired us with such an idea: if we only

use 8×8 mode when ref index>1, it should not bring a big degradation for the encoding

quality. This is verified to be right when we compared our mode decision scheme 1 and

scheme 2 in the following sections.

Scheme 1 assume that the encoder can use any mode for any ref index, but in

each mode, all sub-blocks should share the same reference frame. So, after each encoding

period, the previous stored motion information and distortion are all replaced (if current

motion cost if smaller), or kept unchanged.

In scheme 2, if ref index is greater than 1, only 8×8 mode is allowed. However,

in this scheme the reference frames for every 8×8 blocks are unnecessary to be the same.

45

Figure 2.8: R-D Curves for different test sequences

This means, the MVs, motion costs and distortions of these 4 8×8 blocks are stored and

compared respectively. If ref index = 1, all prediction modes are allowed, because most

of the large size prediction mode can find the best match in the first reference frame.

2.1.4 Simulation Results

In this section, several Rate-distortion (R-D) curves are provided, including

”Foreman.cif”, ”Stefan.cif” and ”Mobile Calendar.cif” with 4 kinds of encoding schemes:

JM9.0 using 5 reference frames, JM9.0 using single reference frame, Scheme 1 and

Scheme 2. The simulation is based on H.264/AVC baseline encoder, search range [-

64,64], using context adaptive variable length coding (CAVLC). Fig.2.8 compares the

rate-distortion curves among these 4 encoding methods.

It is shown that for the slight-motion sequence, the coding qualities for scheme 1

46

and scheme 2 are very close, such like Fig.2.8(a). But for the large-motion sequence, such

like Fig.2.8(b)&(c),the encoding quality of scheme 2 will be much better than scheme 1

for about 0.2-0.3 dB. Furthermore, for all kinds of video sequences, the encoding quality

of scheme 2 actually is very closed to JM9.0 optimal coding.

2.2 FME Mode Reduction

Motion estimation eliminates temporal redundancy between adjacent frames

for better coding efficiency. In order to support variable block size and quarter-pixel pre-

cision, H.264/AVC motion estimation needs large amount of computation and accounts

for 60% ∼ 90% of encoding time.

Motion estimation greedily refines the best candidate hierarchically in two

phases: Integer Motion Estimation (IME) and Fractional Motion Estimation (FME).

IME finds the integer motion vectors (IMV) for each of 41 variable-size blocks according

to both minimum sum of absolute difference (SAD) and MV-bit-rate estimation. FME

refines those 41 IMVs based on both sum of absolute transformed difference (SATD) in

quarter-pixel precision and MV-bit-rate estimation. This cascaded flow limits the FME

search area to around the IMV instead of the whole search window in H.264/AVC [10].

Currently, many VLSI architectures are based on this two-stage data flow, e.g.,

[10], [45], [31], [30], [54] and [37]. These architectures obtain coarse IMVs in the IME

stage and make mode decisions in FME stage after all the 7 modes have been iterated

with quarter-pixel precision. Some of them use hardware specific algorithms to expe-

dite the processing speed and save hardware resources, e.g., data reuse, hardware time

division multiplexer (TDM) and pipelining. However, even with these optimizations,

exercising all possible modes in FME is still a bottleneck for both memory throughput

47

and processing capability.

In this thesis, we present a statistical analysis of the key motion estimation

factors, including relationship between SAD and SATD in MB level and changes of

SATD from full-pixel precision to quarter-pixel precision in motion estimation flow,

including IME and FME. We show that in some circumstances, the final mode decision

can be made in the IME stage and fractional motion search only needs to be done for a

single mode in FME.

Reduction of motion estimation computations can be achieved using fast mo-

tion estimation and early termination algorithms, e.g., [49] and [50]. These algorithms

aim at reducing motion searching points in both IME and FME stage, while our pro-

posed scheme can be complementary to these algorithms and further speed up motion

estimation process by avoiding unnecessary modes in FME.

2.2.1 Motin Estimation in H.264/AVC

2.2.1.1 Variable Block-size Motion Search

In H.264/AVC [14], four INTER modes are supported: 16× 16, 8× 16, 16× 8

and P8 × 8. If P8 × 8 mode is selected, each 8 × 8 sub-block can select one of the

following sub-modes: 8 × 8, 4 × 8, 8 × 4 and 4 × 4. Also, depending on the encoding

algorithm (e.g., JM9.0 in [1]), if the 16 × 16 mode is selected and the corresponding

coding results satisfy certain conditions, the MB may be skipped for encoding, which is

known as SKIP mode.

Each block/subblock has its own motion vectors. The differences between

these motion vectors and their corresponding predicted motion vectors (PMVs) will be

encoded.

48

2.2.1.2 Integer Motion Search

Before the motion search of every block/subblock starts, PMVs will be pro-

vided. The standard [14] specified how PMVs are generated from neighboring blocks/subblocks

around current block/subblock. According to the [14], PMVs are pointing to the search

center of current block/subblock.

The criterion to calculate the best motion vectors in IME is based on motion

costs which consists of SAD cost, the costs of MV-bit-rate estimation and reference

information. MVs with the minimal motion cost will be selected and stored for further

refinement in FME stage.

Usually, the number of reference frames is fixed for a video sequence. So, in

most cases, it is not included in the cost equation.

Let’s define X as the pixels from current MB and X ′ as the predicted pixels

from the reference picture. S = X−X ′ denotes the difference between these two. Then,

MB level SAD is defined as (2.1) .

SAD =
∑
i,j

|Si,j |, i = 0 ∼ 15 and j = 0 ∼ 15 (2.1)

The overall cost of a MB mode is based on (2.2)

J = SAD + λmotion ×MV BITS (2.2)

Here, MV BITS stands for the number of bits which are needed to encode

the difference of current MVs and PMVs. λmotion is a quantization parameter (QP)

dependent constant which is determined by (2.3) [19].

λmotion =
√

0.85× 2(QP−12)/3 (2.3)

49

2.2.1.3 Fractional Motion Search

FME is conducted right after IME and its search center is pointed by the

optimal MVs found by IME. Half-pixels around optimal integer positions will be searched

and then quarter-pixels around optimal half-pixel positions.

The standard [14] specifies that half-pixels are interpolated using a 6-Tap FIR

from neighboring integer pixels and quarter-pixels are interpolated using a bilinear filter

from two neighboring half-pixels.

Different from IME, the FME uses SATD instead of SAD to represent predic-

tion errors. So, instead of (2.2), (2.4) is used to calculate overall prediction cost in FME.

The prediction mode and MVs with minimal cost will be selected as the final mode and

final MVs.

J = SATD + λmotion ×MV BITS (2.4)

SATD4×4 = (
∑
i,j

|DiffT (i, j)|)/2, 0 ≤ i, j ≤ 3 (2.5)

Here, SATD stands for MB level SATD which is the sum of all the SATD4×4

defined in (2.5) in that MB. In (2.5), DiffT denotes the Hadamard transformed differ-

ences of original pixels and motion compensated pixels.

2.2.2 Relationship between SAD and SATD

To simplify the analysis, the INTER prediction modes we are discussing here

include mode 16× 16, 8× 16, 16× 8 and submode 8× 8 in P8× 8 and the simulation

is based on H.264/AVC baseline. But the analysis conclusion can be extended to any

submodes under P8×8 (hereafter SAD or SATD refers to MB level SAD or SATD) and

50

Figure 2.9: MB Level SAD vs. SATD

other H.264/AVC profiles. Since in JM9.0 (without RDOPT), MB skip mode has the

same block size as the 16× 16 mode and cannot be set as the best mode until residual

coding has been finished, we consider it as a special case of the 16 × 16 mode in this

paper.

Conventional belief is that SATD is not dependent on SAD and they do not

have fixed relationships.

Fig.2.9 shows the relationships between MB Level SAD and SATD when we

encode ”Ice.CIF”. This figure seems to indicate that the ratio between SATD and SAD

is random. From the definition of SATD and SAD, SATD is a frequency-domain based

variable and SAD is spatial-domain based variable, it is true that there is no fixed

relationships between them, especially for different MBs with different video contents.

Thus, it becomes very hard to predict SATD with SAD.

However, if we think about different INTER prediction modes for the same MB,

intuitively, there should be some kind of similarities because the motion compensated

MBs in the same location but with different modes should have similar textures and

51

Figure 2.10: Statistics of Rd (“Mobile.SIF”/40 Frms/QP=24)

most likely, the trend for pixel changes will be very close.

Let’s define SATDb and SADb as the MB level SATD and MB level SAD for

the best full pixel mode in a MB. Also, we define SATDi and SADi as the MB level

SATD and MB level SAD for full-pixel modes other than the best in a MB. Then Rb

and Ri are defined as (2.6) and (2.7). Here, i = 1, 2, 3, P8× 8 and i 6= b.

Rb = SATDb/SADb (2.6)

Ri = SATDi/SADi (2.7)

Also, we define Rd as the difference between these two ratios over Rb. Note

that in this paper, Rb, Ri, Rd are all for the same MB.

Rd = (Ri −Rb)/Rb (2.8)

Fig.2.10 shows a typical statistical curve for Rd. More experimental data can

52

be found in Fig.2.11. The names of the video files used in this paper are from [2].

These two figures indicate that the ratios for SATD vs. SAD in the same MB have very

high correlations. We also found their characteristics can be closely fitted by a Laplace

distribution. Its probability density function (pdf) is

f(Rd) =
α

2 · λ
· exp

(
−α · |Rd − µ|

λ

)
,−∞ < Rd < +∞ (2.9)

Here, α > 0, λ > 0 (λ is a factor in the Laplace distribution which is not the

same as λmotion above). α is a scale factor and µ is the mean ofRd which is approximately

zero mean in most cases. Eq.(2.9) is a continuous pdf function and experimental data in

Fig.2.10 are probabilities for discrete samples. We define the interval between every two

samples as 1/α and multiplied the pdf in eq.(2.9) with this interval to get the Laplace

curve in Fig.2.10, so that the two curves have the same meaning (which is probability,

instead of probability density) and are comparable to each other.

Based on this fact, we have the cumulative distribution function (cdf) FRd
(Rd)

as:

FRd
(Rd) =


1− 1

2 · exp
(
−α ·Rd

λ

)
, Rd ≥ 0

1
2 · exp

(
α ·Rd
λ

)
, Rd < 0

(2.10)

In order to find the condition under which a minimum SAD also maps to a

minimum SATD for the same MB, we define RSAD as the ratio between the full-pixel

SAD of non-best mode and the best full-pixel mode, and RSATDf as the ratio between

the full-pixel SATD of non-best mode and the full-pixel SATD of the best mode:

RSAD = SADi/SADb (2.11)

53

Figure 2.11: Statistics of Rd and the corresponding Laplace Distribution

RSATDf = SATDi/SATDb (2.12)

Here, i = 1, 2, 3, P8× 8 and i 6= b. According to (2.6) and (2.7):

SATDi − SATDb = Ri · SADi −Rb · SADb (2.13)

= Ri · SADb ·RSAD −Rb · SADb (2.14)

= [(Rd + 1) ·Rb ·RSAD −Rb] · SADb (2.15)

= [(Rd + 1) ·RSAD − 1] ·Rb · SADb (2.16)

Since Rb · SADb = SATDb, we have:

RSATDf = (Rd + 1) ·RSAD (2.17)

If RSATDf is given, RSAD and Rd have a one-to-one mapping relationship, and

the probability that RSAD is less than a threshold is equal to the probability that Rd is

greater than another threshold. Therefore, for a given RSATDf , FRSAD
(RSAD), the cdf

54

Figure 2.12: CDF of RSAD (α = 1000, λ = 41.67)

of RSAD is:

FRSAD
(RSAD) = 1− FRd

(
RSATDf
RSAD

− 1

)
(2.18)

=



1
2 · exp

(
−α · (RSATDf/RSAD − 1)

λ

)
,

if RSATDf ≥ RSAD

1− 1
2 · exp

(
α · (RSATDf/RSAD − 1)

λ

)
,

if RSATDf < RSAD

(2.19)

Both RSATDf and RSAD are greater than zero. Since α is large (α = 1000

in our model), when RSAD � RSATDf , FRSAD
≈
(

1− 1
2 · exp

(
−α
λ

))
approaches 1.

Fig.2.12 shows the cdf of RSAD. Therefore, given an expected probability FRSAD
, once

we have RSATDf determined, we can quickly decide what will be the most probable

minimum value for RSAD. This conclusion will be used in the next section.

55

2.2.3 Relationship between full-pixel SATD and quarter-pixel SATD

At the second stage of motion estimation in H.264/AVC, FME needs to do

both the half-pixel and quarter-pixel interpolation, and also the sub-pixel motion costs

refinement. To study how much motion estimation cost (mcost) the refinement process

can save, lets define SATDq,b as quarter-pixel SATD for the best mode from IME,

SATDf,b as the full-pixel SATD for the best mode from IME, SATDq,i and SATDf,i as

the quarter-pixel and full-pixel SATDs respectively for any modes other than the best

mode. Now, two ratios about the SATDs are defined as following:

δb =
SATDq,b − SATDf,b

SATDf,b
(2.20)

δi =
SATDq,i − SATDf,i

SATDf,i
(2.21)

δd defines the differences between these two modes.

δd = δi − δb (2.22)

Fig.2.13 shows typical examples of the probabilities of δd we obtained from

experiments. It indicates that during FME, all the modes are prone to have the same

or close refinement ratio, and the best mode from IME has a better chance to produce

more improvements in FME.

The probabilities of δd are not very regular, but their cdfs are very close in

(−∞, 0), as shown in Fig.2.14.

Fig.2.14 shows Fδd(δd), the cdf of δd. These curves are created using the data

shown in Fig.2.13. In Fig.2.14, there are some big variations when δd > 0. However,

56

Figure 2.13: Probabilities of δd

what we really care is the interval when δd ≤ 0. This is further discussed below.

If the best mode in IME stage is still the best mode after FME, it must satisfy:

SATDq,b

SATDq,i
=

(δb + 1) · SATDf,b

(δi + 1) · SATDf,i
(2.23)

=
(δb + 1)

(δi + 1) ·RSATDf
(2.24)

=
(δb + 1)

(δb + δd + 1) ·RSATDf
≤ 1 (2.25)

RSATDf ≥
δb + 1

δd + δb + 1
=

C

δd + C
(2.26)

Here, C = δb + 1. So, for a certain value of RSATDf , the probability to satisfy

(2.25) is:

FRSATDf
(RSATDf) = 1− Fδd

(
C

RSATDf
− C

)
(2.27)

Since δb = (SATDq,b − SATDf,b)/SATDf,b and SATDq,b is the quarter-pixel

SATD for the best mode from IME while SATDf,b is the full-pixel SATD for the best

57

Figure 2.14: CDF of δd

mode from IME, SATDq,b must be smaller than or equal to SATDf,b, thus δb ≤ 0. As

a result, C ≤ 1 and very close to 1, it has very minor impact on FRSATDf
(RSATDf).

Therefore, we may approximate C = 1 in the analysis. For FRSATDf
(RSATDf), the

interval (1,+∞) is mapped to (−1, 0) in Fδd(δd). As we mentioned earlier, in this

interval, Fδd(δd) is almost the same for different video contents.

