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ABSTRACT
Background. The utility of long-read genome sequencing platforms has been shown
in many fields including whole genome assembly, metagenomics, and amplicon
sequencing. Less clear is the applicability of long reads to reference-guided human
genomics, which is the foundation of genomic medicine. Here, we benchmark available
platform-agnostic alignment tools on datasets fromnanopore and single-molecule real-
time platforms to understand their suitability in producing a genome representation.
Results. For this study, we leveraged publicly-available data from sample NA12878
generated on Oxford Nanopore and sample NA24385 on Pacific Biosciences platforms.
We employed state of the art sequence alignment tools includingGraphMap2, long-read
aligner (LRA), Minimap2, CoNvex Gap-cost alignMents for Long Reads (NGMLR),
and Winnowmap2. Minimap2 and Winnowmap2 were computationally lightweight
enough for use at scale, while GraphMap2 was not. NGMLR took a long time and
required many resources, but produced alignments each time. LRA was fast, but only
worked on Pacific Biosciences data. Each tool widely disagreed on which reads to
leave unaligned, affecting the end genome coverage and the number of discoverable
breakpoints. No alignment tool independently resolved all large structural variants
(1,001–100,000 base pairs) present in the Database of Genome Variants (DGV) for
sample NA12878 or the truthset for NA24385.
Conclusions. These results suggest a combined approach is needed for LRS alignments
for human genomics. Specifically, leveraging alignments from three tools will be more
effective in generating a complete picture of genomic variability. It should be best
practice to use an analysis pipeline that generates alignments with both Minimap2
and Winnowmap2 as they are lightweight and yield different views of the genome.
Depending on the question at hand, the data available, and the time constraints,
NGMLR and LRA are good options for a third tool. If computational resources and time
are not a factor for a given case or experiment, NGMLR will provide another view, and
another chance to resolve a case. LRA, while fast, did not work on the nanopore data for
our cluster, but PacBio results were promising in that those computations completed
faster than Minimap2. Due to its significant burden on computational resources and
slow run time,Graphmap2 is not an ideal tool for exploration of awhole human genome
generated on a long-read sequencing platform.
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INTRODUCTION
The diverse ecosystem of DNA preparation, sequencing, and mapping technologies is
capable of generating computational representations of genome biology through different
chemistries and processes on different sequencing and mapping platforms (Sanger, Nicklen
& Coulson, 1977; Fuller et al., 2009; Branton et al., 2008; Ardui et al., 2018; Levy-Sakin et al.,
2019). This has resulted inmany different approaches formaking use of the data of different
sources, with algorithms and the tools built upon them used across platforms to differing
success. Here we briefly outline the differences between these platforms and analysis
strategies so that we may consider an important gap in applying the newest technologies
to the problem of human genomics.

Sequencing-by-synthesis platforms produce highly accurate sequence data in the form
of short-reads (<300 base pairs, bp) (Modi et al., 2021) from high molecular weight DNA
inputs. In contrast, single-molecule real-time platforms can produce highly accurate
reads through circular consensus sequencing (CCS) on molecules >10 kilobase pairs
(kbp) (Wenger et al., 2019) while nanopore-based sequencing (Jain et al., 2018a; Jain et al.,
2018b) and nanochannel-based mapping platforms (Formenti et al., 2019) can sequence or
visualize megabase-length DNA molecules (Pollard et al., 2018). Each of these platforms
has different utilities and available tools, which contributes to the diversity of projects
enabled by these technologies (Ho, Urban & Mills, 2020;Mahmoud et al., 2019).

Optical genome mapping (developed by Bionano Genomics, San Diego, CA, USA)
excels at detecting structural variants (SV), such as balanced translocations and
deletions/insertions in the 1 kb to 1 Mb range, and its clinical utility was demonstrated
in Duchenne (DMD) or facioscapulohumeral (FSHD) muscular dystrophies (Barseghyan
et al., 2017; Sharim et al., 2019), and cancer (Neveling et al., 2021; Talsania et al., 2022;
Bornhorst et al., 2023). But long-read sequence (LRS), developed by Pacific Biosciences
(Menlo Park, CA, USA) and Oxford Nanopore Technologies (Oxford, UK) among others,
has been shown to be the most appropriate technology to detect smaller variants in the
50 bp-1 kb range (Chaisson et al., 2019). This is especially true in repetitive regions of the
genome and should therefore bring new diagnosis potential for diseases of trinucleotide
repeat expansion and genome instability such as Huntington’s disease and myotonic
dystrophies (Kantartzis et al., 2012; Santoro et al., 2017; Liu, Gao & Wang, 2017;Mitsuhashi
et al., 2019; Mantere, Kersten & Hoischen, 2019), as well as for discovery of SVs affecting
regulatory regions of known genes. Fulfilling the promise of LRS for medical genetics
requires understanding the tools that power the technology and their respective strengths.

LRS platforms have been further shown to be capable of generating single, phaseable
reads spanning repetitive or complex genomic regions that remain unresolved in all (Wenger
et al., 2019; Jain et al., 2018a; Jain et al., 2018b; Huddleston et al., 2017; Ebbert et al., 2019)
but one current human genome assembly (Nurk et al., 2022). This has implications for
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resolution of highly similar pseudogenes and large SV, even in low-complexity genomic
regions, or from otherwise healthy diploid samples. Read lengths in the tens of kbp
have further allowed for end-to-end viral genome sequencing (Walker et al., 2020),
while read lengths in the millions of bp have the potential to span whole mammalian
chromosomes (Jain et al., 2018a; Jain et al., 2018b; Miga et al., 2020). This potential for
more contiguous de novo human assembly has led to studies to specifically improve and
benchmark basecalling and polishing tools (Wick, Judd & Holt, 2019), as well as assembly
tools (Koren et al., 2018; Cheng et al., 2021; Kolmogorov et al., 2019) that can be applied to
human genomics.

For reference genome-guided experiments, LRS has proven useful for amplicon
sequencing in cancer detection (Norris et al., 2016) and for metagenomics (Deshpande
et al., 2019; Cuscó et al., 2019; Sanderson et al., 2018), but the field is still in early days for
assessment of variation in high-coverage human whole genome sequence. There has been a
demonstration of the added value of LRS in resolving SV has been demonstrated by efforts
aggregating callsets across platforms and technologies to deeply characterize a genome
(Chaisson et al., 2019). These experiments are concerned mainly with understanding the
full scope of the architecture of a genome, rather than contrasting differences between
results of one alignment tool or another. Each published tool showcases its own utility and
strengths in their initial publications, especially in terms of the mapping quality of reads to
the reference genome and precision and sensitivity to preserve known variants in synthetic
or downsampled genomic data. However, there have been no studies that specifically
benchmark LRS alignment platforms and tools for reference-guided experiments.

To address this gap, we benchmarked the most recent LRS alignment tools with the
datasets generated from the Joint Initiative for Metrology in Biology’s Genome in a Bottle
Initiative (GIAB), specifically samples, NA12878 sequenced with nanopore technology
and NA24385 sequenced with CCS (branded HiFi) technology. These were generated
with Oxford 9.4 pore chemistry and with Guppy5 basecalling performed by the Whole
Genome Sequencing Consortium (Jain et al., 2018a; Jain et al., 2018b) and with Pacific
Biosciences RSII SMRT CCS technology by PacBio and the National Institute of Standards
and Technology (Zook et al., 2019). All alignments were performed on GRCh38, rather
than the more complete CHM13 or more diverse pangenome graphs because there are not
yet high-quality GIAB-like reference materials or variant truthsets that allow for this sort
of benchmarking against these cutting-edge reference materials.

We compared computational performance (peak memory utilization, central processing
unit (CPU) time, file size/storage requirements), genome depth and basepair coverage, and
quantified the reads left unaligned in any given experiment. We have limited this study to
tools that are platform agnostic and function on our cluster. Since the resolution of large
SVs is a key application of this technology, and also allows comparison of the differences
in genome alignments in an aggregate way, we ran the SV-calling tool Sniffles to highlight
differences in breakpoint location in each binary alignment map (BAM) file (Sedlazeck et
al., 2018). Taken together, these experiments present a comprehensive view of differences
in the products of LRS whole-genome alignment pipelines.
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MATERIALS & METHODS
Portions of this text were previously published as part of a preprint (https://www.biorxiv.
org/content/10.1101/2021.07.09.451840v3.full) (LoTempio, Délot & Vilain, 2023).

Tool selection criteria
Startingwith tools thatwere recommended by the developers of each platform,we examined
the tools that were cited or benchmarked against new, platform-specific tools. We also
used the website Long-Read Tools (https://long-read-tools.org/), searching their database
with the filters ‘‘nanopore’’, ‘‘pacbio’’, and ‘‘alignment’’. Since this yielded many software
tools, we dove deeper and excluded any tools not designed for whole genome experiments.
Tools which passed this test were then assessed for their suitability for use with nanopore
and SMRT data and whether they produced a SAM/BAM file for analysis. Since tools can
be regularly updated or out-versioned, we wanted to use only the most up to date software
at the time of analysis.

In our examination of structural variant calling pipelines, we elected to limit our study
to the variant caller sniffles due to the fact that the output files were most descriptive.
Specifically, Sniffles outputs VCFs which call SVs as indels, translocations, duplications,
inversions, and more classifications. This increases its utility for comparison to reference
truthsets.

Data
Main experiments
Reference genome: GRCh38 was accessed on March 22, 2022 from NCBI
(GRCh38_no_alt_analysis_set).

Sequence data
Nonewor original sequence data fromnewor existing sampleswere generated here. Instead,
we leveraged data generated by third party consortia on well-characterized samples. These
data include nanopore sequence data generated on NA12878 from the WGS Consortium,
rel7 guppy 5 basecalls was accessed on March 22, 2022 (NA12878 rel7).

We also used the 15kb insert size SMRT CCS data from sample NA24385 was accessed
from the human pangenomics consortium GitHub on March 22, 2022 (NA24385 15kb
insert).

While no DOI exist for these files, the citations provide the most stable URLs available
(PacBio, 2021).

SV truthsets
Structural variant truthsets for NA12878, updated February 25, 2020, from DGV were
accessed on March 31, 2022 (NA12878 DGV truthset).

Structural variant truthsets from Pacific Biosciences and the GIAB consortium were
accessed on May 20, 2022 (PacBio GIAB SV Truthset).

Absolute coordinate systems within a reference genome have allowed for very accurate
genome mapping and analysis within that reference. However, reference sets are tied to
these absolute coordinate systems and require liftover and curation. Our study is subject
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to the limitation that these variants were called with alignments to GRCh37, but we used
the more advanced GRCh38. Accordingly, the absolute coordinates of the location of
breakpoints differs across builds. By focusing our study on the size of variants within 1,000
and 10,000 bp windows, rather than their relative position within a set of reference genome
coordinates, we are confident that this is a minor limitation.

Pilot experiments
Initial pilot experiments were performed on older reference builds and datasets. These can
be found as Supplement S4 and may be useful to investigators who have LRS data from the
previous decade.

Reference genome
GRCh38.p12 was accessed and downloaded on April 8, 2019 (GRCh38.p12).

Sequence data
Nanopore sequence data were accessed on April 8, 2019, version rel5-guppy-
0.3.0-chunk10k.fastq, from AWS Open Data as made available by the Whole
Genome Consortium. SMRT sequence data were accessed on May 28, 2019, version
sorted_final_merged.bam from the NCBI FTP (NA12878 rel 5; NA12878 SMRTMt Sinai).

Database of genome variants
DGV data were accessed on January 30, 2020 (Database of Genomic Variants, DGV). The
full set of variants was reduced to 11,042 variants confirmed to be present in NA12878. A
total of 14 of these variants were excluded as they were called on contigs present out of the
main reference assembly contigs.

Hardware configuration
Computations were performed on the George Washington University High Performance
Computer Center’s Pegasus Cluster on SLURM-managed default queue compute nodes
with the following configuration: Dell PowerEdge R740 server with Dual 20-Core 3.70 GHz
Intel Xeon Gold 6148 processors, 192 GB of 2666 MHz DDR4 ECC Register DRAM, 800
GB SSD onboard storage (used for boot and local scratch space), and Mellanox EDR
InfiniBand controller to 100 GB fabric.