Based on (2.27), we plot FRSATDf
(RSATDf) in Fig.2.15. From Fig.2.15, it is

easy to see that only ifRSATDf > TRSATDf
, we will have a probability of FRSATDf

(TRSATDf
)

to keep full-pel best mode after FME. In our experiment, we take TRSATDf
= 1.05 and

FRSATDf
(TRSATDf

) = 95%. Then we substitute RSATDf = 1.05 to (2.19), we will have

a similar curve for the cdf of RSAD in Fig.2.16

From this 1-D cdf of RSAD, , it is easy to know whenever we have RSAD > 1.1,

we have a more than 90% probability to keep the best mode of full-pixel as the best

mode after FME. This provides a criterion for removing any less probable modes in

FME. A different RSAD may be chosen if a higher or lower probability is desired.

58

Figure 2.15: CDF of RSATDf

Figure 2.16: CDF of RSAD (RSATD = 1.05)

59

Figure 2.17: MV Impacts on Motion Cost

2.2.4 Impacts of Motion Vectors

Motion vector computations account for part of the cost for both IME and

FME. As shown in (2.2) and (2.4), the second part of the motion cost is dependent on

factor λmotion and MV bits.

Fig.2.17 shows how λmotion changes with QP and the relationship between

motion vector differences (MVD) and the number of bits to encode them [1]. Eq.(2.28)

is the formula for calculating MVD.

MVDx/y = MVx/y − PMVx/y (2.28)

In Fig.2.17, it is obvious that λmotion increases quickly with large QP values.

When QP is large (e.g., QP > 40), it puts a big weight on motion bits and sometimes

MV costs can even dominate the cost J in (2.2) and (2.4). This paper is primarily

targeted at high-end applications with a small QP (≤ 24), thus λmotion will be a value

smaller than 4.

60

The second part of Fig.2.17 shows the positive half of MVD, the negative part

is symmetric to it. According to Fig.2.17, if MVD changes are within ±2 units, it only

changes 2 bits at the most on MV bits. When MVD is located in certain intervals, its

small change will not impact MV bits at all.

It is shown in [39] that since the sub-pels are generated from the interpolation

of integer pixels, the correlation inside a fractional pixel search window is much higher

than that inside an integer-pel search window. Hence, the matching error decreases

monotonically as the search point moves closer to the global minimum and in most

cases, the best match in FME will be within ±2 units distance from the best match in

IME. Even in the worst case, during FME, the MVD changes will be within ±3 units.

Therefore, if λmotion is small, variations of MV bits have very low probability

to alternate the best modes.

2.2.5 Scheme for FME mode reduction and simulation results

For FME mode reduction, a very straight forward method is to use IME best

mode as the final best mode and only do sub-pixel INTER prediction for a single mode in

FME. Experimental data shows that the local image quality downgrade (Local PSNR)

for these MBs with wrong best modes may be up to 2dBs as compared with the regular

full FME flow. This local downgrade is visually noticeable in these MBs.

Fig.2.18 presents some of the experimental results of ”IME Best Mode Miss-

Rate” with different QPs and different video contents. Here, a ”Miss” means the best

IME mode was replaced by other mode in FME.

This figure also shows, even though for the same video content, the smaller

the QP, the smaller the miss-rate is, we still have a high miss-rate when QP ≤ 24.

In some cases, even if the QP is very small, the miss-rate is still above 30% (e.g.,

61

Figure 2.18: ”IME Best Mode Miss-Rate” vs QP

”Highway/CIF”).

The results in this paper are useful in two ways. First, it shows a scheme to

achieve video quality equivalent to full FME best mode flow while significantly reducing

motion estimation computation cost. Second, it shows which MBs will have video quality

downgrades if the FME mode estimation is skipped and the IME best mode is always

used as the final best mode.

Based on the observations in above sections, we know that if QP is not very

large (e.g., QP ≤ 24), and if the RSAD satisfies a certain criterion, the probability is

high that the best mode decided in IME will continue to be the best mode in FME. In

this case, sub-pixel motion search is needed for only a single mode, i.e., the best IME

mode.

62

Figure 2.19: Luminance PSNR curve for ”Foreman”

Figure 2.20: Luminance PSNR curve for ”Trevor”

63

Figure 2.21: Luminance PSNR curve for ”Highway”

Figure 2.22: Luminance PSNR curve for ”Ice”

64

Figure 2.23: Luminance PSNR curve for ”Stefan”

Figure 2.24: Luminance PSNR curve for ”Mobile”

65

Figure 2.25: Luminance PSNR curve for ”Crew”

Figure 2.26: Luminance PSNR curve for ”Soccer”

66

Figure 2.27: Luminance PSNR curve for ”Crowd Run”

This leads to a simple scheme for FME mode reduction:

1. In IME stage, calculate the costs for all the modes, from 16× 16 to P8× 8, using

the criteria in (2.2).

2. Select the mode with the minimum cost as the best full-pixel mode.

3. Calculate RSAD, the ratio between SAD of the second best mode and SAD of the

best mode.

4. If RSAD is above a certain threshold, TRSAD
, take this best mode for IME as the

best final mode and no other modes need to be considered in FME stage (in our

experiments, we choose TRSAD
= 1.1).

TABLE.2.2 shows part of our experimental data based on this scheme. All the

test videos are from [2], covering videos with different resolution and motion intensities.

Fig.2.19∼2.27 show the R-D curves in TABLE.2.2. The simulation is based on JM 9.0

(without RDOPT) and conducted under Windows XP operation system, with Intel Core

TM2 Duo 2.2 GHz CPU and 2 GB RAM.

67

We compared the test results using this scheme with test results with regular

flow, which calculates all the modes in FME. In this table, ”MB Hit Rate” is the

percentage of the MBs that satisfies the condition in step 4 above. To get the ”Mode

Hit Rate”, we take all the MBs which satisfy the condition in step 4 above, and compare

their best modes with the best modes we obtained from the regular motion estimation

flow. If these two best modes are identical, it is marked as ”Mode Hit”.

The experimental data confirms our analysis that if the best mode in IME

satisfies the condition in step 4, there is a high probability for the IME best mode to

be the final best mode. In most cases, the smaller the QP, the higher the ”Mode Hit

Rate”.

TABLE.2.2 also shows the speed-up for the FME process and the entire en-

coding process when the proposed scheme is used. In TABLE.2.2, we define ”FME

Speed-Up” as the ratio of FME processing time without vs. with the mode reduction

scheme proposed in this paper, and define ”System Speed-Up” as the ratio of overall

encoding processing time without vs. with the mode reduction scheme proposed in this

paper. As is well known, the ”System Speed-Up” also depends on the algorithms used

in other modules, such as the search strategies and early termination schemes of IME,

entropy coding selection, etc. In our simulation, fast search algorithm UMHexagonS

(Unsymmetrical-cross Multi-Hexagon-grid Search) [48] with a searching range of 16 was

used in IME and CAVLC was used for entropy coding. Since these non-FME algorithms

are not the focus of this paper, the Speed-Up comparison focuses on the speed-up pro-

vided by FME mode reduction alone.

As shown in TABLE.2.2, the speed-up factor achieved depends on video content

and quantization parameter. it is important to note that the sacrifice for gaining these

68

Table 2.2: Experimental Data for FME Mode Reduction

Video Resolution QP MB Mode Speed-Up

Name Hit Rate Hit Rate FME System

Foreman QCIF 24 36.4% 94.0% 1.42 1.16

12 60.0% 91.8% 1.83 1.23

Trevor QCIF 24 32.6% 95.9% 1.34 1.15

12 46.2% 98.9% 1.53 1.18

Ice CIF 24 22.8% 93.7% 1.21 1.10

12 32.4% 97.6% 1.29 1.13

Highway CIF 24 10.4% 96.3% 1.09 1.05

12 60.5% 99.5% 1.75 1.25

Stefan SIF 24 42.5% 98.0% 1.44 1.15

12 53.6% 98.9% 1.69 1.20

Mobile SIF 24 35.1% 95.9% 1.36 1.12

12 43.6% 96.9% 1.49 1.15

Crew 4CIF 24 18.4% 89.7% 1.16 1.07

12 80.6% 99.4% 2.62 1.40

Soccer 4CIF 24 21.4% 96.9% 1.18 1.08

12 46.4% 98.7% 1.53 1.18

Crowd 1080P 24 44.3% 99.3% 1.48 1.18

Run 12 71.5% 99.8% 2.22 1.31

69

speed-ups is almost negligible: (a) the computational cost is just the comparison of

the SADs for different prediction modes; (b) video quality drop is also very small.

Fig.2.19∼2.27 show example R-D curves. These figures show that for the same bitrate,

most of the PSNR drops are within 0.02 dB.

Considering Fig.2.18 and TABLE.2.2 together, it can be seen that when QP is

small, a large portion of the MBs satisfy step 4 and can skip FME. Mode estimation in

FME can be performed on only these MBs that do not satisfy step 4.

The method is also applicable when QP = 24, but the FME speed-up will be

smaller than applications with a smaller QP. Actually, even when ”MB Hit Rate” is 0,

the extra computational cost introduced by this method is almost negligible since it is

just to compare the SADs for different prediction modes.

This scheme can be extended by creating a subset of all the possible modes,

and comparing the minimum SAD in a subset with the SAD with other modes outside

this subset. If RSAD satisfy the condition in step 4, we only need to compute the modes

in this subset in FME. This way, we only need the modes in the subset to get a ”Mode

Hit” to save part of the mode decision computation.

2.3 Parallel Architecture for FME

This section presents a new VLSI architecture for fractional motion estima-

tion (FME) in H.264/AVC. Statistical characteristics of the motion vectors of different

inter-prediction modes are analyzed. The FME architecture explored block-level paral-

lelism and can process multiple blocks with the same prediction mode simultaneously,

external memory data accesses are dramatically reduced. Simulation results show that

the proposed architecture can support 1080P (1960x1088) at 30fps with a frequency of

70

80MHz.

As the newest international video coding standard, H.264/AVC, provides much

better image quality and compression ratio, compared with previous standards. This

mainly comes from many new techniques, such as variable block size motion estimation

(VBSME), pixel fractional motion estimation, multiple reference frame (MRF), in-the-

loop deblocking filter and so on.

However, the intensive computation of H.264/AVC is the major obstacle for

real-time encoding systems, especially consider that H.264/AVC requires almost 10 times

the computation of previous coding standards. In H.264/AVC hardware encoder[8], the

ME consists of 2 stages, the integer motion estimation (IME) for 7 block modes, and

FME with 1/2 and 1/4 pixel accuracy.

In the IME stage, all the 7 block modes are processed in parallel with the

SAD-reusing technique, and the integer motion vectors (IMV) of the 41 sub-blocks are

then transferred to FME. In the FME stage, because these 41 sub-blocks have different

IMVs, all the sub-blocks should be separately processed. Moreover, because 4x4 block

size is the smallest unit for all the block modes, usually, a 4x4 based PU is adopted

and all bigger blocks were divided into 4x4 to fully utilize the hardware, e.g. see [10].

Then the FME compuatation is in direct proportion to the number of block modes.

For H.264/AVC with 7 block modes and a single reference frame, there are 7x16 = 112

4x4 blocks. Lack of block level parallelism, blocks like 16x8, 8x16, 8x8, etc, have to be

processed sequentially, e.g. [31], [10] and [54]. To overcome this difficulty, some fast

algorithms are brought forward, e.g. [37], bilinear filters are used to replace 6-tap FIR

filters, and only single-iteration FME is needed. However, this inevitablly introduced

prediction error propagation. Considering other factors, like irregular memory accessing,

obtaining FME from IME becomes the bottleneck for the whole encoding system.

71

Figure 2.28: Mode statistics for STEPHEN.SIF

In order to improve the FME processing speed and keep the same encoding

performance, in this paper, we explored block-level parallelism and a hardware architec-

ture for parallel processing of two blocks (equal or greater than 8x8) is proposed. Also,

by adopting a shifting register array, intensive access to reference memory is significantly

alleviated.

2.3.1 H.264/AVC FME Observations

2.3.1.1 Encoding with INTER 8x8 mode or above

Our experiments show that for natural images, modes above 8x8 dominate the

final MB modes. Moreover, experiments have shown that the image quality even has

slightly better without the small block modes. Fig.2.28 shows a case with high motion

intensities and complex content details. Similar observations can also be found in [31].

Therefore, in our realized FME engine, the block modes below 8x8 are all removed,

which saves about 40% of the compuatational complexity.

72

2.3.1.2 Statistic charactistics of motion vectors

For FME, the fact that different blocks may have different IMVs prevents the

encoder from parallel processing. The relative position of neighboring blocks is not fixed,

which adds difficulties to multi-FME engines data fetching.

However, natural images are likely to have high correlations among neighboring

motion vectors (MV). Fig.2.29 is one of our experiment results. Delta MVs are the

absolute difference values between the motion vectors of neighboring blocks. Eqs (2.29)

and (2.30) are the formula for calculating delta MVs for mode 16x8 and mode 8x16.

Delta MVs for mode 8x8 is more complicated. For that mode, neighboring blocks

include both horizontal and vertical neighbors. With the reference codec, JM16, we did

experiments for most of the test medias in [2], we found more than 90% of the delta

MVs are less than 4. This is also the motivation of our FME architecture.

dmv x = |blk0 mv x− blk1 mv x| (2.29)

dmv y = |blk0 mv y − blk1 mv y| (2.30)

2.3.2 The Proposed Architecture

For H.264/AVC FME design, three important issues need to be considered.

The first is the data fetching, accesses to external memories need to be minimized. The

second is the local memory size for FME, it should be minimized because about 80% of

the chip area is occupied by on-chip memories in an ASIC. The third is the data sharing

and parallelism, which determines the FME processing speed and system frequency. The

proposed architecture improves on all three issues over prior art designs.

73

Figure 2.29: IMV Statistics for COASTGUARD.QCIF

Fig.2.30 shows our proposed FME system architecture. It consists of a control

FSM, a reference pixel array, a sampler line mux, a current MB pixel array, two FME

engines for interpolation and cost calculation, a unit for comparator and output buffer

for motion compensation (MC). The FME Control FSM gets optimal IMVs and current

Ref-Array locations from the IME engine, it controls the shifting directions of both

the Ref-Array and the Cur-MB Array, also the cooperation of all the internal FME

sub-modules described below.

2.3.2.1 Reference Pixel Array

In our design, a 32x32 pixels array is used for the reference window. This array

was used by IME before it goes to FME. Two such arrays are used to enable parallel

ping-pong processing between IME and FME.

74

Figure 2.30: FME System Architecture

75

Figure 2.31: FME Reference Array

As shown in Fig.2.31, the reference array can shift in both horizontal and

vertical directions. Each cell consists of an 8-bit flip-flop and a 4-to-1 mux. The mux

is programmed by the FME control FSM, determining the shifting direction of the

reference array.

This reference array is fetched by the IME engine and is handed over to FME

engine once IME is done. So, the reference data is only loaded once and used by both

IME and FME. This reduces intensive memory access and irregular memory addressing

issues.

2.3.2.2 Integer Pixel Sampler in Reference Array

In the reference array, we have a horizontal and a vertical sampler lines, both

with 26 samplers. The positions of these two sampler lines are fixed in the array. Only

pixels in these lines can be sampled and used for FME.

At any time, only one of these two sampler lines is active. That is, when the

array is shifting horizontally, the vertical sampler line will be used; and when the array

76

Figure 2.32: Sampler Line Mux

Figure 2.33: Two 14-Input FME Engine

is shifting vertically, the horizontal sampler line will be used.