Whole genome alignment tool benchmarking and analysis
The following tool versions were used in the work presented in the main tables and figures.
1. Long-read aligner (LRA) v1.3.3. (Ren & Chaisson, 2021)
2. GraphMap2 v0.6.3 (Marić et al., 2019)
3. Minimap2 v2.24 (Li, 2018)
4. CoNvex Gap-cost alignMents for Long Reads (NGMLR) v0.2.7 (Sedlazeck et al., 2018)
5. Winnowmap v2.0.3 (Jain et al., 2022)

The versions of alignment tools used in the preliminary experiments of this project
available in S4 included:
1. GraphMap v0.5.2 (Sović et al., 2016)
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2. Minimap2 v2.16 (Li, 2018)
3. NGMLR v0.2.7 (Sedlazeck et al., 2018)

All tools were run with recommended parameters and were flagged for nanopore or
SMRT data based on the requirements of that experiment. Where multithreading was
available, -t, or equivalent was set to 40, the max for our cluster. LRA, Minimap2, NGMLR,
and Winnowmap2 all have specific presets for SMRT and nanopore-based data while
Graphmap2 uses the same parameterization for all LRS platforms, with an option for
alternative defaults to handle Illumina data. Its default parameters are optimized for
accuracy and through graph-based handling of reads can address complex genomic regions
and users have the option of modifying parameters to decrease accuracy.

LRA uses the same minimizers as seeds for both sequencing platforms, but decreases
the density of minimizers in the genome by nearly 10-fold, which are then compared to
minimizers from the reference, resulting in a set of query-reference anchors. Anchors are
clustered based on read accuracy, with lower accuracy nanopore reads given a minimum
of three clusters per read, and higher accuracy SMRT-CCS reads given a minimum of 10
clusters per read.

Minimap2, upon which Winnowmap2 builds, uses homopolymer-compressed
minimizers in the seeding step of its algorithm. This is to account for errors in SMRTmovie
data which can struggle with homopolymer runs. For example, GATTAACCA becomes
GATACA through homopolymer minimization. The nanopore default parameterization
uses ordinary minimizers as seeds because in development, they saw no increased benefit
to homopolymer compression, even though the technology has similar limitations to
SMRT. Winnowmap2 builds on this by down-weighting frequently occurring minimizers
to minimize masking seeds in complex genomic regions including tandem repeats.

For NGMLR generally, reads are handled in a way which is SV-aware and accounts for
small (10 bp) indels or split reads over larger indels. Reads which can be mapped linearly
are, and the remaining reads are handled through splitting them over SV. The nanopore
preset further customizes parameters to address the characteristic high error rates, including
substitutions, insertions, and deletions, inherent to nanopore sequencing. It achieves this
by lowering match/mismatch scores, increasing gap penalties, and emphasizing sensitivity,
making it well-suited for applications like structural variant analysis. Conversely, the SMRT
preset retains higher match/mismatch scores to prioritize base accuracy, suitable for PacBio
data known for lower substitution errors but higher indel error rates.

Computational metrics were printed from SLURM job records with seff and sacct with
flags–format JobID, JobName, Elapsed, NCPUs, TotalCPU, CPUTime, ReqMem,MaxRSS,
MaxDiskRead, MaxDiskWrite, State, ExitCode. Samtools 1.15.1 was used for all alignment
manipulations, alignment read depth coverage calculations, and to extract unmapped
reads. Samtools view -f 4 was used to generate bamstats files and Python Venn was used
to compare the readnames across unmapped read files to assess the degree of overlap
of unmapped reads across these subsetted alignment files (Li et al., 2009; Danecek et al.,
2021). R 3.5.2 version Eggshell Igloo with the tidyverse packages were used for preliminary
experiments on depreciated data shown in S4. Genome coverage was calculated with
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samtools coverage. Binary conversion values were used for bytes (1,073,741,824) and
kilobytes (1,048,576) to gigabytes.

Data reshaping and visualization
As data were integrated across multiple sources and formats, they needed to be reshaped
for comparison and visualization. For example, the multiple separators found in VCFs
(commas and semicolons) are not directly usable in python pandas. Relevant dataframes
from genome alignment files were reshaped with shell scripts and Python scripts whose
methodology and key intermediate files are available on our GitHub.

Comparison of breakpoints
Structural variants (SV) were called with sniffles/1.0.11 with default parameters (Sedlazeck
et al., 2018). Only variants called on the main GRCh38 assembly were included. Python
was used to bin and graph structural variants by SV Type. Intermediary files and scripts are
available at our GitHub, archived stably here: https://zenodo.org/badge/latestdoi/429362081.

Data from Sniffles VCFs and from DGV were subsetted by comparable fields including
SV Type, SV Length, and Chromosome since a common format was unavailable for direct
comparison. Figures were made with seaborn and matplotlib as well as Microsoft Excel
(Waskom, 2021; Hunter, 2007).

RESULTS
Rigorously annotated variants were drawn from the Database of Genomic Variants (DGV)
(MacDonald et al., 2014) for NA12878 and from a curated public repository for NA24385
(PacBio, 2021).

We present our results in four sections:
(1) the tools that were included,
(2) computational performance and benchmarking,
(3) an analysis of aligned and unaligned reads,
(4) an analysis of structural variation present in each alignment compared to a baseline.

Tools that passed the inclusion/exclusion criteria
Following a literature review of available alignment tools and search of Long-Read-Tools
(Amarasinghe, Ritchie & Gouil, 2021), we established a set of inclusion criteria (see Material
and Methods), which accounted for both types of LRS data (a tool must be able to handle
both nanopore and SMRT reads), as well as the state of the field in terms of software
updates (must not have been superseded by another tool). All relevant tools and their
reason for exclusion are outlined in Table 1, with all tools annotated as platform agnostic
and relevant to genome alignment included in Supplemental S1. Five alignment tools,
GraphMap2, LRA, minimap2, NGMLR, and Winnowmap2 were included in this study
(Marić et al., 2019; Li, 2018; Sedlazeck et al., 2018; Jain et al., 2022; Ren & Chaisson, 2021).

Sixteen tools were excluded because they were superseded by other tools, produced an
alignment file in a non-SAM format, were designed for only one type of input data, or did
not work on our cluster (Kiełbasa et al., 2011; Li, 2013; Chaisson & Tesler, 2012; Faust &
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Table 1 Long-read genome sequence alignment tools. The tools included in the study are highlighted in this study. Further tools from Long-read-
tools.org are available in S1.

Tool Year PMID DOI Inclusion If no, why?

BLASR 2012 22988817 10.1186/1471-2105-13-238 No Designed only for SMRT seq
BWA-MEM 2011 NA arXiv:1303.3997 No Superseded by Minimap2
GraphMap 2016 27079541 10.1038/ncomms11307 No Superseded by GraphMap2
GraphMap2 2019 NA 10.1101/720458 Yes
Kart 2019 31057068 10.1142/S0219720019500082 No Designed only for SMRT, SBS
LAMSA 2016 27667793 10.1093/bioinformatics/btw594 No Depreciated dependencies resulting in seg fault
LAST 2011 21209072 10.1101/gr.113985.110 No Not parameterized for the nuances of current platforms
lordFAST 2018 30561550 10.1093/bioinformatics/bty544 No Runs resulted in partial completion and a seg fault
LRA 2021 34153026 10.1371/journal.pcbi.1009078 Yes
Mashmap2 2017 30423094 10.1093/bioinformatics/bty597 No Does not use SAM format needed for variant caller
MECAT 2017 28945707 10.1038/nmeth.4432 No Superseded by Mecat2
MECAT2 2017 28945707 10.1038/nmeth.4432 No Designed only for SMRT seq
Meta-aligner 2017 28231760 10.1186/s12859-017-1518-y No Designed only for SMRT seq
Minimap2 2018 29750242 10.1093/bioinformatics/bty191 Yes
NGMLR 2018 29713083 10.1038/s41592-018-0001-7 Yes
rHAT 2015 26568628 10.1093/bioinformatics/btv662 No Designed only for SMRT seq
S-ConLSH 2021 33573603 10.1186/s12859-020-03918-3 No Designed only for SMRT seq
smsMap 2020 32753028 10.1186/s12859-020-03698-w No Does not use SAM format needed for variant caller
Winnowmap 2020 32657365 10.1093/bioinformatics/btaa435 No Superseded by Winnowmap2
Winnowmap2 2022 35365778 10.1101/2020.11.01.363887 Yes
YAHA 2012 22829624 10.1093/bioinformatics/bts456 No Not parameterized for the nuances of current platforms

Hall, 2012; Liu et al., 2016; Sović et al., 2016; Liu, Gao & Wang, 2017; Jain et al., 2018a; Jain
et al., 2018b; Nashta-Ali et al., 2017; Xiao et al., 2017; Haghshenas, Sahinalp & Hach, 2019;
Li, 2018; Sedlazeck et al., 2018; Marić et al., 2019; Kumar, Agarwal & Ranvijay, 2019; Wei,
Zhang & Liu, 2020; Jain et al., 2020; Jain et al., 2022; Ren & Chaisson, 2021; Chakraborty,
Morgenstern & Bandyopadhyay, 2021).

We excluded LAST and YAHA as they were not parameterized for the nuances of current
sequencing platforms, i.e., they did not have default settings that took into account long
reads and low error rates because their success would require more careful consideration
of research questions, rather than exploration. smsMap produced an output that would
require post-processing to put it into a SAM compatible format, and since we did not
aim to create new software here, we excluded it. LAMSA, lordFAST and were run, but
resulted in segmentation faults (Haghshenas, Sahinalp & Hach, 2019; Liu, Gao & Wang,
2017). LAMSA was built to call precompiled GEM3 libraries, with which our current
compute architecture was incompatible, while lordFast produced an undiagnosable error
log (Marco-Sola et al., 2020). The other 11 tools, outlined in Table 1, were excluded because
they were only designed to handle data from one LRS platform.

LoTempio et al. (2023), PeerJ, DOI 10.7717/peerj.16515 8/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16515#supp-1
http://dx.doi.org/10.1186/1471-2105-13-238
https://doi.org/10.48550/arXiv.1303.3997
http://dx.doi.org/10.1038/ncomms11307
http://dx.doi.org/10.1101/720458
http://dx.doi.org/10.1142/S0219720019500082
http://dx.doi.org/10.1093/bioinformatics/btw594
http://dx.doi.org/10.1101/gr.113985.110
http://dx.doi.org/10.1093/bioinformatics/bty544
http://dx.doi.org/10.1371/journal.pcbi.1009078
http://dx.doi.org/10.1093/bioinformatics/bty597
http://dx.doi.org/10.1038/nmeth.4432
http://dx.doi.org/10.1038/nmeth.4432
http://dx.doi.org/10.1186/s12859-017-1518-y
http://dx.doi.org/10.1093/bioinformatics/bty191
http://dx.doi.org/10.1038/s41592-018-0001-7
http://dx.doi.org/10.1093/bioinformatics/btv662
http://dx.doi.org/10.1186/s12859-020-03918-3
http://dx.doi.org/10.1186/s12859-020-03698-w
http://dx.doi.org/10.1093/bioinformatics/btaa435
http://dx.doi.org/10.1101/2020.11.01.363887
http://dx.doi.org/10.1093/bioinformatics/bts456
http://dx.doi.org/10.7717/peerj.16515


Table 2 Benchmarking metrics. Each of the three runs for each tool is shown in this table. All values
are taken directly from slurm’s sacct and seff features. All metrics are intuitive except for CPU efficiency,
which is a measure of idle CPUs to CPU time over wall clock time.

Platform Tool Wall clock time
(D-H:M:S)

CPU time
(D-H:M:S)

CPU
efficiency

Memory
utilized
(Gb)

14-00:00:04 560-00:02:40 65.25% 90.19
14-00:00:17 560-00:11:20 63.34% 94.58Graphmap2

14-00:00:15 560-00:10:00 64.23% 89.68
1-11:00:08 58-08:05:20 7.51% 12.43
1-10:48:18 58-00:12:00 7.51% 12.80Minimap2

1-11:07:00 58-12:40:00 7.51% 12.78
10-00:00:03 400-00:02:00 97.70% 35.86
10-00:00:10 400-00:06:40 99.56% 34.38NGMLR
9-14:55:56 384-21:17:20 93.43% 36.34
15:25:58 25-17:18:40 83.82% 29.48
15:19:14 25-12:49:20 83.61% 30.02

Nanopore

Winnowmap2

15:15:24 25-10:16:00 83.06% 28.74
5-01:33:22 202-14:14:40 98.88% 45.07
5-02:54:53 204-20:35:20 98.81% 44.90Graphmap2