As shown in Fig.2.32, 2-to-1 muxs are used to select either the horizontal

sampler line or the vertical sampler line. Muxs are configured by the FME control

FSM.

2.3.2.3 14-Input FME Engine

The two 14-Input (Ref-pixels) FME Engine working in parallel are the key

parts of the proposed architecture. As show in Fig.2.33, these colored input units are

from the mux outputs in Fig.2.32.

77

Figure 2.34: Interpolation Unit inside FME Engine

The FME engines make use of the statistical characteristics of IMVs which we

discussed above. 14 8-to-1 muxs are adopted for the inputs of the second FME engine.

So, the delta IMVs between neighboring blocks do not have to be zero, they can be any

values from 0 to 4, which counts more than 90% of the cases. For INTER8x8 mode, the

situation is a little bit more complicated, but we still can benefit form this architecture.

Inside every FME engine, an interpolation engine shown as Fig.2.34 is used.

It takes 14 integer reference pixels as inputs, and in every clock cycle, it will produce

8 half-pels around every selected 8 integer pixels pointed by IMVs, or 8 quarter-pels

around selected 8 half-pels pointed by half-pel motion vectors (bilinear filters were not

drawn in Fig.2.34).

Once we picked a sampler line, the input pixels to FME engine 0 are always

from the fixed locations (pixel 0 to pixel 13). On the other side, we used 14 8-to-1 muxs

for FME engine 1 to select input pixels from 21 locations. The usage of muxs is to

78

accommodate the different motion vectors among neighboring blocks.

Briefly, the tasks for these 2 FME engines include: half-pel interpolation and

motion search among 8 half-pel positions, quarter-pel interpolation and motion search

among 8 quarter-pel positions, dump reference pixels (integer-pel, half-pel or quarter-

pel) to MC stage. It will output SATD values and corresponding motion vectors for

different prediction modes, from INTER16x16 to INTER8x8.

2.3.2.4 Data Processing Order

The FME will always start from INTER8x8 mode, since it can be processed

either horizontally or vertically. As shown in Fig.2.35 and Fig.2.36, there are two data

processing orders. Depending on the MV distribution of 4 blocks in INTRA8x8 mode,

FME control unit will compute which direction will consume less processing cycles before

the Ref-Array shifting starts.

In Fig.2.35 and Fig.2.36, the blue bars stand for the active sampler lines. Once

the FME control FSM decides to shift 4 INTER8x8 reference blocks left, the data pro-

cessing order will be like Fig.2.35, followed by INTER16x8 mode, INTER8x16 mode

and INTER16x16 mode. If the FME control FSM decides to shift 4 INTER8x8 refer-

ence blocks down, the data flow will be like Fig.2.36, followed by INTER8x16 mode,

INTER16x8 mode and INTER16x16 mode.

In the best case, FME engine 0 and FME engine 1 can work simultaneously. It

can process block0 and block 1 in INTER16x8 mode, INTER8x16 mode, two half parts

in INTER16x16 mode or neighboring 8x8 blocks in INTER8x8 modes. However, the

parallel processing has to satisfy certain conditions. For INTER8x16 mode, Eq.(2.31)

should be satisfied and for INTER16x8 mode, Eq. (2.32) should be satisfied, where

79

Figure 2.35: FME Processing Flow Option 0

Figure 2.36: FME Processing Flow Option 1

80

MUX DIST is 4 in our experiments. INTER 8x8 mode has a much more complicated

algorithm, which will not be discussed in here.

|blk0 mv x− blk1 mv x| ≤MUX DIST (2.31)

|blk0 mv y − blk1 mv y| ≤MUX DIST (2.32)

If the current processing mode does not meet the parallel processing require-

ment, a miss penalty will be applied. For example, if INTER8x16 mode does not satisfy

Eq.(2.31), then after it finishes FME of block 0 in engine 0, it has to scan back for block

1 and shifts it to the desired position for FME processing in engine 1. In this scenario,

a certain number of bubble cycles are generated.

2.3.2.5 3-Stages Processing

The interpolation structure in Fig.2.34 can generate both half-pels and quarter-

pels for FME. However, if we do both of them in a single iteration, a lot of memory cells

will be used to store these sub-pels. In order to save expensive on-chip memory space,

a hierarchical processing flow consisting of 3 stages is adopted in our design.

In the first stage, half-pel FME will be conducted as stated in section D. The

best half-pel MVs (HMV) will be generated. In the second stage, quarter-pel FME is

conducted and the best quarter-pel MVs (QMV) and the best INTER mode is generated.

In the third stage, the reference pixels based on best mode and best QMV is output to

MC buffer.

81

Table 2.3: PART OF THE SIMULATION RESULTS

Video Name Motion Intensity & Content Detail Avg Cycles per MB

Container Less 198

Coastguard Median 198

Foreman Median 226

Highway High 225

Stephen Very High 319

2.3.3 Simulation Results

The proposed FME architecture and data processing order have been simulated

in a SystemC implementation. Test videos with different content details and motion

intensities have been tested. In most of the experimental results, the average FME

processing periods are around 200 clock cycles as TABLE.2.3 shows. Compared with

most of state of the art architectures, like [10] [39] and [1], it reduced about 67% memory

accesses and about 50% processing cycles. Fig.2.37 shows the possibility distributions

of number of processing cycles per MB for several video sequences with different motion

intensity and content details. Our simulation also shows that for almost all the test

videos in [2] (up to 1080P 30fps), a clock frequency of 80MHz will be sufficient.

82

Figure 2.37: Processing Cycles Distributions

83

Chapter 3

Typical Parallel Architecture for

Video Encoding

3.1 Task-Level Decomposition

In a task-level decomposition the functional partitions of the algorithm are

assigned to different processing units. Pipeline based architectures, such as .[8], belong

to this category.

Task-level decomposition requires significant communication between the dif-

ferent tasks in order to move the data from one processing stage to the other, and this

may become the bottleneck. This overhead can be reduced using double buffering and

blocking to maintain the piece of data that is currently being processed in cache or local

memory. Additionally, synchronization is required for activating the different modules

at the right time. This should be performed by a control processor and adds significant

overhead.

The main drawbacks, however, of task-level decomposition is scalability. If

the application requires higher performance, for example by going from standard to

84

high definition resolution, it is necessary to re-implement the task partitioning which

is a complex task and at some point it could not provide the required performance for

high throughput demands. Finally from the software optimization perspective the task-

level decomposition requires that each task/processor implements a specific software

optimization strategy, i.e., the code for each processor is different and requires different

optimizations.

3.2 Data-Level Decomposition

In a data-level decomposition the work (data) is divided into smaller parts and

each assigned to a different processor. Each processor runs the same program but on

different (multiple) data elements (SPMD).

In H.264 data decomposition can be applied at different levels of the data

structure (see Figure.3.1). At the top of the data structure there is the complete video

sequence. This video sequence is composed out of Group of Pictures (GOPs) which are

independent sections of the video sequence. GOPs are used for synchronization purposes

because there are no temporal dependencies between them. Each GOP is composed

of a set of frames, which can have temporal dependencies when motion prediction is

used. Each frame can be composed of one or more slices. The slice is the basic unit

for encoding and decoding. Each slice is a set of MBs and there are no temporal or

spatial dependencies between slices. Further, there are MBs, which are the basic units

of prediction. MBs are composed of luma and chroma blocks of variable size. Finally

each block is composed of picture samples. Data-level parallelism can be exploited at

each level of the data structure, each one having different constraints and requiring

different parallelization methodologies.

85

Figure 3.1: H.264/AVC Data Structure

3.2.1 GOP-Level Parallelism

The coarsest grained parallelism is at the GOP level. H.264 can be parallelized

at the GOP-level by defining a GOP size of N frames and assigning each GOP to a

processor. GOP-level parallelism requires a lot of memory for storing all the frames,

and therefore this technique maps well to multi-computers in which each processing node

has a lot of computational and memory resources. However, parallelization at the GOP-

level results in a very high latency that cannot be tolerated in some applications. This

scheme is therefore not well suited for multi-core architectures, in which the memory is

shared by all the processors, because of cache pollution.

3.2.2 Frame-Level Parallelism for Independent Frames

After GOP-level there is frame-level parallelism. In a sequence of I-B-B-P

frames inside a GOP, some frames are used as reference for other frames (like I and P

frames) but some frames (the B frames in this case) might not. Thus in this case the B

86

frames can be processed in parallel. To do so, a control processor can assign independent

frames to different processors. Frame-level parallelism has scalability problems due to

the fact that usually there are no more than two or three B frames between P frames.

This limits the amount of thread-level parallelism (TLP) to a few threads. However, the

main disadvantage of frame-level parallelism is that, unlike previous video standards,

in H.264 B frames can be used as reference [15]. In such a case, if the decoder wants

to exploit frame-level parallelism, the encoder cannot use B frames as reference. This

might increase the bit-rate, but more importantly, encoding and decoding are usually

completely separated and there is no way for a decoder to enforce its preferences to the

encoder.

3.2.3 Slice-Level Parallelism

In H.264 and in most current hybrid video coding standards each picture is

partitioned into one or more slices. Slices have been included in order to add robustness

to the encoded bitstream in the presence of network transmission errors and losses. In

order to accomplish this, slices in a frame should be completely independent from each

other. That means that no content of a slice is used to predict elements of other slices

in the same frame, and that the search area of a dependent frame can not cross the slice

boundary [44] [23]. Although support for slices have been designed for error resilience,

it can be used for exploiting TLP because slices in a frame can be encoded or decoded in

parallel. The main advantage of slices is that they can be processed in parallel without

dependency or ordering constraints. This allows exploitation of slice-level parallelism

without making significant changes to the code.

However, there are some disadvantages associated with exploiting TLP at the

slice level. The first one is that the number of slices per frame is determined by the

87

encoder. That poses a scalability problem for parallelization at the decoder level. If

there is no control of what the encoder does then it is possible to receive sequences with

few (or one) slices per frame and in such cases there would be reduced parallelization

opportunities. On the other hand, although slices are completely independent of each

other, H.264 includes a deblock filter that can be applied across slice boundaries. This

is also an option that is selectable by the encoder, but means that even with an input

sequence with multiple slices, if the deblock filter crosses slice boundaries the filtering

process should be performed after the frame processing in a sequential order inside the

frame. This reduces the speed-up that can be achieved from slice-level parallelization.

Another problem is load balancing. Usually slices are created with the same number

of MBs, and thus can result in an imbalance at the decoder because some slices are

decoded faster than others depending on the content of the slice.

Finally, the main disadvantage of slices is that an increase in the number of

slices per frame increases the bit-rate for the same quality level (or, equivalently, it

reduces quality for the same bit-rate level). [24] shows the increase in bit-rate due

to the increase of the number of slices for four different input videos at three different

resolutions. The quality is maintained constant (PSNR=40). When the number of slices

increases from one to eight, the increase in bit-rate is less than 10%. When going to 32

slices the increase ranges from 3% to 24%, and when going to 64 slices the increase ranges

from 4% up to 34%. For some applications this increase in the bit-rate is unacceptable

and thus a large number of slices is not possible. As shown in the figure the increase

in bit-rate depends heavily on the input content. The river bed sequence is encoded

with very little motion estimation, and thus has a large absolute bit-rate compared to

the other three sequences. Thus, the relative increase in bit-rate is much lower than the

others.

88

3.2.4 Macroblock-Level Parallelism

There are two ways of exploiting MB-level parallelism: in the spatial domain

and/or in the temporal domain.In the spatial domain MB-level parallelism can be ex-

ploited if all the intra-frame dependencies are satisfied. In the temporal domain MB-

level parallelism can be exploited if, in addition to the intra-dependencies, inter-frame

dependencies are satisfied.

In this thesis, we proposed a Macroblock-Level parallel architecture named

”Wavefront architecture”. It exploits both spatial and temporal parallelism and will be

discussed in chapter 4 and chapter 5. According to [24], wavefront architecture so far

has been the most scalable approach to H.264 coding.

3.2.5 Block-Level Parallelism

Since ”variable block size” is one of the primary features of H.264/AVC, block-

level parallelism becomes possible. As in section 2.3, we proposed a block-level parallel

architecture for FME. However, scalability is still an issue due to the limited number of

blocks in a MB.

89

Chapter 4

Wavefront Configurable Parallel

Architecture

In this chapter, we will presents a new method for parallel processing of H.264

video encoder using data partition and task scheduling that fully exploits all data depen-

dencies for maximal compression. The new method achieves the optimal compression

at a frame rate that increases approximately linearly as the number of parallel pro-

cessing elements. This is a significant improvement over prior art parallel encoders for

H.264 which invariably sacrifice data dependency and/or optimal coding mode. It is

shown that the new method outperforms prior approaches in both encoding speed and

compression efficiency. This paper also gives the relation between the number of par-

allel processing elements and the theoretical encoding time and the relation between

the number of processors and the number of concurrently processed frames. Software

simulation shows that this parallel processing method achieves the same compression

quality as a sequential processing encoder, e.g., the JM series.

Compared with MPEG-4 Simple Profile, up to 50% bitrate reduction is achieved

90

at the cost of more than four times of computational complexity [9]. Therefore, hardware

or software acceleration, especially parallel structure, is a must for real-time applications.

Multiple-processor and multiple-threading encoding system have been used for

real-time video encoding [12]. However, up to now, no satisfactory solution has been

found that can partition video data for parallel processing while at the same time max-

imally exploit the temporal and spatial data dependencies for optimal coding efficiency.

Parallel algorithms are discussed in many papers,e.g., [12][18][3][35][53]. A sin-

gle chip encoder for H.264 in [18] used a four-stage macroblock pipeline architecture.

Although satisfactory R-D tradeoff is reported, it made approximations of neighboring

encoding information in finding the optimal coding mode of the current MB. Therefore,

its coding result can only be sub-optimal. An H.264 encoder using the Intel hyper-

threading architecture is reported in [12]. It splits a frame into several slices and these

slices are processed by multiple threads. However, these extra slices bring heavy over-

heads because of the slice header and the impairments to data dependencies among

MBs. Y.K.Chen,et al. performed experiments to find relations between bit-rate and

the number of slices in a picture [12]. In another word, the approach in [12] sacrifices

coding efficiency in exchange for parallel threading. In [3], a frame is divided into many

small partitions with overlapping areas and these partitions are processed concurrently.

Unfortunately, this kind of partition is not feasible for H.264, because the encoder needs

previous MVs in raster-scan order.

We will show in this chapter that how our new method does not suffer from

the problems faced by prior art approaches.

91

Figure 4.1: Intra- & inter-frame data dependencies

4.1 Primary Data dependencies in H.264/AVC

The reference software JM 9.0 for H.264/AVC provided by JVT adopts se-

quential processing of each macroblock (MB) and creates data dependencies that makes

parallel processing difficult. However, by exploring these data dependencies, the JM

encoders can produce the optimal bitstream in terms of coding efficiency, therefore,

the highest compression ratio. For easy comparison with the JM, this paper only con-

siders coding efficiency. We realize that optimal subjective quality may have different

requirements, however it is not dealt in this paper.

Our objective is to explore elements of the encoder that can be processed

in parallel and at the same time, maximally exploit the temporal and spatial data

dependencies for optimal coding efficiency.

4.1.1 Predicted Motion Vector & Inter-prediction

In inter-prediction, predicted motion vector (PMV) defines the search center of

motion estimation. This variable is very useful in maintaining continuity of the motion

field. It is determined by the MVs of its neighboring subblocks (MVA,MVB and MVC)

and the corresponding reference indexes [2], as shown in Fig.4.1 (a). Only the difference

92

(MVD) between the final optimal motion vector (MV ′) and PMV will be encoded.

Similar to previous standards, H.264 also needs the reconstructed images from

encoded frames as reference to exploit temporal redundancy. Thus, at least the co-

located MB and its eight neighboring MBs in the reference frames must be available

before current MB can be encoded, as shown in Fig.4.1 (b).

4.1.2 Quarter-pel interpolation and deblock-filtering

In H.264, traditional half-pel accuracy prediction is extended to quarter-pel.

Before the reconstructed result of current MB can be used as reference for its next

frame’s coding, it must be interpolated to get these pixel values in quarter-/half-pel

positions. This operation in the boundary area of current MB needs 3 rows/columns of

pixels from its neighboring MBs (A, B, C, D, see Fig.4.1 (a)).

Also, in order to compensate the block artifacts brought by block-based ME

and transform. H.264 uses a adaptive deblock-filter. The filter-strength factor is also

determined by the prediction mode and pixel values of neighboring blocks [14]

4.1.3 4× 4 & 16× 16 intra-prediction & mode decision

H.264 has 9 4× 4 intra-predictions and 4 16× 16 intra-predictions. For detail,

see [14]. As shown in Fig.4.2, the dark pixels from neighboring blocks of current MB

are needed for intra-prediction.

4.1.4 Context-adaptive variable length coding (CAVLC)

CAVLC is another powerful tool which makes H.264 efficient. The first VLC,

coeff token, encodes both the total number of non-zero transform coefficients (TotalCo-

effs) and the number of trailing ±1(T1). There are 4 choices of look-up table to use for

93

Figure 4.2: Intra-prediction data dependencies

encoding coeff token, described as Num-VLC0, Num-VLC1, Num-VLC2 and Num-FLC

(3 variable-length code tables and a fixed-length code). The choice of table depends on

the number of non-zero coefficients in upper and left-hand previously coded blocks NU

and NL.

4.2 Data partition and task priority

4.2.1 Data partition

From section 4.1, we observe the following:

• MBs in different frames can be processed concurrently, only if its necessary recon-

structed MBs from reference frame are all available.

• MBs from different MB rows in the same frame can also be processed concur-

rently, only if its neighboring MBs in its top MB row all have been encoded and

reconstructed.

Fig.4.3 is an illustration of this observation. This simple but powerful obser-

vation is the basis of our new data partition and task scheduling method, hereafter

referred to as Wavefront Parallelization. In this example, three frames are concurrently

processed. The gray areas represent MBs which have been encoded and checkered MBs

94

Figure 4.3: Concurrently processed MBs

are being encoded concurrently now.

A distinguishing property of Wavefront Parallelization is that if there are suf-

ficient numbers of processors and the video sequence is long enough, Wavefront Paral-

lelization can achieve a constant frame rate regardless how large the video format is,

e.g., QCIF, CIF or HDTV720. Taking Fig.4.3 for instance, the encoding process of a

new frame can be started as soon as the 2x2 MBs in the top-left corner of its previous

frame are all encoded, because this is the minimum requirement for motion search of

inter-prediction. This means, with the increase of frame number, the average encoding

time for a frame approaches to only 4 TMB (where TMB is the encoding time for a

macroblock). The number of processor units needed to achieve this is:

Pn = bframe size in MB/4c (4.1)

In practice, we cannot have a large number of processor units. We will show

that majority of the benefit can be achieved with only a small number of processor units.

In Wavefront Parallelization, each frame is first partitioned into MB rows as

shown in Fig.4.4. This is because a MB cannot be processed until its left neighbor in

the same MB row is encoded. All MBs in the same MB row will be processed by the

95

Figure 4.4: Processing units in a frame

Figure 4.5: Theoretical processing time per frame for QCIF

same processor or thread to reduce data exchanges between processors.

4.2.2 Task assigning and priorities

Fig.4.7 gives the task assigning timing diagram for the ideal case (number of

processors = Pn). Here, T = TMB. However, this requires 25 processors for QCIF

to achieve the optimal encoding speed; 99 processors for CIF, and 900 for HDTV720P.

This is not practical.

Fig.4.5 is our simulation result of the theoretical encoding time of a video frame

with QCIF format. The results for CIF, HDTV720P are also similar. This figure shows

the relation between the number of processors (horizontal axis) and the encoding time of

96

Figure 4.6: Number of concurrently processed frames (QCIF)

Table 4.1: Simulation Result for ”Grandma.yuv” (QCIF)

Avg enc time SnrY SnrU SnrV # of bits Speed
per frame Up

Wavefront 273 ms 37.157 39.869 40.450 61464 3.17
simulator

JM 9.0 865 ms 37.157 39.869 40.450 61464 1

Table 4.2: Simulation Result for ”Paris.yuv” (CIF)

Avg enc time SnrY SnrU SnrV # of bytes Speed
per frame Up

Wavefront 1272 ms 35.729 39.181 39.279 128419 3.08
simulator

JM 9.0 3914 ms 35.729 39.181 39.279 128419 1

Figure 4.7: Task assignment timing diagram

97

a frame (vertical axis and with TMB as the unit). As can be seen, most of the speedup

benefit can be achieved using a small number of processors.

If only a small portion of processors are used, not all the checkered MBs in

Fig.4.3 that are ready for processing can be processed concurrently. Thus, priority based

task scheduling is necessary to guarantee that the processors can be fully utilized.

Here we defined the priorities in two levels: the first is the inter-frame level,

and the second is the intra-frame level. The priority of the inter-frame level is higher

than the intra-frame level. The inter-frame level priority means that in the video source

buffer, if several MBs belonging to different frames are ready to be encoded concurrently,

the MBs in the frame with smaller frame number should be encoded first. The intra-

frame level priority means that if several MBs belonging to different MB rows in the

same frame are ready to be encoded concurrently, the MBs in the row with smaller row

index should be encoded first.

4.3 Software simulation

Our wavefront simulator is developed using C language and implemented in

a PC with a P4 2.8GHz processor and a 512MB memory. The simulation results are

compared with those from JM 9.0, a sequential encoding structure.

In our software simulation of an encoder for H.264 baseline profile, four proces-

sors are simulated. Some of the encoder parameters are: one reference frame, searching

range for ME: ±10, Hadamard transform is used for motion cost estimation, full R-D

optimization, CAVLC for entropy coding.

We also performed simulations to obtain the relationship between the number

of processors (horizontal axis) and the number of concurrently processed frames (vertical

98

axis) for different video formats. Due to space limitation, only result for QCIF is given

in Fig.4.6.

In order to simplify the encoder, we choose to encode 2 frames simultaneously

at the most. From Fig.4.6, we found that 4 processors are the upper limit.

The simulator collects the maximal encoding time among every 4 concurrently

processed MBs and the corresponding time spent on data partition and communication.

Some of the simulation results are presented in Table.4.1 and Table.4.2. In Table.4.1, we

used ”Grandma.yuv” (QCIF) as video source, 50 frames are encoded as ”IPPP” struc-

ture. In Table.4.2, we used ”Paris.yuv” (CIF) as video source, 50 frames are encoded as

”IPPP” structure. Experiments show that a speedup of more than 3 times is achieved

and the encoding quality is the same as JM 9.0.

99

Chapter 5

System Simulation using Tensilica

XTMP

5.1 XTENSA Processors

5.1.1 Processor Architectures

The Xtensa synthesizable processor core is based on Tensilica’s Xtensa tech-

nology, the first configurable and extensible DPU architecture designed specifically to

address embedded System-On-Chip (SOC) applications. The Xtensa architecture, as

illustrated in Figure.5.1, was designed from the start to be configurable, which allows

designers to precisely tailor each processor implementation to match the target SOC’s

application requirements. Members of the Xtensa processor family are unlike conven-

tional embedded processor cores, they change the rules of the SOC game. Using Xtensa

technology, the system designer molds each processor to fit its assigned tasks on the

SOC by selecting and configuring predefined architectural elements and by inventing

completely new instructions and hardware execution units that can deliver application-

100

Figure 5.1: Xtensa LX3 Processor Architectural Block Diagram

specific performance levels that are orders of magnitude faster than alternative solutions.

In addition to the processor core, the Xtensa Processor Generator automatically gener-

ates a complete, optimized software-development environment that includes customized

operating system support for each processor configuration. The power and flexibility

of the configurable Xtensa processor family make it the ideal choice for complex SOC

designs.

Tensilica’s Xtensa architecture consists of various standard and configurable

building blocks. Configurable function blocks are elements parameterized by the system

designer. Optional function blocks indicate elements available to accelerate specific

applications. The optional and configurable blocks have optional elements (such as timer

interrupts and interrupt levels) that can be individually scaled to fit specific applications.

SOC hardware and firmware designers can add advanced functions to the processor’s

101

architecture in the form of hardware execution units and registers to accelerate specific

algorithms. Common to all configurations is the Xtensa base instruction set architecture

(ISA).

Tensilica delivers five technologies to help designers build SOCs for embedded

applications:

• The Xtensa processor architecture based on a highly configurable, extensible, and

synthesizable 32-bit processor. Many designer-defined, application-specific families

of processors can be built around the base Xtensa ISA to optimize factors such

as code size, die size, application performance, and power dissipation. Designers

define new processor instructions, execution units, and registers using the Tensilica

Instruction Extension (TIE) language.

• A generated software tool suite to match the configured processor architecture.

This tool suite includes the Xtensa C/C++ compiler (XCC), a macro assembler,

linker, debugger, diagnostics, reference test benches, and a basic software library.

XCC provides C++ capabilities equivalent to the GNU C++ compiler version

4.2. It improves code performance relative to GCC in many cases and provides

vectorization support for the ConnX Vectra LX DSP Engine, for the ConnX D2

DSP Engine, and for TIE processor extensions generated by Tensilica’s XPRES

compiler.

• Xtensa Xplorer, which serves as a cockpit for single- and multiple-processor SOC

hardware and software design. Xtensa Xplorer integrates software development,

processor optimization and multiple-processor SOC architecture tools into one

common design environment. It also integrates SOC simulation and analysis tools.

Xtensa Xplorer is a visual environment with a host of automation tools that makes

102

creating Xtensa processor-based SOC hardware and software much easier. Xplorer

serves as a cockpit for basic design management, invocation of Tensilica processor

configuration tools (the Xtensa Processor Generator and the TIE compiler), and

software development tools. Xtensa Xplorer is particularly useful for the develop-

ment of TIE instructions that maximize performance for a particular application.

Different Xtensa processor and TIE configurations can be saved, profiled against

the target C/C++ software, and compared. Xtensa Xplorer includes automated

graphing tools that create spreadsheet-style comparison charts of performance.

• A multiple processor (MP)-capable instruction set simulator (ISS) and C/C++

callable simulation libraries.

• The XPRES compiler: a software tool capable of automatically generating performance-

boosting processor extensions based on the analysis of target C or C++ application

source code. The XPRES compiler sets a new benchmark for the automation of

processor design and vastly improved designer productivity. This tool analyzes the

target software source code, quickly generates thousands or millions of alternative

processor designs, evaluates these designs for performance and gate count, selects

the optimal design based on designer-defined criteria, and finally produces a de-

scription of the selected processor in TIE, which is then submitted to the Xtensa

Processor Generator.

All development tools are automatically built to match the exact configuration

specified in the Xtensa Processor Generator. Together, these technologies establish an

improved method for rapid design, verification, and integration of application-specific

hardware and software.

103

5.1.2 Primary Features

The Xtensa processor offers complete and robust development tools, system

building blocks, and packages to develop the target embedded system-on-chip solution:

• Xtensa Processor Generator

– Automatic and rapid generation of RTL, companion software development

tools, and simulation models.

• Tensilica Instruction Extension (TIE) language

– Designer-defined instructions are easy to construct and are automatically

integrated with the base processor.

– The Xtensa LX3 processor features FLIX (flexible-length instruction exten-

sions) technology, which allows designers to create wide instruction words (32

or 64 bits) with multiple operation slots. These multiple slots can contain

operations that use the base Xtensa general-purpose register file and drive

the base Xtensa ISA function units as well as a second load/store unit added

through processor configuration and new registers, register files, and execu-

tion units added through designer-defined TIE descriptions. FLIX instruc-

tions can be freely and modelessly intermixed in the processor’s instruction

stream along with the processor’s native 24- and 16-bit instructions.

– The Xtensa LX3 processor also features TIE ports, queues, and lookups,

which allow designers to create high-speed I/O channels that communicate

directly with TIE-based execution units and registers within the processor.

• Optional function units to fit each application

104

– 16x16-bit and 32x32-bit multipliers

– 16x16-bit MAC

– Integer divider

– CLAMPS, MIN/MAX, NSA, and Sign Extension

• Floating-point options

Xtensa processors have two floating-point configuration options: a single-precision

floating-point unit and a double-precision floating-point accelerator. One, or both

of these floating-point configuration options can be selected.

• HiFi 2 Audio Engine with optional software audio codecs

• ConnX D2 DSP Engine with 16-bit DualMAC SIMD on a 2-way FLIX architecture

• ConnX Vectra LX DSP Engine with QuadMAC SIMD on a 3-way FLIX architec-

ture

• Memory-Management Options

– Region-based memory protection

– Region-based memory protection with translation

– Memory-management unit with Translation Lookaside Buffer (TLB) and Au-

torefill

• Configurable processor attributes to fit the application

– Relocatable addresses for exception and reset vectors

– Big- or little-endian byte ordering

– 5- or 7-stage pipeline to accommodate different memory speeds

105

– Exceptions: non-maskable interrupt (NMI), as many as 32 external inter-

rupts, as many as six interrupt priority levels, and as many as three 32-bit

timer interrupts

– General-purpose 32-bit register file with 16, 32, or 64 entries

– Write buffer: 1/2/4/8/16/32-entry write buffer

– No write buffer (for configurations with no PIF)

– Wide Instruction Fetch Width (64-bit) option

• Configurable Interfaces

– 32/64/128-bit Processor Interface (PIF) width to main system memory or to

an on-chip system bus. Tensilica provides a complete Vera-based tool kit for

PIF bridge implementation and verification

– Optional AHB-Lite and AXI bus bridges included with each processor in-

stance

– ”No PIF” configuration option for gate-count reduction

– Optional high-speed Xtensa Local Memory Interface (XLMI)

– Inbound-PIF requests allow external access to the processors local memories

(local instruction- and data-RAM memories and the XLMI port)

– TIE ports, queues, and lookup interface ports

• On-Chip Memory Architecture

– Optional 1, 2, 3, and 4-way set-associative caches

– Write-through or write-back cache-write policy

– Cache locking per line for set-associative cache

106

– Size of instruction cache: 0/1/2/4/8/16/32/64/128 kbytes (for 1, 2, or 4-way

set associative) 0/1.5/3/6/12/24/48/96 kbytes (for 3-way set associative)

– Instruction cache line size: 16, 32, or 64 bytes

– Size of data cache: 0/1/2/4/8/16/32/64/128 kbytes (for 1, 2, or 4-way set

associative) 0/1.5/3/6/12/24/48/96 kbytes (for 3-way set associative)

– Data cache line size: 16, 32, or 64 bytes

– Optional data RAMs and ROM and optional instruction RAMs and ROM

Maximum number of each type of memory: two data RAMs, two instruction

RAMs, one data ROM, and one instruction ROM

– Size of data RAM or ROM: 0/0.5/1/2/4/8/16/32/64/128/256/512 kbytes or

1, 2 or 4 Mbytes

– Size of instruction RAM or ROM: 0/0.5/1/2/4/8/16/32/64/128/256/512 kbytes

or 1, 2, or 4 Mbytes

– One optional XLMI port, mapped to an address space of size: 0.5, 1, 2, 4, 8,

16, 32, 64, 128, 256, 512 kbytes or 1, 2, or 4 Mbytes.