5-06:49:25 211-08:56:40 98.52% 48.96
6:53:00 11-11:20:00 33.20% 20.63
6:53:04 11-11:22:40 33.11% 21.10LRA
6:32:33 10-21:42:00 33.22% 27.91
11:02:04 18-09:22:40 7.51% 9.10
11:06:03 18-12:02:00 7.51% 9.13Minimap2

10:55:09 18-04:46:00 7.52% 9.09
21:50:29 36-09:39:20 99.20% 25.53
22:24:38 37-08:25:20 99.19% 25.69NGMLR
21:58:53 36-15:15:20 99.53% 25.82
3:39:42 6-02:28:00 88.10% 18.57
3:43:42 6-05:08:00 88.32% 18.71

SMRT-CCS

Winnowmap2

3:40:32 6-03:01:20 87.91% 19.14

Computational performance and benchmarking
Computations were run three times on a single node allocated fully on our university’s
high-performance compute cluster (HPC), which includes 40 CPUs with a configuration
described in the methods. All tools were run with default parameters to reflect typical use
in exploratory studies. High-level computational benchmarks can be found in Table 2. Full
reports on each run can be examined in Supplemental S2, while a composite table of the
output of samtools coverage is available as Supplemental S3.
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Globally successful tools
Minimap2 was the least memory-demanding tool
Minimap2 successfully aligned nanopore data every time with unrestricted and restricted
resources. Unrestricted runs used around 12.6 gigabytes (Gb) and the jobs took ∼34 wall
clock hours to complete.

Minimap2 also successfully aligned SMRT data every time with unrestricted or restricted
resources. The runs used around 9 Gb of memory and the jobs took ∼11 wall clock hours
to complete, considerably faster than the (admittedly larger) nanopore dataset.

Memory usage and runtime were consistent across triplicate runs with unrestricted
resources and did not change with restriction of resources when the tool was used
with either dataset. The consistency of results, as well as the speed and relatively low
computational demands of Minimap2 make it a strong candidate for inclusion in clinical
analysis pipelines.

Winnowmap2 was the fastest tool
Winnowmap2 was the fastest to run on any dataset. Specifically, it aligned the entire
nanopore dataset in around 15 wall clock hours, using only a little more than two times
more memory than minimap2 (∼29 Gb). For SMRT, it was even faster at just over 3.5 wall
clock hours and almost exactly twice as much memory (∼18 Gb). These numbers were
consistent over all runs.

Additionally, the high CPU efficiency of the jobs on our cluster were positive to note:
over 80% efficiency, relative to Minimap2’s ∼7% efficiency. This is a measure of the ratio
of CPU time used to the wall clock time times the number of CPUs. In the case of our
cluster, CPUs are fully allocated to a node and not shared once allocated, but it does point
the way towards either choosing more efficient tools, or optimizing jobs.

NGMLR completed 4/6 tasks and performance demanded great
resources
NGMLR successfully aligned SMRT data every time but was the second slowest. The runs
used around 25 Gb and the jobs took around 22 wall clock hours to complete, nearly twice
as long as the next tool, Minimap2.

NGMLR was much more inconsistent on nanopore data. It successfully aligned the data
on our first range finding experiment in approximately ∼230 wall clock hours. Following
this run, two jobs were set with a time of 10 days, and both resulted in timeouts. The
single successful run used 36.34 Gb of memory, the most of all tools which produced an
alignment.

Tools that presented a challenge
LRA did not work on nanopore-generated data
While LRA did show promise on SMRT data, aligning a genome in ∼11 CPU days or ∼6
wall clock hours, we could not run it successfully with nanopore. Each run resulted in
unresolvable (undescriptive) segmentation faults that produced no partial alignment. In
the case of SMRT data, it did fall in the front of the pack, aligning genomes quickly with
typical memory usage relative to its peers (∼20–27 GB).
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GraphMap2 was the most resource-intensive tool
GraphMap2 took the longest, used the most memory, and had the most failures of all of the
tools we examined. It did not produce alignment files on nanopore data in the time limit
of 14 days imposed by our HPC. On the SMRT dataset which it was successful at aligning,
it took more than 5 times longer to produce an alignment file than the next slowest tool,
NGMLR. It had the highest memory usage, in excess of 89 GB nanopore on 44 GB on
SMRT.

Whole genome alignment
Aligned reads show disagreement in coverage of each chromosome
In preliminary experiments that were completed successfully, alignments of the same
genome with the same tool had the same genome coverage, whether resource-restricted
or not (S4, column O). For this reason, one file generated from the first run was used
for subsequent analysis, shown in Table 3, a summary of the coverage depth of each
chromosome alignment and the percentage of the basepairs of GRCh38 covered. Global
genome coverage of ∼30x was reported for nanopore and ∼34x, 20x of which is present in
the 15 kbp insert set, was reported for SMRT data sets. Breaking down the summary into
chromosomes allows for more precision than referring to a genome by its coverage as a
uniform metric, since there is discrepancy across the chromosomes.

For nanopore data, three alignment files were measured, while for SMRT data, four files
could be included. Table 3 shows cover of each chromosome with high values represented
in bold text, and low values represented in italic text. It becomes immediately apparent
that Minimap2 and Winnowmap2 both retain the most reads (highest x coverage) and
cover the most basepairs of the reference. NGMLR excludes the most reads and covering
the fewest basepairs of the reference genome, which may impact downstream analysis. The
final tool, LRA, which only worked on SMRT data, is intermediate with some lower values
of coverage depth, and some higher values of coverage of basepairs.

Unaligned reads reveal differential exclusion of reads
The readname assigned to each read in a fastq retained in the BAM allowed us to directly
compare the lists of reads that were not included in the alignment by each alignment tool
with Python Venn (Fig. 1) (Grigorev, 2018).

All tools agreed to leave∼1million of the same nanopore reads unaligned, but differed in
their overall totals of unaligned reads. NGMLR left the highest number of reads unaligned,
∼3.1 million, which explains why it produced the lowest coverage genome. It agreed with
the other tools on approximately half of its discarded reads. Minimap2 and NGMLR agreed
to leave a further ∼0.5 million reads unaligned, while NGMLR and Winnowmap2 agreed
on a separate ∼0.2 million unaligned reads and Winnowmap2 and Minimap2 on ∼0.03
million further unaligned reads.

All tools agreed to leave 682 of the same SMRT reads unaligned. This is because
Winnowmap2 excludes less than 1,000 reads in total, where the other tools excluded more
reads over roughly three orders of magnitude. NGMLR left the highest number of reads
unaligned, ∼200 thousand, which explains why it produced the lowest coverage genome.
LRA excluded around 90 thousand reads in all, of which around 70 thousand are common
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Table 3 Sequencing depth and reference coverage. Chromosome level descriptions of the average number of reads covering each basepair, as well as the percentage of
basepairs of the reference covered. The highest value for a chromosome is accented with bold text, while the lowest value is accented with italic text. Winnowmap2 abbre-
viated as WM2.

SMRT-CCS Nanopore

Mean depth (x-depth) Coverage of basepairs (%) Mean depth (x depth) Coverage of basepairs (%)

LRA Minimap2 NGMLR WM2 LRA Minimap2 NGMLR WM2 Minimap2 NGMLR WM2 Minimap2 NGMLR WM2

chr1 19.0627 20.0049 17.9711 20.002 91.7893 92.3244 91.1358 92.3622 chr1 37.7867 33.3715 37.4783 92.4802 91.4793 92.4861

chr2 20.0613 20.1343 19.9393 20.1463 98.7397 98.8041 98.707 98.6286 chr2 40.1079 36.3557 39.497 99.0601 98.8241 98.8272

chr3 20.1303 20.5557 20.0446 20.3575 98.984 99.5552 98.7438 99.5645 chr3 37.7894 36.5499 39.9339 99.773 98.8066 99.767

chr4 20.4284 20.7247 20.1254 21.8975 99.1528 99.0963 98.6843 99.2809 chr4 39.8297 36.1401 39.6729 99.4841 98.7817 99.5176

chr5 20.0292 20.3439 19.7821 20.0655 98.2323 98.1787 97.6187 98.2961 chr5 37.1564 35.9384 37.17 98.5218 98.0472 98.5096

chr6 19.9858 20.4916 19.9745 20.4963 98.795 99.0781 98.674 99.2314 chr6 37.4983 36.4317 38.3408 99.4746 98.9018 99.4822

chr7 19.5124 19.7661 19.3123 19.7686 98.1498 99.2092 97.7858 98.9308 chr7 37.5093 35.7748 37.3072 99.6968 98.4965 99.6698

chr8 20.0067 20.279 19.7645 20.272 98.5302 99.2526 98.1774 99.0982 chr8 37.2117 35.8164 37.4528 99.6024 98.4431 99.6027

chr9 17.085 17.2704 16.5087 17.2736 86.2352 86.2731 85.4122 86.3347 chr9 33.7857 31.5634 33.62 87.3625 86.6206 87.4715

chr10 19.8087 20.0826 19.4999 20.5247 98.2398 98.8789 98.1124 98.8153 chr10 37.9547 35.509 37.9365 99.3546 98.2053 99.3873

chr11 19.5361 19.8058 19.4349 19.8105 98.0161 99.1255 98.1379 98.264 chr11 37.5146 35.9223 37.282 99.562 98.5893 99.0318

chr12 19.6294 19.9493 19.6137 19.9618 98.3953 99.548 98.151 99.3563 chr12 37.9345 36.4544 37.6064 99.8008 98.397 99.7298

chr13 17.5257 18.1764 16.9585 17.6178 85.2628 85.3114 84.1626 85.3793 chr13 32.6205 30.5633 32.35 85.6486 84.3648 85.6546

chr14 16.815 16.8162 16.6225 16.9593 82.5962 82.5668 82.5949 82.5858 chr14 31.2147 30.4015 31.9599 82.5971 82.5928 82.5975

chr15 16.0919 16.3256 15.7467 16.3303 80.7849 81.7561 80.0048 81.9674 chr15 32.9232 30.434 32.7613 82.7815 80.8381 82.8274

chr16 18.4585 19.5281 18.1335 19.4345 89.1223 90.0939 87.9862 90.1285 chr16 36.9247 34.5339 37.2781 90.5049 88.4413 90.5183

chr17 18.0451 18.8278 18.0519 18.7767 95.1484 97.5541 94.7803 95.9119 chr17 37.2793 35.2194 36.9045 97.3704 95.1519 98.046

chr18 19.4328 19.7389 18.8198 19.7815 96.004 98.3045 94.3649 97.8677 chr18 36.8051 34.2153 36.5148 99.3802 94.1824 99.0731

chr19 16.8558 16.8674 16.5895 16.8926 95.0649 95.0588 94.9148 95.0692 chr19 36.3404 33.9213 39.4614 95.1037 95.0137 95.1095

chr20 19.34 20.0554 19.0343 20.1369 96.0126 98.1195 95.5606 98.0231 chr20 39.3238 35.3079 39.1318 99.1143 96.3336 99.1551

chr21 18.0549 18.4984 16.8995 18.2805 80.4792 80.4144 78.9093 80.16 chr21 35.4168 30.0951 34.298 81.3939 80.763 81.2955

chr22 13.9854 14.0173 13.3346 17.4726 72.7139 72.6378 72.5114 72.7444 chr22 32.7008 25.9485 31.1753 72.9147 72.9092 72.9018

chrX 9.8603 9.97983 9.73401 9.98727 97.639 97.9196 96.4952 98.0195 chrX 36.1372 33.9833 35.6273 99.1734 97.0137 98.9417

chrY 7.94848 8.21933 3.85465 8.37289 40.9697 40.9213 37.9947 40.8261 chrY 1.8305 0.501775 1.3745 3.1548 4.9006 2.37513

chrM 1010.03 1203.88 1203.67 1202.19 100 100 100 100 chrM 11954.1 11413.1 11685.6 100 100 100
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Figure 1 Unmapped reads.Venn diagrams show the total number of reads flagged as unmapped in
the sorted BAM files. The left panel presents unmapped reads from the SMRT dataset. The right panel
presents unmapped reads from the nanopore dataset.

Full-size DOI: 10.7717/peerj.16515/fig-1

to NGMLR. This also likely contributes to its lower-coverage status shown in Table 3.
Minimap2 leaves out just shy of 12 thousand reads in all, most of which are shared with
NGMLR and LRA.

In all, not enough information is available at this level of granularity to pass judgment
on whether or not tools include or exclude the right reads. For this, an examination of
breakpoints is required.