– Optional busy signals for all local memory ports and the XLMI port

– Optional parity or ECC for local memory interfaces

– Local memory and PIF widths independently configurable

• Multiple-processor (MP) development and debug capabilities

– MP synchronization instructions (L32AI, S32RI, and S32C1I)

– MP on-chip debug (OCD) capability: Trace and instruction/data breakpoint

support (1 or 2 hardware-assisted instruction breakpoints and 1 or 2 hardwar-

107

eassisted data breakpoints). Support for synchronously stopping, stepping,

and resuming execution on multiple processors.

– Special processor ID (PRID) register

– GDB or Xtensa Xplorer debugger support

– Trace compressor with JTAG interface

• Software development tools (automatically generated)

– High-performance Xtensa C/C++ compiler (XCC) and companion GNU tool

chain

• Processor and system simulation environments

– Cycle-accurate, pipeline-modeling instruction set simulator (ISS) with a fast

functional simulator module called TurboXim available as a separate cost

option

– Xtensa Modeling Protocol (XTMP), a C-based API to the instruction set

simulator

– Xtensa SystemC (XTSC) package, which provides SystemC interfaces for

both transaction-level and signal-level system modeling

– XTSC-based SystemC-Verilog co-simulation, available as a separate cost op-

tion

• Robust EDA environment support

– Standard and physical synthesis design flow

• Verification support

– Diagnostics for the Xtensa core and designer-defined TIE verification

108

• Broad support for real-time operating systems

• System Integration Building Blocks

– AHB-Lite and AXI bus bridges.

– Xtensa Bus Designer’s Toolkit (a.k.a., PIF Kit) for bus-bridge design.

5.2 XTMP Introduction

The stand-alone simulator allows you to simulate and verify the behavior of a

single Xtensa processor connected to simple memories. However, the stand-alone ISS

is not appropriate for designs that consist of multiple Xtensa cores, TIE ports, queues,

and lookups, custom memories or other hardware devices.

For system simulation, Tensilica provides the ISS application programming

interface (API), also referred to as the Xtensa Modeling Protocol (XTMP). XTMP

allows you to write your own customized, multi-threaded simulators to model more

complicated hardware systems. Because such a simulator is written in C, it runs much

faster than an HDL simulator. Figure.5.2 shows the comparison of the simulation speeds

when using FPGA, XTMP, CSM and RTL simulation. It is also much easier to modify

and update than a hardware prototype. Thus, XTMP allows you to create, debug,

profile, and verify the combined hardware and software systems early in the design

process.

109

Figure 5.2: System Simulation Methods

Figure 5.3: A Typical XTMP MP System

110

5.2.1 Basic XTMP Components and Connections

5.2.1.1 Simulation Clocks

Each XTMP simulation has a single global clock. To find out how many

cycles have elapsed since the simulation started, people can use the following function:

”XTMP time XTMP clockTime(void)”. This is also what we used in the following

sections for simulation time stamping.

In each simulation cycle, the global clock advances after all the cores finish the

cycle and increment their local clocks.

5.2.1.2 TIE Ports, Queues and Lookups

There are several TIE language constructs that you can use for this purpose:

state export, import wire, queue (input or output), and lookup. In XTMP, each of these

TIE constructs is referred to as an XTMP tieGroup. The TIE compiler translates each

of these constructs into one or more interface signals: one signal for a state export or

an import wire, multiple signals for a queue or a lookup. In XTMP, each of the TIE

interface signals is referred to as an XTMP tiePort.

5.2.1.3 Memory-Mapped Devices

A memory-mapped device refers to any component in your system that is

accessed by loads or stores from an Xtensa processor. The XTMP device models use

transaction-oriented interfaces. When a simulated Xtensa core issues a load or store

request to a device attached to the PIF or a local port, the callback function associated

with that device model is invoked. The device callback function receives the information

about the transaction (transfer record), processes this information, and sends back a

111

response to the core.

Figure.5.3 shows a typical XTMP MP system consists of two cores with their

own RAMs and ROMs which are connected to the core through a PIF connector. A

DPRAM is shared by these two cores.

5.3 System Architecture

Our target in the simulation is to prove that the wavefront architecture can

improve system performance by increasing the number of processors with small overhead.

In this thesis, we will try to verify a quad-core system which can encoded real-time (25

FPS) videos with YUV420 CIF format, the system frequency is 150MHz.

5.3.1 HW/SW Partition

With a pure software solution, we found it may take more than 500000 clock

cycles to encode a MB in I-Slice and more than 1500000 clock cycles to encode a MB

in P-Slice (searching range = ±16). However, The real-time requirement needs each

MB to be encoded in ∼ 60000 clock cycles. It is obvious that pure software solution

in a quad-core system can not meet the requirement. So, we will have to do HW/SW

partition and implement hardware modules around each core to accelerate the encoding

process.

In our implementation, we have two kinds of cores: ”System Control Core (SC-

Core)” and ”Peripheral Core (P-Core)”. SC-Core is in charge of task scheduling and

interrupt service routing (ISR). P-Core is carrying on the real encoding task. When we

talk about ”core” alone, we referred to P-Core.

Figure.5.4 shows our proposed architecture for XTMP wavefront simulation.

112

Task scheduling is implemented by software running in SC-Core. Communications be-

tween SC-Core and P-Core are interrupt based.

Peripheral modules (P-Module) around each P-Core are used to accelerate the

encoding tasks and are controlled by their master P-Core. Peripheral modules in our de-

sign include (1) intra luma 4×4 module, (2) intra luma 16×16 module, (3) intra chroma

module, (4) inter prediction module, (5) post processing module and (6) stream packer

module. In Figure.5.4, we gave a generic name to them: ”PERI A∼PERI N”.

To make it easier for data transfer and communication, we also implemented

DMAC and INTC modules for both SC-Core and P-Cores. Softwares running at P-

Cores are in charge of the following: (1) ISR, (2) coordinate the data transfers and

communications among P-Core, shared memories and these P-Modules.

Each core, either SC-Core or P-Core, needs to use bus bridge to talk to their

P-Modules and other shared resources. The interface between core and bus bridge is

called ”Processor Interface (PIF)” which uses a protocol defined by Tensilica.

5.3.2 Development Flow

The development of the XTMP simulation environment consists of two parts:

hardware and software. These two parts are developed separately using different tools.

5.3.2.1 Hardware Development Flow

XTMP Modeling Protocol provides a model of Xtensa processors for software

system simulation and corresponding hardware components. It also provides Application

Programming Interface (API) to the ISS, available in library form.

The primary features of the hardware part includes: (1) Model and debug sys-

tems with one or more Xtensa processors and custom peripherals. (2) System simulation

113

Figure 5.4: Architecture for XTMP Wavefront Simulation

114

Figure 5.5: XTMP Hardware Development Components

is cycle accurate. (3) Provides a transactional level model of Xtensa.

Fig.5.5 shows the components and flows we used to build the simulation exe-

cutable file ”h264 hw sim.exe”:

• First, we used ”Xtensa Xplore” (GUI for Xtensa System Development) to cus-

tomize the processors, like the bus width, cache sizes, little/big endian, interrupt

configuration etc. Primary configurations of our implementation is as Table.5.1.

• Then, we upload these configurations to Xtensa Processor Generator. It may take

couple of hours to build the core. After that, we download a parameter file (in our

case, named ”Xtensa h264 core-params”) which will be used in the compilation.

115

Table 5.1: Primary Core Configurations

PROTOTYPE PIF BITS ENDIANESE HAS PRID

DC233L 32 LITTLE YES

DCACHE DCACHE DCACHE DCACHE
SIZE WAYS WRITE BACK LINE BYTES

4096 2 YES 32

ROM LOCAL NUM EXT WITH MMU
SIZE RAM SIZE INTERRUPTS

64KB 4MB 17 YES

• The compilation and link tools are from ”Microsoft Visual Studio 2008 SP1”.

”h264 hw xxx.c” files described the system architecture and hardware function-

alities of the system modules, like SC-Core and P-Cores, memories, bus bridges,

DMAC, interrupt controllers and some other hardware acceleration blocks for the

encoder, etc. ”Xtensa h264 core-params”, ”fiber-driver.c” and ”XTMP.lib” are all

XTMP related system files.

• The build target is ”h264 hw sim.exe”. To run the simulation, we will need

”h264 hw sim.exe” work together with two software images built for SC-Core and

P-Cores respectively. Software development flow will be discussed in next section.

5.3.2.2 Software Development Flow

The software development flow will generate two images with ELF format:

”h264 sw core ctrl main.out” and ”h264 sw.out”. The first image will be used for the

SC-Core, the second will be used for P-Cores.

Figure.5.6 shows details of this flow. In this figure, LSP stands for ”linker

support package”. A LSP specifies object files to pull into an executable using a specific

memory map, and is used as a convenient short-hand for telling the linker what it

116

Figure 5.6: XTMP Software Development Components

needs for a particular target environment. ”lsp-sim” is the default LSP when we do

compilations.

After we defined the hardware system as previous section, we may need to

modify the memory map ”memmap.xmm” since we may have added new memory mod-

ules. ”xt-genldscripts.exe” was used to convert ”memmap.xmm” to a linker script file

”elf32xtensa”. In most applications, we may want to modify the properties of certain

pieces of memories. For example, we may want to make shared memory regions to

be unbufferable and uncacheable to avoid coherence issues. In those cases, we have to

modify the linker script ”elf32xtensa”.

Among the source files, ”XTMP config.h” was generated by the Xtensa Proces-

sor Generator. It contains the configuration information of the generated cores. We also

put our register definitions of all the P-Modules to this file. ”h264 sw core ctrl main.c”

is the source file for SC-Core software, it implemented the task scheduling algorithms

and ISR. ”h264 sw.c” and ”h264 sw mb processing.c” are the source files for P-Core

software. They implemented the algorithms for ISR in P-Core and controls over all the

117

P-Modules around that P-Core.

Xtensa compiler ”xt-xcc.exe” can do both the compiling and linking if you use

it alone.

5.3.3 Components in System Architecture

As in Figure.5.4, the system consists of the following components. In this

section, we will discuss the functionalities, register definitions of these components and

how they are communicating with each other.

5.3.3.1 SC-Core and P-Cores

Our implementation used five cores for simulation: one SC-Core for the system

control and task scheduling among the other four P-Cores for parallel encoding. When

we are talking about quad-core system, it means four P-Core system. Both SC-Core

and P-Cores are using the same configuration described in Table.5.1.

5.3.3.2 Bus Bridge

SC-Core and P-Cores communicate with their P-Modules through Processor

Interfaces (PIF). In our configuration, each core only has one PIF and more than one

P-Modules. So, we designed a ”bus bridge” to solve this issue.

In our implementation, the bus bridge can also be called bus matrix. In XTMP,

it analyzes the incoming transactions and forwards them to corresponding destinations.

By using the bus bridge, ”Core-to-Peripherals” and ”Peripherals-to-Peripherals”

transactions can be processed in parallel, then makes DMA operations become possible.

In our implementation, each core has a bus bridge with it. The only case that

a core can bypass the bus bridge is to access I/D-Caches.

118

5.3.3.3 Memories

In order to simplify the design and make debug easier, we used XTMP default

memory type for all the memories in the system. In our implementation, both SC-

Core and P-Cores have their own local private memories which can only be accessed by

themselves. Also, we have two kinds of shared memories: (1) Shared memories between

every two P-Cores, which can also be accessed by SC-Core but are invisible for other

P-Cores. We define them as ”Local Shared Memories”. (2) Global shared memories,

which can be accessed by all the cores (both SC-Core and P-Core). We define them as

”Global Shard Memories”.

• Local Private Memories

Each core has a local memory which is used to store software images for that core,

stack/heap and some temporary data.

In order to improve the core performance, local private memory is cacheable and

bufferable by default. That means, the I/D-Caches of the corresponding core will

keep a small copy of the frequently used data in the caches and save memory access

time.

With the bus bridge, the local private memory is also accessible by some of the

P-Modules, like DMAC. Sometimes, we may need to use DMAC to transfer data

from local private memory to other P-Modules. However, if the data is still in

the caches, it may cause a cache coherence issue, which means, the data in local

memory is not the latest. In order to solve this issue, we utilized one of the Xtensa’s

Linker Support Packages (LSP) called ”lsp-sim”. By modifying the linker script

in LSP, we made a part of the local private memory to be non-cacheable and non-

bufferable. All the shared data between cores and their P-Modules is put in these

119

regions, cache coherence issues are avoided.

• Local Shared Memories

Local shared memories are used for data exchange between two P-Cores. Every

two neighboring P-Cores have such a memory. This kind of memories are not

accessible by other P-Cores, but visible for SC-Core. They are configured as non-

cacheable and non-bufferable in the linker scripts mentioned above.

• Global Shared Memories

An example is the ”Raw image and reference memory” in Figure.5.4, which is

used to store raw images generated by the camera module (raw image buffer) and

reference frames (reference buffer). In order to improve the system throughput, a

ping-pong mechanism is adopted for the raw image buffer. We split this buffer into

two parts: a ”Even frame buffer” and a ”Odd frame buffer”. When raw images

with even frame index are being processed, camera module fetches next frame

with odd frame index and vice-versa. By doing this, the time spent on raw image

fetching is hidden. So, for the encoder, whenever the raw images are needed, they

are already there.

5.3.3.4 Camera Module

Camera module is controlled by the SC-Core. After sending out a frame, it

has to be re-programmed. As shown in Table.5.2, before a frame starts, the SC-Core

needs to program the desired image width/height, frame idx. Since ping-pong buffer

mechanism is used, we also need to let the camera module know about the output

addresses for Y/U/V components.

Camera module itself has an output engine. So, once the CTRL.BIT0 is set,

120

Table 5.2: Register Definitions of Camera Module

Addr Register Name Description
Offset

0x00 CTRL Camera Control Register
BIT0: Camera starts
BIT1: Camera reset

0x04 WIDTH Image Width Register

0x08 HEIGHT Image Height Register

0x0C FRM IDX Image Index Register

0x10 Y ADDR Y Component Address Register

0x14 U ADDR U Component Address Register

0x18 V ADDR V Component Address Register

0x1C OUT CNT Output Frame Count Register

0x20 STATUS Status Register
BIT0: Busy
BIT1: Ack

camera module will start to send raw image data to designated memory addresses with-

out the interference of DMAC. Once a frame was sent, STATUS.BIT1 will be set to 1,

reset will clear it.

In our simulation, the camera module will read from a raw data file based on

the requirement of the SC-Core.

5.3.3.5 PIF System Control Unit (SCU)

The synchronization between SC-Core and other P-Cores are interrupt based.

SCU was designed to handle interrupts and some of the information exchange between

SC-Core and P-Cores. Interrupts between a core and its own P-Modules are handled

by corresponding INTCs.

Figure.5.7 illustrates the process for the interrupt based system control flow in

our design. Figure.5.7(A) stands for the flow in SC-Core side and Figure.5.7(B) stands

for the flow in the P-Core side. Table.5.3 shows the register definitions of SCU.