Breakpoints reveal differences between competing alignments of the
same genome
Based on the above results, it became clear that we needed to examine the differences in
alignment. To compare the alignments to each other, and assess their usability for variant
calling across the whole genome, we looked to the SVs known to be present in the NA12878
genome as curated by the DGV resource. We ran a pilot study on now depreciated datasets
for linear SMRT data before undertaking a study with current technology (NIST, 2015).
The results of these pilot experiments are available as S4 and point to a gap between the
largest SV curated in DGV and what is resolvable by long-read sequencing.

To expand upon these initial, promising findings, we accessed the most up-to-date data
generated on nanopore and SMRT platforms. Presently, this includes theWGS consortium
rel7 on NA12878 for nanopore and a new release of SMRT-CCS on NA24385. NA24385 is
not present in DGV, so a high quality callset released by PacBio in collaboration with the
Genome in a Bottle Consortium was used as a truthset. These differences are reflected in
their labels within Figs. 2 and 3.

We leveraged the sniffles SV caller because of its highly-detailed output files. Our truth
sets were the curated SV present in DGV and the set released by PacBio and GIAB for
NA24385. Due to the different nomenclature for SV type in the sniffles output and the
NA24385 calls, which follow VCF specification (GA4GH, 2023) but differ from DGV
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Figure 2 Nanopore SV 1,001–10,000 bp.Variants called by sniffles on each alignment file. (A) Deletions.
(B) Insertions. (C) Inversions. (D) Duplications.

Full-size DOI: 10.7717/peerj.16515/fig-2

Figure 3 SMRT SVs 1001–10,000 bp.Variants called by sniffles on each alignment file. (A) Deletions. (B)
Insertions. (C) Duplications.

Full-size DOI: 10.7717/peerj.16515/fig-3

annotations, comparisons were limited to the four classes of variant that were most
unambiguously labeled in VCFs and the truth sets: insertions, deletions, duplications, and
inversions.

The variants available for NA24385 were coded as all insertions or deletions, with
subtypes within including duplications. Therefore, the callsets from SMRT do not include
inversions as there was no baseline. Sniffles variants were graphed by SV length on the
X-axis in shades of blue, grey, and yellow, contrasted with DGV variants in red, organized
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by platform and SV type. Figures are organized by platform and size of SV, specifically
between 1,001 and 100,000 bp, the range at which LRS platforms are known to excel.

Nanopore
For the variants between 1,001 and 10,000 bp (Fig. 2), alignment sets perform largely
well on calling deletions that are curated in DGV while inversions were largely missed in
all alignments. NGMLR alignments contained the highest number of breakpoints called
as duplications. Above the 2001–3000 bp bin, the total duplications in DGV eclipses the
number of breakpoints called in any of the alignment files. In contrast, there are very few
insertions of this size range present in DGV, but hundreds in our callsets. This could be
due to a differential interpretation of the breakpoints, where origin of inserted material has
been ascertained (as a duplication) in DGV but remains unattributed (as an insertion) in
call sets.

In the 10,001–100,000 bp size range (Supplement S5), DGV largely contains more
variants, with the exception of inversions. Inversions present an interesting case here
because DGV contains more very large inversions than are reported (>80,001), but
various callsets do well at smaller ranges. Across deletions, insertions, and duplications,
all alignment tools fall short of the curated reference. It is most interesting that DGV had
few insertions smaller than 10,000 bp, but hundreds greater than that threshold. The trend
of VCFs from our alignment files overperforming relative to DGV breaks down, and they
highly underperform, calling only a few 10s of variants.

SMRT
The truthset for the SMRT dataset from NA24385 does not contain variants annotated as
inversions, so Fig. 3 (SV 1001–10,000 bp) and S6 (SV 10,001–100,000 bp) only contain three
panels each. We can see immediately in Fig. 3 that the bars generated from the reference set
are much closer to the height of the bars from the VCFs, and this is not affected by the use
of only the 15 kbp insert set. There is one notable exception with regard to duplications.
As with the nanopore dataset, an NGMLR alignment contains the most duplications.

However, these duplications are far in excess of what is present in the reference set. This
is notable, as the reference set has been carefully validated. What was missed, versus what
is a false positive, is not resolvable in this experiment and likely not resolvable without wet
lab bench work or orthogonal validation.

The largest SV show a complex picture (S6). NGMLR calls the most and the largest
deletions and no tools do well for large insertions in absolute terms or relative to the
truthset. However, Minimap2 and NGMLR preserve no breakpoints called as insertions.
For duplications 10,001–20,000 bp, all tools except LRA resolve many more than are
present in the reference. NGMLR continues to include many more duplications than the
other alignments, and more than the reference.

The disparity between the number of large variants greater 10,001 bp in the NA24385
truthset versus the NA12878 is striking. This, along with the general lack of reference
standards for all publicly-available genomes, highlights the need for better, more
comprehensive reference sets for all publicly-available resources. Inability to resolve
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large duplications may yield false negative results for conditions where structural variation
is a recognized etiology, such as DMD or FSHD, where variants range between the tens and
hundreds of thousands of kbp (Barseghyan et al., 2017; Sharim et al., 2019), beyond the size
of variants accurately detected in this study. It is also a critical issue when the technology
is used for broad exploratory surveys seeking to identify new etiology in low-complexity
regions of the genome where long-read sequencing should shine.

DISCUSSION
In this study we have highlighted the key differences between alignment files generated by
different tools. By using well-characterized genome standards, NA12878 and NA24385,
we were able to directly compare the performance of each tool on the sequencing datasets
obtained on different platforms. We further analyzed the reads that were included or
excluded from the alignment, and how these read alignments revealed breakpoints that
could be resolved as structural variants in genome architecture. We then compared those
variants to sets of previously published variants discovered through multiple platforms.

Reassuringly, each alignment tool was internally consistent: when an alignment tool was
given the same fastq and the same reference genome, it produced the same result as judged
by bamstats and Sniffles variant callsets. However, when looking across the alignment
files produced by different tools on the same sequence data, the representations of the
genome diverged in terms of which reads were included or excluded and the numbers
and types of variants that were present in VCFs. This is impactful because of the potential
high value of LRS data in terms of genome phasing and identification of epigenetic DNA
modification (Ni et al., 2019). Since the majority of experiments that leverage large scale
population surveys can be expected to rely on reference-guided alignment rather than de
novo assembly because of both the cost and speed of analysis (Mardis, 2010), it is key to
understand the idiosyncrasies of each type of alignment files prior to generalizing clinical
use for these technologies. Furthermore, clinical experiments in genomic medicine face
human time constraints—speedier analyses will have higher appeal and adoption.

At this time, GraphMap2 does not show utility for producing whole genome alignments
that include structural variations when run with default parameters. The resource usage
was large and the time to complete the computation was long and when it did work, Sniffles
could not call variants on its product BAM. This is not unexpected, as the tool was designed
in large part to increase single nucleotide variant sensitivity in noisy nanopore-sequenced
reads.

Minimap2 used the least memory while Winnowmap2 ran successfully in the fastest
time, an important point, should these platforms be tied closer to bedside applications. On
data from both platforms, they both allowed calling of the most insertions and deletions,
but fell short on inversions and duplications.

NGMLR was the most discerning aligner, in that it left the highest number of reads
unmapped. It used more compute power than Minimap2 and took much longer (3–10
times) than the next fastest tool. While it was designed specifically to resolve structural
variation, it calls a high number of SV that have not been validatedwith othermethodologies
or curated in DGV.

LoTempio et al. (2023), PeerJ, DOI 10.7717/peerj.16515 16/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16515


There is a great divergence in Sniffles-called variants from alignment files generated
by all tools from the variants present in DGV. This is a concerning expansion of seminal
findings in a previous study (Chaisson et al., 2019) as none of the Sniffles VCFs mirror
the SVs present in the high-quality curated DGV database. Furthermore, there are many
genomes released across multiple consortia including GIAB and the Human Pangenome
Reference Consortium (Miga & Wang, 2021). But not all of these genomes are sequenced
on multiple platforms, and comprehensive reference sets which are harmonious across
samples, genomes, and datasets are still limited.

This resulted in us using two reference sets for this project to accommodate the latest
releases of data. The callsets generated in our experiments used annotations which were
different from the NA12878 variants in DGV and the curated variant set for NA24385,
which was surprising. Finally, the most up to date variant benchmark for NA24385 is
called on GRCh37-aligned genomes, which is from 2009 and not as comprehensive as
current builds (Nurk et al., 2022). Taken together, this underscores the need for orthogonal
approaches and collaboration between wet and dry labs to solve this problem.

The points above are critical in designing pipelines for genome analysis and structural
variant discovery. In short, it is not a high burden to generate two alignment files per
genome with each Minimap2 and Winnowmap2. In computationally unlimited research
settings, there is value added in the generation of alignment files from NGMLR as well,
although the time to complete these experiments makes them less appealing. These three
perspectives on the same genome will account for some of the inherent differences of
each tool and the algorithms they use to handle read alignment (Bizjan et al., 2020). If
computational resources are limited, Minimap2 is the best choice to move the greatest
number of genomes through the pipeline quickly with small memory needs; however, the
loss of comprehensiveness must be considered in cases where a suspected variant is not
found.

This is impactful in genomic medicine. For example, as variants range from tens of kbp
in FSHD and hundreds of kbp to mbp in DMD, diagnosis of these disorders will likely not
benefit from data generated on LRS platforms at present, underscoring the need for optical
mapping or array-based technologies. However, disorders resulting from smaller SVs such
as Huntington’s (∼18–540 bp) (Moncke-Buchner, 2002), myotonic dystrophy 1 (∼15–153
bp) and myotonic dystrophy 2 (∼338–143,000 bp) (Yum, Wang & Kalsotra, 2017) could
be good candidates for deep study with LRS platforms based on the variants present in
alignment files from Minimap2, Winnowmap2 and NGMLR. Accordingly, LRS has been
used to identify variants in many such disorders (Mitsuhashi & Matsumoto, 2020).

If pathogenic loci are known, a high diagnostic yieldmay be obtained by generatingmaps
with each available alignment tool, and use of a structural variant caller such as NanoSV
(Cretu Stancu et al., 2017). Unlike sniffles, which provides a call of type of SV (deletion,
insertion etc.), NanoSV only identifies breakpoints in the alignment, without assigning
those breakpoints an SV type. A robust comparison of SV callers on nanopore datasets
highlighted the relative strengths of variant calling pipelines and may help users determine
the best caller for their experiments. NanoSV may be suitable for identifying breakpoints
missed by Sniffles, but comes with the further caveat that it is resource-intensive and may
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not scale in a clinical setting without vast computational resources (Zhou, Lin & Xing,
2019).

The discrepancies between the VCFs generated from alignment files starkly show the
need to design experiments with the appreciation that the genomics ecosystem cannot
yet be dominated by one platform or pipeline and requires a multifaceted approach to
discovery. We are at a position where simply because the breakpoint is missing from the
VCF from an LRS genome, we cannot say that it is not present. We must therefore look
across platforms and data types for comprehensive genome representations (Chaisson et
al., 2019). However, this requires more data from the community-generation of NA24385
data on new nanopore chemistry would allow for direct comparison to the current CCS
standard, or alternatively new benchmark CCS data could be generated on NA12878. This
would address a critical gap in our ability to benchmark new tools in a platform-agnostic
manner.

CONCLUSIONS
As the cost of long-read sequencing catches up to that of inexpensive short-read sequencing,
the inevitable boom in data production will require well thought-out analysis pipelines.
Pipeline design always involves a set of tradeoffs. To accurately assess these tradeoffs, we
must have a rigorously benchmarked view into the tools available to create the analytic
product. Here, we looked at the differences in reference-guided human genome alignments
to understand the difference in each tool’s alignment of the same genome, and how it
affects a structural variant callset.

This informs our conclusion that, regardless of the sequencing platform, when
computational resources are not a limiting factor, it should be best practice to align an
LRS human genome with three alignment tools. Minimap2, Winnowmap2, and NGMLR
will provide a strong foundation to gain better insight into the architecture of a genome of
interest, but there are circumstances where use of LRA for SMRT data may make sense in
lieu of NGMLR. When compute resources are limited, minimap2 is a strong choice, and
when time is a limiting factor, Winnowmap2 is the best choice.

As we enter the era of multiple references, pangenomics, and graph genomes, analytic
substrate from the unmapped reads of a genome gains higher value. Through finding
consensus reads unaligned by different aligners, teams interested in data excluded from
the reference genome will yield more fertile ground for the discovery of novel genomic
material.
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