121

Figure 5.7: Interrupt Based System Control Flow

122

In Figure.5.7, red blocks stand for an action which may cause SCU to assert

an interrupt. For example, writing SCU.CORE0 CMD register will make SCU assert an

interrupt to CORE0. In the interrupt service routine (ISR), CORE0 knows that a new

task has been assigned and then read register SCU.CORE0 CMD to get the new task

information, like ”frm idx”, ”mb y” and ”mb x”, etc. Similarly, once CORE0 finished

encoding a MB, it will write SCU.CORE0 STAT register and make SCU assert an inter-

rupt to SC-Core. After receiving this interrupt, the SC-Core will check SCU.INT STAT

register to see which bit has been set (each bit represents a specific P-Core) and then

mark corresponding core to be ”available”. If all conditions are met, a new task will be

assigned to that available P-Core very soon.

In our system design, each core only has one interrupt port being used. If

multiple P-Cores send interrupts to SC-Core through SCU in a very short time window,

we need to make sure every interrupt gets processed. For this purpose, we implemented

a counter named ”irq cnt” in the SCU design. Whenever a P-Core writes the corre-

sponding SCU CORE STAT register, this counter will increment by 1 and whenever the

SC-Core writes any SCU CORE CMD register, this counter will decrease by 1. Only if

irq cnt > 0, the interrupt signal line between the SC-Core and SCU will remain high.

When irq cnt = 0, the interrupt signal line will be pulled low and ISR in SC-Core

software will not be called any more.

As we can see in Table.5.3, SCU is also used to deliver some side informa-

tion from SC-Core to P-Cores, such as raw image buffer addresses and reference buffer

addresses.

123

Table 5.3: Register Definitions of PIF SCU

Addr Register Name Description
Offset

0x00 INT STAT Interrupt Status Register
BIT0: 1 - core0 interrupt asserted
BIT1: 1 - core1 interrupt asserted
BIT2: 1 - core2 interrupt asserted
BIT3: 1 - core3 interrupt asserted

0x04 INT CLR Interrupt Clear Register
BIT0: 1 - clear Bit0 in INT STAT
BIT1: 1 - clear Bit1 in INT STAT
BIT2: 1 - clear Bit2 in INT STAT
BIT3: 1 - clear Bit3 in INT STAT

0x08 CORE0 CMD Core0 Command Register
BIT0: mb start flag
BIT1: mb type
BIT2-7: rsvd
BIT8-15: frm idx
BIT16-23: mb y
BIT24-32: mb x

0x0C CORE0 STAT Core0 Status Register
BIT0: mb done
BIT1: mb type
BIT2: in sync
BIT3-7: rsvd
BIT8-15: frm idx
BIT16-23: mb y
BIT24-32: mb x

0x10 CORE1 CMD Core1 Command Register

0x14 CORE1 STAT Core1 Status Register

0x18 CORE2 CMD Core2 Command Register

0x1C CORE2 STAT Core2 Status Register

0x20 CORE3 CMD Core3 Command Register

0x24 CORE3 STAT Core3 Status Register

0x28 CFG Configuration Register
BIT0: reset

0x2C CORE0 INIT FLAG Core0 initialization finish flag

0x30 CORE1 INIT FLAG Core1 initialization finish flag

0x34 CORE2 INIT FLAG Core2 initialization finish flag

0x38 CORE3 INIT FLAG Core3 initialization finish flag

0x3C BUF EVEN ADDR Address for even frames in the
raw image ping-pong buffer.

0x40 BUF ODD ADDR Address for odd frames in the
raw image ping-pong buffer.

0x44 REF Y ADDR Address for the Y component
in the reference buffer.

0x48 REF UV ADDR Address for the UV components
in the reference buffer.

124

5.3.3.6 Direct Memory Access Controller (DMAC)

Each cores in the system has its own DMAC. DMACs are used to transfer data

between their master cores and other P-Modules. Single and burst transfers are both

supported in our system, the bus width is 32-bit.

DMACs also support linked transfers. For that purpose, a table for Linked

List Items (LLI) needs to be used. Each item consists of 4 parts: (1) Source Address,

(2) Destination Address, (3) Next LLI Address, (4) Transfer Size. For the last transfer,

”Next LLI Address ” has to be ”0”. Due to the possible cache coherence issue, we put

all LLIs in non-cacheable and non-bufferable regions in the local private memory.

Table.5.4 shows the register definitions of DMAC. The finish of a transfer

can be checked in two ways: (1) Once the transfer finished, DMAC will inform INTC

module by writing a 1 to INTC STATUS.BIT1 in Table.5.5. Then INTC will assert an

interrupt to its master core, (2) Master core can check DMAC.STATUS.BIT1, which is

the acknowledge bit of the DMA transfer.

5.3.3.7 Interrupt Controller (INTC)

INTC is a very important module to free its master core from keep polling the

status of a P-Module. When a module wants to inform its master core by interrupt,

it only needs to set the corresponding bit in INTC.STATUS register, then INTC will

assert an interrupt to the master core. ISR in the the master core will, in turn, check

INTC.STATUS to figure out the interrupt source. As in Table.5.5, writing to INTC.CLR

will clear desired interrupt bit.

125

Table 5.4: Register Definition of DMAC

Addr Register Name Description
Offset

0x00 CTRL DMAC Control Register
BIT0: start DMA
BIT1: reset DMA
BIT2: set timer

0x04 IN ADDR Source Memory Address

0x08 OUT ADDR Destination Memory Address

0x0C TFR SIZE Transfer Size Register

0x10 TFR CNT Transfer Count Register

0x14 STATUS Status Register
BIT0: DMA Busy
BIT1: DMA Ack

0x18 TIMER H System Timer High 32-bit

0x1C TIMER L System Timer Low 32-bit

0x20 LLI ADDR Address for next LLI Item

0x24 PRIORITY Transaction Priority Register

Table 5.5: Register Definition of INTC

Addr Register Name Description
Offset

0x00 CTRL INTC Control Register
BIT0: INTC Enable
BIT1: INTC Reset

0x04 STATUS INTC Status Register
BIT0: CAM IRQ
BIT1: DMAC IRQ
BIT2: ENC POST
BIT3: ENC INTRA LUMA 4x4
BIT4: ENC INTRA LUMA 16x16
BIT5: ENC INTRA CHROMA
BIT6: ENC INTER PRED
BIT7: ENC STREAM PACKER

0x08 CLR INTC Clear Register
Clear corresponding bit in status register

126

5.3.3.8 Intra Luma 4× 4 Module

This module is one of the P-Modules of the P-Core. It does the intra 4 × 4

prediction and output the optimal intra luma 4×4 mode, the coded block pattern (CBP)

and the prediction cost which will be used to compare with the cost in intra luma 16×16

prediction.

In our implementation, there is an internal memory inside this module, which

is used to store the current MB data and the information of neighboring MBs. Before

this module starts, all these data needs to be transferred from outside to this internal

memory.

The register definitions are as Table.5.6. After the reset (CTRL.BIT1), in-

tra luma 4×4 module will put the addresses for current MB and neighboring MBs in in-

ternal memory to register ADDR CUR MB, ADDR MB A, ADDR MB B, ADDR MB C

and ADDR MB D respectively. Here, MB A, MB B, MB C and MB D refer to the

neighboring MBs in the same frame.

Its master P-Core then load related data to these addresses using DMAC and

set CTRL.BIT0 to start the processing. Once the task finished, the master P-Core will

read out the value in COST register and compare it with the cost from intra luma 16×16

module. For the winner (with the smaller cost), its CBP and intermediate encoding

information will be copied out to core local private memory from ADDR CUR MB.

CBP is a syntax element which will be encoded in the CAVLC stage.

5.3.3.9 Intra Luma 16× 16 Module

The design and register definitions of intra luma 16 × 16 module are similar

with intra luma 4× 4. These two modules are running in parallel. When both of these

127

Table 5.6: Register Definitions of INTRA 4× 4 Module

Addr Register Name Description
Offset

0x00 CTRL Control Register
BIT0: Start
BIT1: Reset

0x04 ADDR CUR MB Loading Address of Current MB

0x08 ADDR MB A Loading Address of MB A

0x0C ADDR MB B Loading Address of MB B

0x10 ADDR MB C Loading Address of MB C

0x14 ADDR MB D Loading Address of MB D

0x18 STATUS Status Register
BIT0: Busy
BIT1: Ack

0x1C CBP LUMA Coded Block Pattern Register

0x20 COST Cost Register

two modules finished, their encoding costs will be compared, the P-Core will pick the

smaller one and the corresponding encoding information will be copied out from the

internal memory of that module.

5.3.3.10 Intra Chroma Module

Intra Chroma module starts to run after two intra luma modules finished their

tasks since intra chroma module needs to write Coef AC and Coef DC data structures

which have to be updated by intra luma modules first. The design and register defini-

tions of intra chroma module are similar with intra luma 4× 4 as well.

The modeling of these three intra modules referred to the design in [47].

5.3.3.11 Inter-Prediction Module

Tasks conducted by the inter-prediction module include IME, FME, DCT,

IDCT, quantization and inverse-quantization. Deblock filtering and entropy coding will

be in Post-Processing (PP) module discussed in next section.

128

Figure 5.8: Reference Pixels Scan Order

The register definitions of inter-prediction module are as Table.5.7. Similar

with intra-prediction modules, master P-Core will first use DMAC to transfer current

MB data and information of neighboring MBs to the internal memory of this mod-

ule. Also, the reference data will transferred from reference buffer in the global shared

memory. Different from traditional memory data layouts, we read/write the reference

buffer MB-by-MB and inside each MB, the pixels are scanned in a order described in

Figure.5.8. This way, DMAC can do a continuous transfer of all the data in a MB

without re-programming.

The best inter-prediction mode and some intermediate encoding results, like

AC/DC coefficients will be read back from ADDR CUR MB. Coded block patterns

(CBP) for both Luma and Chroma components can be accessed from STATUS register.

The value in COST register is used by the master P-Core to decide whether skip mode

should be used or not.

129

Table 5.7: Register Definitions of Inter-Prediction Module

Addr Register Name Description
Offset

0x00 CTRL Control Register
BIT0: Start
BIT1: Reset

0x04 ADDR CUR MB Loading Address of Current MB

0x08 ADDR MB A Loading Address of MB A

0x0C ADDR MB B Loading Address of MB B

0x10 ADDR MB C Loading Address of MB C

0x14 ADDR MB D Loading Address of MB D

0x18 ADDR REF Loading Address of Reference Pixels

0x1C STATUS Status Register
BIT0: Busy
BIT1: Ack
BIT2-7: RSVD
BIT8-15: CBP LUMA
BIT16-23: CBP CHROMA

0x20 COST Cost Register

5.3.3.12 Post Processor (PP)

The Post Processor module conducted two tasks: (1) deblock-filter and (2)

Entropy Coding. These two tasks are processed in parallel.

As we know, for deblock-filter and entropy coding, except the current MB itself,

the information about its neighboring MBs: MB A, MB B, MB C and MB D may also

be needed. After reset, the default values of register PP.ADDR0 ∼ PP.ADDR4 will be

the PP internal memory addresses for current MB, MB A, MB B, MB C and MB D.

The software in the master P-Core will read the addresses from PP.ADDR0 to

PP.ADDR4 and use DMAC to transfer current MB and its neighbors to corresponding

memory locations inside PP module. Setting CTRL.BIT0 will trigger PP module to

start. Then the P-Core need to either wait for interrupt requested by PP to happen, or

keep polling PP.STATUS.ACK to see if it finishes or not.

Even though in [1], deblock filtering is conducted in a MB-by-MB order, intra-

130

prediction for the whole frame has to be finished before that. The reason is, intra-

prediction needs non-filtered neighboring pixels and deblock filtering will obviously mod-

ify these data.

However, for mobile/embedded applications, the data flow in JM may not be

applicable since we don’t have enough memory space to hold the non-filtered pixels for

that long time. Especially, in our proposed wavefront architecture, the encoding of next

frame may need the filtered pixels of current frame even before the encoding process of

current frame completely finished. So, we have to find a way to make deblock filtering

really MB-based, which means, deblock filtering doesn’t have to wait till all the MBs

in current frame finishes their intra-prediction. It should be able to start when the

intra-prediction of current MB finishes.

In Figure.5.9, the red area denotes the pixels which will be needed by the intra-

prediction of current MB. These pixels should be non-filtered reconstructed pixels. Also,

the shading area contains the pixels which may be used by the deblock-filtering process

of current MB, they may be partially filtered pixels. In order to solve this conflict, we

saved these non-filtered pixels as part of the neighboring MB information.

For both MB boundaries and internal edges, we do horizontal filtering first and

then vertical filtering.

For the modeling of deblock filter itself, we referred to the design in [46]. After

PP finished, master P-Core needs to use DMAC to transfer deblock-filtered results from

PP internal memory to core local private memory.

The entropy coding results of this module will be transferred to local shared

memory. This will be discussed in section 5.3.6.

131

Figure 5.9: Neighboring MBs in Deblock-filtering

Table 5.8: Register Definition of PP

Addr Register Name Description
Offset

0x00 CTRL PP Control Register
BIT0: PP Start
BIT1: PP Reset

0x04 ADDR0 Current MB Address in module internal Memory

0x08 ADDR1 MB A Address in PP internal Memory

0x0C ADDR2 MB B Address in PP internal Memory

0x10 ADDR3 MB C Address in PP internal Memory

0x14 ADDR4 MB D Address in PP internal Memory

0x18 STATUS PP Status Register
BIT0: Busy
BIT1: Ack

132

5.3.3.13 Stream Packer (SP)

In the standard [14] and JM model [1], MBs are processed in a raster-scan

order, so does the entropy coding.

However, our proposed wavefront architecture is based on the availability, that

means, the raster-scan order has been broken and we need a module to assemble these

out of order MB coding results.

In our proposed architecture, SP gets the entropy coding results from the local

shared memory of multiple P-Cores through the DMAC engine of the SC-Core and

assemble them together. The output order of MBs from SP is identical with JM.

5.3.4 Task Scheduling Algorithm Design

Task scheduling is handled by the software running in the SC-Core. Figure.5.10

shows the flow for task scheduling.

5.3.5 Communications between Cores

The data transfer direction is show in Figure.5.11 and Figure.5.12. Each seg-

ment of the memory stores the necessary coding information of a MB since the encoding

of its neighboring MBs may need it later. Its content is as Table.5.9. The size of local

shared memory is:

local shared mem size = frame width in mb× segment size (5.1)

As in Figure.5.12, the read/write to the local shared memory by P-Core(i)

and P-Core(i+1) are coordinated by the task scheduling algorithm in SC-Core. The

133

Figure 5.10: Task scheduling flow

134

Figure 5.11: Inter-Core communication ring

Figure 5.12: Shared memory between two peripheral cores

135

Table 5.9: Inter-Core Shared Information (YUV420)

Item Size Description

REC Y 256 Bytes Reconstructed Y component
after deblock filtering

REC U 64 Bytes Reconstructed U component
after deblock filtering

REC V 64 Bytes Reconstructed V component
after deblock filtering

BK Y 31 Bytes Reconstructed right and bottom edge pixels
before deblock filtering. This may be used
for the intra-prediction of neighboring MBs.

BK U 15 Bytes see ”BK Y”

BK V 15 Bytes see ”BK Y”

NZ COEF LUMA 16 Bytes Number of non-zero coefficients of each
4× 4 Luma block.

NZ COEF CHROMA 8 Btyes Number of non-zero coefficients of each
4× 4 Chroma block.

MB Y 1 Byte Current MB coordinate

MB X 1 Byte Current MB coordinate

CBP 2 Byte ”Coded Block Pattern”, will be used for
deblock filter.

DIRTY 1 Byte This item indicates if this memory segment
can be overwritten or not.

BEST MODE MV 16 Bytes Motion vectors for the best mode.
indexed by [b8 y][b8 x][y/x=0/1]

BEST INTRA4x4 16 Bytes
MODE

BEST INTRA16x16 1 Byte
MODE

BEST INTRA CHROMA 1 Byte
MODE

BEST INTRA MODE 1 Byte

BEST INTER MODE 1 Byte

SLICE TYPE 1 Byte

136

read and write locations never overlap. So the software running in both P-Core(i) and

P-Core(i+1) don’t need to handle any data synchronization issue.

For a video sequence with CIF (352× 288) format, frame width in mb = 22,

segment size = 512 (Bytes), so the overall size of shared mem size = 11264 Bytes (11

KBytes). Also, the traffic to access this memory will not increase with the increase of

the number of P-Cores.

5.3.6 Data Reuse and Memory Savings

5.3.6.1 Reference Buffer Saving

For basic applications, H.264/AVC encoder needs at least one reference frame

for inter-prediction of P/B frames. For single processor/thread solution, we may have to

allocate dual-buffers for both the current reference frame and the reconstructed pixels

of current frame (will be used as reference frame for next frame), as in Figure.5.13(A).

In proposed wavefront architecture, we can merge these two buffers into a single one, as

in Figure.5.13(B).

In our design, after encoding a MB, the reconstructed pixels (Y/U/V) will

not be saved back to the reconstruction buffer right away. It stays in the local shared

memory until that memory location is overwritten and the corresponding P-Core saves

it back to the reference buffer. The reason is two-folded:

• The co-located MB in the reference buffer will still be needed by neighboring MBs,

as in Figure.5.14. So, it cannot be overwritten right away and has to be in the

reference buffer for a while till all MBs who need it for inter-prediction have been

encoded.

137

Figure 5.13: Reference Buffer Saving

Figure 5.14: Co-located MB in the reference frame

138

Figure 5.15: Local Shared Memory Saving

• Not all the edges in current reconstructed MB have been processed by the deblock

filter, as in Figure.5.9. Pixels in right and bottom edges may be modified when

we do deblock filtering for its neighboring MBs.

Assume we have N P-Cores which are encoding continuous MB lines in par-

allel. Here, we define ”MB line” as a row of MBs. For example, if MB(x,y) has been

encoded, the P-Core will empty segment x in the shared memory first and then put

the reconstructed MB(x, y) into that location. Before the P-Core empties segment x,

what’s kept in there is the reconstructed MB(x, y-N) and some side encoding informa-

tion. Also all of the edges in that MB have been deblock filtered. What’s more, the

co-located MB(x, y-N) in the reference frame will not be needed any more, so it’s safe

to be overwritten by MB(x, y-N) in current frame.

By doing so, we saved the bandwidth to access reference frame buffer.

5.3.6.2 Local Shared Memory Saving

In order to utilize these ”invalid” segments in local shared memory, as in

Figure.5.15, we allow P-Core(i+1) to put its entropy coding results in the invalid seg-

ments of local shared memory between P-Core(i) and P-Core(i+1). These data will be

transferred to stream packer (SP) before P-Core(i) switches to other MB lines.

139

Figure 5.16: Sliding Window for Reference Data

5.3.6.3 Reference Data Reuse in Inter Prediction Module

Reference data is a key part of inter-prediction. In order to save bandwidth

to access the reference buffer in global shared memory, we used a sliding window to

load reference data and only the updated data will be loaded to the internal memory of

Inter Prediction module, as in Figure.5.16.

5.3.7 Load Balancing

As we will see in next section, the fluctuation for the MB processing time in

the neighboring area is not large and most of the time are spent on the memory access

/ data transferring.

To do the load balancing among different cores, the data which needs to transfer

from one core to another includes:

• Current MB Data: Raw image data, AC/DC Coefficients and some intermediate

data.

140

• Reference Data: This is for inter-prediction only. In our simulation, the refer-

ence data needs to be loaded varies from 5 to 15 macroblocks (1.9KB ∼ 5.6KB in

size).

• Neighboring Data: For intra-prediction, we need neighboring pixels in current

frame before deblock-filtering. For joint deblock-filtering with neighboring MBs,

we need neighboring pixels in current frame after partial (horizontal or vertical, but

not both) deblock-filtering. Also, we will need some of the neighboring encoding

results (best modes, number of non-zero coefficients, motion vectors, LUTs used

in entropy coding, etc).

Transferring these data will easily cost tens of thousands of cycles, which is far

more than the difference of the processing time of neighboring MBs. So, introducing

load balancing to our proposed wavefront architecture may highly deteriorate the system

performance and cause even longer delays.

Based on this fact, we choose not to use load balance in our implementation.

5.4 Simulation Results

The wavefront idea we proposed in Chapter 4 was simulated using the ar-

chitecture and tools discussed in this chapter. In order to evaluate the performance

improvements, besides the quad-core system, we also simulated a dual-core and a three-

core wavefront system with the same software and P-Modules. At the the end of this

section we also discussed the upscaling schemes to expand the system to any number of

cores.

During the simulation, we used ”time stamps” (with a unit of simulation clock

cycles) to monitor system performance / behavior. After SCU received a CMD from

141

SC-Core or after it received a STAT write from P-Cores, it will print a time stamp,

together with corresponding MB information, to a simulation log file.

Time stamp is defined as:

TIME STAMP [core idx][frm idx][mb y][mb x][scu flag] (5.2)

where scu flag = 0 denotes the start of a MB processing and scu flag = 1

denotes the end of a MB processing. Besides time stamp, we have other two important

definitions: ”MB Processing Gap” (MPG) and ”MB Processing Time” (MPT).

MB PROC GAP [frm idx][mb y][mb x] =

TIME STAMP [core idx][frm idx][mb y][mb x][0]−

TIME STAMP [core idx][frm idx][mb y][mb x− 1][1]

(5.3)

MB PROC TIME[frm idx][mb y][mb x] =

TIME STAMP [core idx][frm idx][mb y][mb x][1]−

TIME STAMP [core idx][frm idx][mb y][mb x][0]

(5.4)

An example of these two concepts can be found in Figure.5.17.

5.4.1 MB Processing Gaps

As in Figure.5.17, MB Processing Gap is a very important index to show how

fast a P-Core can start its next job once it finished encoding current MB. Factors which

may impact it include:

• Task scheduling algorithm implemented in the SC-Core.

142

Figure 5.17: MB Processing Time and Gaps

Table 5.10: Average MB Processing Gaps (CIF YUV420)

Dual-Core Three-Core Quad-Core

Cycles ∆% # Cycles ∆% # Cycles ∆%

Intra 435 0% 489 12.4% 542 24.6%

Inter 440 0% 484 10.0% 519 18.0%

• Whether the relied neighboring MB information in upper MB lines become avail-

able.

Figure.5.18∼5.23 show the MB processing gaps for a dual-core, three-core and

a quad-core system with intra/inter-prediction. With the increase of the number of P-

Cores, there is a small increase in the MB processing gap, as in Table.5.10. The ∆% is

caused by the increased number of cores that the control software (running on the SC-

Core) needs to screen and assign tasks. Also the increased data dependencies between

neighboring P-Cores have an impact on the gaps. However, as what we will see in the

143

Figure 5.18: MPG of a Dual-Core System (CIF, YUV420, Intra-Frame)

Figure 5.19: MPG of a Dual-Core System (CIF, YUV420, Inter-Frame)

Figure 5.20: MPG of a Three-Core System (CIF, YUV420, Intra-Frame)

144

Figure 5.21: MPG of a Three-Core System (CIF, YUV420, Inter-Frame)

Figure 5.22: MPG of a Quad-Core System (CIF, YUV420, Intra-Frame)

Figure 5.23: MPG of a Quad-Core System (CIF, YUV420, Inter-Frame)

145

following sections, this impact on system performance is very limited.

5.4.2 MB Processing Time

MB Processing Time (MPT) is a number which represents the duration a P-

Core processes a MB. It has nothing to do with data dependencies and task scheduling

since when the SC-Core issued a command to a P-Core to start processing a MB, all

the needed neighboring data should be ready. All the P-Core needs to do is to transfer

these data to its local memory and start to run.

Factors which may impact the MPT include:

• MB content and algorithms implemented in the peripheral core. This will not

change with the increase of cores.

• Intensity of the memory accesses.

– Local Shared Memory accesses between every two P-Cores The in-

tensity of this kind of memory access will not increase with the increase of

the number of P-Cores since the communication between every two peripheral

cores has nothing to to do with the system size.

– Global Shared Memory accesses Raw This includes accesses to raw

image buffer and reference buffer. These kinds of buffers will be shared by

all P-Cores. So, with the increase of the number of P-Cores, the intensity

of memory accesses will inevitably increase and thus deteriorate the system

performance. However, this problem can be solved in wavefront architecture

by introducing extra pre-fetch units and system data caches. This will be

discussed in next section.

146

Table 5.11: Average MB Processing Time (CIF YUV420)

Dual-Core Three-Core Quad-Core

Cycles ∆% # Cycles ∆% # Cycles ∆%

Intra 46180 0% 46497 0.68% 46695 1.11%

Inter 40956 0% 41615 1.60% 41855 2.20%

Figure 5.24: MPT of a Dual-Core System (CIF, YUV420, Intra-Frame)

Figure.5.24∼5.29 the MPT and its histogram for a dual-core, three-core and a

quad-core system with intra/inter-prediction. Table.5.11 shows the average MPT. From

this table, we observed a very small increase of MPT when increasing the number of

Figure 5.25: MPT of a Dual-Core System (CIF, YUV420, Inter-Frame)

147

Figure 5.26: MPT of a Three-Core System (CIF, YUV420, Intra-Frame)

Figure 5.27: MPT of a Three-Core System (CIF, YUV420, Inter-Frame)

Figure 5.28: MPT of a Quad-Core System (CIF, YUV420, Intra-Frame)

148

Figure 5.29: MPT of a Quad-Core System (CIF, YUV420, Inter-Frame)

P-Cores from two to four.

5.4.3 System Upscaling

From the simulation data we collected, we know when using a quad-core system

to encode a CIF format video (like ICE.CIF) in 150MHz, the system throughput is

going to be 32.1 FPS for I-frames and 35.8 FPS for P-frames. We meet the real-time

requirement.

From dual-core to three-core and quad-core, the ∆% of single P-Core per-

formance (MPG+MPT) are 0.8% and 1.3% respectively for I-frames; 1.7% and 2.4%

respectively for P-frames. The speed-ups from dual-core to three-core and quad-core

are 1.49 and 1.97 respectively for I-frames, and 1.47 and 1.95 respectively for P-frames,

which are very close to the theoretical values 1.5 and 2.0. This shows the overhead is

very small compared with the system speed-up it achieves.

In some circumstances, our verified quad-core system may not satisfy perfor-

mance requirement. For example, people may want to encode a real-time (25 FPS)

HD1080P video sequence with 150MHz, then we will have to upscale the existing sys-

tem.

149

Since the traffic to access local shared memory between P-Cores will not change

with the increase of number of P-Cores, we now focus on the global shared memories

and system control algorithm.

5.4.3.1 System Control Algorithm Up-scaling

In our simulation platform, the system control algorithm is implemented by

software running in the SC-Core. Whenever a ”MB finish IRQ” is asserted, the ”system

control ISR” will be called to assign a new task to an available P-Core. If the number of

P-Cores increase, the ISR will have more P-Cores to check and the data dependencies

will become more complex. This will thus deteriorate the performance, as what’s shown

in Table.5.10.

Even though the system performance drop caused by this is very small (com-

pared with MPT), people may also want to use a pure hardware solution with the

sacrifice of flexibility. In a typical hardware solution for the algorithm described in

Figure.5.10, IRQ is replaced by signal lines and the SC-Core is replaced by a small state

machine which only spends couple of cycles to assign a new task. So the performance

fluctuation will be ignorable.

5.4.3.2 Global Shared Memory Up-scaling

In global shared memory, the reference buffer is shared among four P-Cores and

the raw image buffer is shared by the camera module and four P-Cores. According to

Table.5.11, the increase of number of cores will have impact on the system performance

which is caused by the increased traffic on the memory interface.

When we expand the system with more P-Cores, the traffic to access this

memory will increase as well. Also, in order to improve the efficiency of the memory

150

interface, we want the traffic distribution along the time axis to be more flat.

To solve this issue, a possible solution is as Figure.5.30. In this solution,

we defined a system with N P-Cores and M Data-Caches. Each Data-Cache is only

accessible by four P-Cores and stores raw image data and reference data which are

needed by these four P-Cores in a short time window. The pre-fetch module is in

charge of updating the content in all these Data-Caches and must make sure in any

time window, all the needed data are in these Data-Caches.

It has been proved that in our quad-core simulation, one such Data-Cache

with four P-Cores will satisfy the real-time requirement of CIF format videos. So, only

if the Data-Cache can be pre-fetched on time, the system performance will be improved

linearly with the number of P-Cores.

There is a M-Channel memory interface between the global shared memory

and M Data-Caches. Access requests to the memory are buffered in the channel FIFOs.

This will help to smooth the traffic on the memory interface.

With this solution, to encode a real-time (25 FPS) HD1080P video sequence

with 150MHz, a system with 82 P-Cores and a global shared memory (32-bit) running

at 233MHz will be sufficient.

This is just an up-scaling of our verified quad-core system. In real application,

people may choose a pure hardware solution. In that case, much less P-Cores may be

sufficient to meet the requirement.

151

Figure 5.30: A Solution for Global Shared Memory Up-scaling

152

Chapter 6

Conclusions

6.0.4 Research Summary

In recent years, portable multimedia applications are playing a significant role

in multimedia systems. It’s becoming more and more popular to integrate video codec

into personal mobile devices, like cell phones and PDAs, etc. As the newest video cod-

ing standards, H.264/AVC shows great performance and advantages over its ancestors.

However, its encoding/decoding complexity also increased by several times and thus

make it extremely hard for real-time applications in mobile devices.

In our research, we found the difficulties for the real-time application of H.264/AVC

are in three aspects: (1) Memory access. A lot of the new features of H.264/AVC, like

multiple reference frames, variable block sizes, quarter-pel fractional motion search, etc,

make the power consumption on memory access increase dramatically. (2) Fast algo-

rithm. A typical H.264/AVC encoder algorithm needs to explore all possible search

points, block modes to make the optimal decision. As in [14], this process will take

a very long time to finish. (3) Parallel Architectures. With the demand of real-time

high-resolution video encoding using H.264/AVC, a single-processor solution may not

153

be sufficient to meet the requirement. People have to rely on parallel architectures.

However, due to the complex data dependencies among neighboring blocks in the video

content, it is very difficult to split the task among several processors and at the same

time keep the same encoding efficiency (bit-rate vs. PSNR).

To address these difficulties, this thesis is focused on fast algorithms, data

reuse and parallel architecture of H.264/AVC encoder. For data reuse, we proposed

a partially forward processing algorithm (PFPA) in section 2.1 to reuse the reference

information to avoid load the same reference data multiple times. For fast algorithms,

we studied the statistical features of fractional motion estimation (FME) and proposed

a FME mode reduction scheme in section 2.2. For parallel algorithms, we proposed two

solutions for MB level and block level respectively. For MB level, we proposed wavefront

architecture in chapter 4. Theoretically, this architecture can extend an encoder to any

desired number of processors without sacrificing encoding quality. According to [24],

our solution is so far the most scalable approach to H.264 coding. For block level, we

proposed a FME parallel architecture in section 2.3.

We have used JM Model [1] to verify these proposed algorithms separately.

Also, in chapter 5, we used XTMP, a simulation environment from Tensilica [29] to

verify the wavefront architecture in more detail. Implementations are discussed in this

chapter and cycle-accurate results show that this architecture has very small overhead

when number of P-Cores increases. We also discussed the up-scaling solution in section

5.4.3.

6.0.5 Future Work

There are a number of additional activities that could extend the results of

this research.

154

• Algorithm: in order to fulfill the solution we discussed in section 5.4.3, a good

pre-fetch algorithm needs to be explored.

• Architecture: need to extend the architecture to support CABAC which creates

more data dependencies. Also, we need to study the possibility to extend the

architecture to support H.265, next generation of video compression standard.

• Verification: the parallel solution we proposed is in architecture level. Even

though we verified it using XTMP, which is cycle accurate, we still need to verify

it in more detail, like RTL level and use power analysis tools to get a relationship

between the power number and the number of processors.

155

Bibliography

[1] H.264 jm reference model. http://iphome.hhi.de/suehring/tml/.

[2] Xiph.org test media. http://media.xiph.org/video/derf/.

[3] S.M. Akramullah, I. Ahmad, and M.L. Liou. Parallelization of mpeg-2 video encoder
for parallel and distributed computing systems. In Circuits and Systems, 1995.,
Proceedings., Proceedings of the 38th Midwest Symposium on, volume 2, pages 834–
837. IEEE, 2002.

[4] M. Alvarez, A. Ramı́rez, M. Valero, A. Azevedo, C. Meenderinck, and B. Juurlink.
Performance Evaluation of Macroblock-level Parallelization of H. 264 Decoding on
a cc-NUMA Multiprocessor Architecture. In Proc. of the 4CCC: 4th Colombian
Computing Conf.(April 2009). Citeseer.

[5] A. Azevedo, C. Meenderinck, and B. Juurlink. Performance Evaluation of
Macroblock-level Parallelization of H. 264 Decoding on a cc-NUMA Multiprocessor
Architecture.

[6] G. Bjøntegaard and K. Lillevold. Context-adaptive VLC (CVLC) coding of coeffi-
cients, JVT Document JVT-C028, Fairfax, VA, May 2002.

[7] S. Chen, S. Chen, and S. Sun. P3-CABAC: A Nonstandard Tri-Thread Paral-
lel Evolution of CABAC in the Manycore Era. Circuits and Systems for Video
Technology, IEEE Transactions on, 20(6):920–924, 2010.

[8] T.C. Chen, S.Y. Chien, Y.W. Huang, C.H. Tsai, C.Y. Chen, T.W. Chen, and
L.G. Chen. Analysis and architecture design of an HDTV720p 30 frames/s H.
264/AVC encoder. Circuits and Systems for Video Technology, IEEE Transactions
on, 16(6):673–688, 2006.

[9] T.C. Chen, Y.W. Huang, and L.G. Chen. Analysis and design of macroblock
pipelining for H. 264/AVC VLSI architecture. In Circuits and Systems, 2004. IS-
CAS’04. Proceedings of the 2004 International Symposium on, volume 2. IEEE,
2004.

[10] T.C. Chen, Y.W. Huang, and L.G. Chen. Fully utilized and reusable architec-
ture for fractional motion estimation of H. 264/AVC. In Acoustics, Speech, and
Signal Processing, 2004. Proceedings.(ICASSP’04). IEEE International Conference
on, volume 5. IEEE, 2004.

156

[11] Y.J. Chen, C.L. Yang, and P.H. Wang. PM-COSYN: PE and memory co-synthesis
for MPSoCs. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2010, pages 1590–1595. IEEE, 2010.

[12] Y.K. Chen, X. Tian, S. Ge, and M. Girkar. Towards efficient multi-level threading
of H. 264 encoder on Intel hyper-threading architectures. In Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th International, page 63, 2004.

[13] Y. Cheng, Z. Wang, J. Guo, and K. Dai. Research on intra modes for inter-
frame coding in H. 264. In Computer Supported Cooperative Work in Design, 2005.
Proceedings of the Ninth International Conference on, volume 2, pages 740–744.
IEEE, 2005.

[14] I. Draft. Recommendation and final draft international standard of joint video
specification (ITU-T Rec. H. 264— ISO/IEC 14496-10 AVC). Joint Video Team
(JVT) of ISO/IEC MPEG and ITU-T VCEG, JVTG050, 2003.

[15] M. Flierl and B. Girod. Generalized B pictures and the draft H. 264/AVC video-
compression standard. Circuits and Systems for Video Technology, IEEE Transac-
tions on, 13(7):587–597, 2003.

[16] W.T. Hsieh, J.C. Yeh, and S.Y. Huang. PAC duo system power estimation at ESL.
In Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific,
pages 815–820. IEEE, 2010.

[17] Z.M. Hsu, I.Y. Chuang, W.C. Su, J.C. Yeh, J.K. Yang, and S.Y. Tseng. System Per-
formance Analyses on PAC Duo ESL Virtual Platform. In 2009 Fifth International
Conference on Intelligent Information Hiding and Multimedia Signal Processing,
pages 406–409. IEEE, 2009.

[18] Y.W. Huang, T.C. Chen, C.H. Tsai, C.Y. Chen, T.W. Chen, C.S. Chen, C.F.
Shen, S.Y. Ma, T.C. Wang, B.Y. Hsieh, et al. A 1.3 TOPS H. 264/AVC single-chip
encoder for HDTV applications. In 2005 IEEE International Solid-State Circuits
Conference, 2005. Digest of Technical Papers. ISSCC, pages 128–588, 2005.

[19] Y.C. Kao, H.C. Kuo, Y.T. Lin, C.W. Hou, Y.H. Li, H.T. Huang, and Y.L. Lin. A
high-performance VLSI architecture for intra prediction and mode decision in H.
264/AVC video encoding. In Circuits and Systems, 2006. APCCAS 2006. IEEE
Asia Pacific Conference on, pages 562–565. IEEE, 2007.

[20] Y. Kim, J.T. Kim, S. Bae, H. Baik, and H.J. Song. H. 264/AVC decoder par-
allelization and optimization on asymetric multicore platform using dynamic load
balancing. In Multimedia and Expo, 2008 IEEE International Conference on, pages
1001–1004. IEEE, 2008.

[21] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz. Adaptive de-
blocking filter. IEEE Transactions on Circuits and Systems for Video Technology,
13(7):614–619, 2003.

[22] H.S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky. Low-complexity trans-
form and quantization in H. 264/AVC. Circuits and Systems for Video Technology,
IEEE Transactions on, 13(7):598–603, 2003.

157

[23] D. Marpe, H. Schwarz, and T. Wiegand. Context-based adaptive binary arithmetic
coding in the H. 264/AVC video compression standard. Circuits and Systems for
Video Technology, IEEE Transactions on, 13(7):620–636, 2003.

[24] C. Meenderinck, A. Azevedo, B. Juurlink, M. Alvarez Mesa, and A. Ramirez. Par-
allel scalability of video decoders. Journal of Signal Processing Systems, 57(2):173–
194, 2009.

[25] S. Momcilovic and L. Sousa. Development and evaluation of scalable video mo-
tion estimators on GPU. In Signal Processing Systems, 2009. SiPS 2009. IEEE
Workshop on, pages 291–296. IEEE, 2009.

[26] T. Moriyoshi and S. Miura. System IP Core Research Laboratories, NEC Corpo-
ration, Japan.

[27] T. Moriyoshi and S. Miura. Real-time H. 264 encoder with deblocking filter paral-
lelization. In Consumer Electronics, 2008. ICCE 2008. Digest of Technical Papers.
International Conference on, pages 1–2. IEEE, 2008.

[28] B. Pieters, C. Hollemeersch, P. Lambert, and R. Van de Walle. Motion estimation
for H. 264/AVC on multiple GPUs using Nvidia CUDA. Proceedings of SPIE on
CD-rom, page 1, 2009.

[29] X. Processor. Tensilica Inc.

[30] Y. Song, Y. Ma, Z. Liu, T. Ikenaga, and S. Goto. Hardware-oriented direction-
based fast fractional motion estimation algorithm in H. 264/AVC. In Multimedia
and Expo, 2008 IEEE International Conference on, pages 1009–1012. IEEE, 2008.

[31] Y. Song, M. Shao, Z. Liu, S. Li, L. Li, T. Ikenaga, and S. Goto. H. 264/AVC
Fractional Motion Estimation Engine with Computation Reusing in HDTV1080P
Real-Time Encoding Applications. In Signal Processing Systems, 2007 IEEE Work-
shop on, pages 509–514. IEEE, 2007.

[32] W.C. Su, J.K. Yang, K.C. Liu, S.Y. Tseng, and W.S. Wang. Waiting cycle analysis
on H. 246 decoder run in PAC Duo platform. In Acoustics Speech and Signal Pro-
cessing (ICASSP), 2010 IEEE International Conference on, pages 922–925. IEEE,
2010.

[33] Y. Su and M.T. Sun. Fast multiple reference frame motion estimation for H. 264.
In Multimedia and Expo, 2004. ICME’04. 2004 IEEE International Conference on,
volume 1, pages 695–698. IEEE, 2005.

[34] S. Sun, D. Wang, and S. Chen. A highly efficient parallel algorithm for H. 264
encoder based on macro-block region partition. High Performance Computing and
Communications, pages 577–585, 2007.

[35] P. Tiwari and E. Viscito. A parallel MPEG-2 video encoder with look-ahead rate
control. In Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference
Proceedings., 1996 IEEE International Conference on, volume 4, pages 1994–1997.
IEEE, 2002.

158

[36] C.Y. Tsai, T.C. Chen, and L.G. Chen. Low power entropy coding hardware design
for H. 264/AVC baseline profile encoder. In Multimedia and Expo, 2006 IEEE
International Conference on, pages 1941–1944. IEEE, 2006.

[37] P.K. Tsung, W.Y. Chen, L.F. Ding, C.Y. Tsai, and L.G. Chen. Single-iteration
full-search fractional motion estimation for quad full HD H. 264/AVC encoding. In
Multimedia and Expo, 2009. ICME 2009. IEEE International Conference on, pages
9–12. IEEE, 2009.

[38] S.W. Wang, S.S. Yang, H.M. Chen, C.L. Yang, and J.L. Wu. A Multi-core Archi-
tecture Based Parallel Framework for H. 264/AVC Deblocking Filters. Journal of
Signal Processing Systems, 57(2):195–211, 2009.

[39] Y.J. Wang, C.C. Cheng, and T.S. Chang. A fast algorithm and its VLSI architecture
for fractional motion estimation for H. 264/MPEG-4 AVC video coding. Circuits
and Systems for Video Technology, IEEE Transactions on, 17(5):578–583, 2007.

[40] Z. Wang, L. Liang, X. Zhang, J. Sun, D. Zhao, and W. Gao. A Novel Macro-Block
Group Scheme of AVS Coding for Many-Core Processor.

[41] Z. Wang, L. Liang, X. Zhang, J. Sun, D. Zhao, and W. Gao. A Novel Macro-
Block Group Based AVS Coding Scheme for Many-Core Processor. Advances in
Multimedia Information Processing-PCM 2009, pages 356–367, 2009.

[42] H. Wei, Y. Junqing, and L. Jiang. The design and evaluation of hierarchical multi-
level parallelisms for H. 264 encoder on multi-core architecture. Computer Science
and Information Systems/ComSIS, 7(1):189–200, 2010.

[43] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G.J. Sullivan. Rate-
constrained coder control and comparison of video coding standards. Circuits and
Systems for Video Technology, IEEE Transactions on, 13(7):688–703, 2003.

[44] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H.
264/AVC video coding standard. IEEE Transactions on circuits and systems for
video technology, 13(7):560–576, 2003.

[45] C.L. Wu, C.Y. Kao, and Y.L. Lin. A high performance three-engine architecture
for H. 264/AVC fractional motion estimation. In Multimedia and Expo, 2008 IEEE
International Conference on, pages 133–136. IEEE, 2008.

[46] K. Xu and C.S. Choy. A five-stage pipeline, 204 cycles/MB, single-port SRAM-
based deblocking filter for H. 264/AVC. Circuits and Systems for Video Technology,
IEEE Transactions on, 18(3):363–374, 2008.

[47] K. Xu and C.S. Choy. A power-efficient and self-adaptive prediction engine for
H. 264/AVC decoding. IEEE Transactions on very large scale integration (VLSI)
systems, 16(3):302–313, 2008.

[48] X. Xu and Y. He. Comments on motion estimation algorithms in current JM
software. JVT of ISO/IEC MPEG and ITU-T VCEG, Doc. JVT-Q089, Oct, 2005.

[49] X. Xu and Y. He. Improvements on fast motion estimation strategy for H. 264/AVC.
Circuits and Systems for Video Technology, IEEE Transactions on, 18(3):285–293,
2008.

159

[50] L. Yang, K. Yu, J. Li, and S. Li. An effective variable block-size early termination
algorithm for H. 264 video coding. IEEE transactions on circuits and systems for
video technology, 15(6):784–788, 2005.

[51] S.S. Yang, S.W. Wang, and J.L. Wu. A Parallel Algorithm for H. 264/AVC De-
blocking Filter Based on Limited Error Propagation Effect. In Multimedia and
Expo, 2007 IEEE International Conference on, pages 1858–1861. IEEE, 2007.

[52] L. Yu-Sheng, L. Chin-Feng, H. Chia-Cheng, C. Han-Chieh, and H. Yueh-Min.
Power-Aware DVB-H Mobile TV System on Heterogeneous Multicore Platform.
EURASIP Journal on Wireless Communications and Networking, 2010, 2010.

[53] N.H.C. Yung and K.K. Leung. Spatial and temporal data parallelization of the
H. 261 video coding algorithm. Circuits and Systems for Video Technology, IEEE
Transactions on, 11(1):91–104, 2002.

[54] L. Zhang and W. Gao. Reusable architecture and complexity-controllable algorithm
for the integer/fractional motion estimation of H. 264. Consumer Electronics, IEEE
Transactions on, 53(2):749–756, 2007.

[55] Z. Zhao and P. Liang. A frame-level data re-use & mode decision strategy for H.
264/AVC encoders. In Proceedings of the 2006 international conference on Wireless
communications and mobile computing, pages 57–60. ACM, 2006.

[56] Z. Zhao and P. Liang. A highly efficient parallel algorithm for H. 264 video encoder.
In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006
IEEE International Conference on, volume 5. IEEE, 2006.

[57] Z. Zhao and P. Liang. Data partition for wavefront parallelization of H. 264 video
encoder. In Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE
International Symposium on, pages 4–2672. IEEE, 2006.

[58] Z. Zhao and P. Liang. A Statistical Analysis of H.264/AVC FME Mode Reduction.
IEEE Transactions on circuits and systems for video technology, To Appear.

160

