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STRUCTURAL CHANCE, PARAMETER VARIATION, AND FORECASTTNG

Yair Mundlak? and Corden C. Rausser T

1. Introduction

Attempts to capture useful relatiomships for forecasting purposes in non-
experimental sciences such as economics have long been fraught witrh formidable
obstacles., Many of these obstacles relate to uncbservabigs and the lack of
controlled effects. Important unobservables are generally associated with the
evolution of taste, the formation of expectations and anticipations, and socio-
logical phenomena. In the context of controlled sffects, economists generally
operate with sompe version of the classical linear statistical model; this model
presumes that the effects remain constant over all sagple observations.

For most economic systems, fhe assumption of péfﬁmeter ccnsistency iz im-
posed in the face of noncontrolled effects and many important unobservable in-
fluences. Economists and other social scientisets often neglect the problem of
isolating an appropriate set of data for which it appears reasonable to assume
parameters are "approximately constant." This problem is at the heart of the
issues faced by the classical framework of exyerimééﬁal éééign. Economists,
of course, ﬁava‘recogﬁiiéd that éifi@rent data Sﬁtsloftgn result in noticeably
different coefficient estimates. Perhaps the bast example af:this recognition
is the typical treatment of pre- and postwar data on economic phenomena. To
account for the difference in effects between pre- and postwar data, the gen-
erzl practice has been to introduce dummy variables to allow for possible
significant shifts in intercept and slope parameters.

Although the dummy variable approach is indeed convenient, in way in-
stanceg it will lead to grossly inaccurate forecasts. Neglecting issues of

complexity, such specifications may be suboptimal. TIn a time series context,
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it is appealing to view the data from, say, 1970 as more relevant to forecast

for 1980 than data from the pericd of the early 1950s. Taste, expectation

formation patterns, and socioclogical phenomena in 1970 are clearly far dif-
ferent than 1950; and it would appear that in this sense the year 1%70 con-

tains more relevant information than earlier periods in forecasting future

phenomena.

In agricultural economic forecasting, the above observations appear par-
ticularly relevant. Models constructed for various commodity systems, espe-
cially feed and food grain commedity systems based oun data prior to 1971,
have revealed notorious inaccuracies in forecasting important economic varia-
ables for the years 1972 through 1976. These gross inaccuracies proved to be
a bitter disappointment to the Cost of Living Council during the years 1972
and 1973 in their attempts to control inflation. Im addition to the ohwvious
need for respecification of the basic commodity models, other issues related
to the conventional use of the constant parameter formulation have naturally
arisen.

In other fields of economics, researchers have begun to question the
validity of the constant parameter formulation. The potential advantages of
utilizing the forthcoming information to update or revise estimates of the
coefficients of econometric models has been clearly demonmstrated. Im part,

e

this increased awareness has resulted from the growing body of evidence,

both of a conceptual nature and from empirical observations, that parameters
of econometric models generally change over time. For macrosconometric
models, the empirical evidence is reported in Duffy (1969), Cooper (1972},
and the experience of the econometric consulting community. Practitioners

have noted the forecasting accuracy benefits that can be obtained from



mechanically "adjusting the constant i:erm.”1 Evidence has also accumulated
on the parameter wvariability asscciated with wage/price data, especially
structural shifrs In conventional Phillips Curve formulations. Moreover,
numerous studies at the microlevel have revealed parameter iInastability
[see, for example, Balastrz and Nerlove (1966)].

It seems, therefore, that more attention should be devoted to modeling
processes where the parameter effects themselves are subject to various sorts
of perturbations, Although such modeling processes have appeared with in-
creased Irequency in statistics, as well as the quantitative economic litera-
ture, there is nevertheless much uncertainty about the value of such approaches
in an empirical setting. Even though economists have recognized the possi-
bility of parameter instability, the complexity of pinpointing the nature of
such variations has caused the profession to gravitate to varicus constant
parameter formulations. A view of many empirical researchers seem to be that
much of the recent conceptual work on parameter wvariation in both statistics
and economics represent new gimmicks which contribute little in the way of
useful empirical infermation.

To be sure, there is some:merit in comsidering certain paramgter effects
as relatively fixed in &conom;c models. Tﬁa_priﬁaipal merit,isisiﬁglicity in
providing imsights about economic interrelationships, unclouded by the meticu-
lous derails of a changing real world., There is also, however, some merit in
obtaining more accurate representaticns, forecast, and economic policy evalua-
tions. Hence, from a research strategy standpoint, the principal issue faced
in deciding whether to employ a constant parameter formulation or some varying
parameter formulation depends critically uwpon the trade-off between inaccuracy

and complexity. In the final section of this paper, the issue of complexity
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will be discussed to provide a set of guidelines that researchers hopefully
will find valuable in selecting an appropriate formulation.

From the standpoint of potential model inacecuracies, many justifications
can be offered for the parameter variation formulation. First, the "true”
coefficients themselves can be viewed as generated by a nonstationary or
time-varying random process. Numerous authors have dealt with a special case
of this view, namely, the random, stationery parameter formulation. This
formulation has been advanced principally for time series and cross-section
observations [Rosenberg (1973b)]. In particular, a cross section eof indi-
viduals are presumed to possess the same regression regime over time but
whose individual behavior at a given point in time is viewed as a random
sample from a population of coefficients with a constant mean.  When the
méan is allowed to change over time, there is the more general nonstatiﬁgéry
formulation.

Even when the underlying "true" parameters are stable, situations arise
in which the parameter variation approach will prove valuable. By their very
nature, econometric models are abstractions; they involve simplifications im-
posed bgvavailable data, research ;ﬁgé? and budgets as-wail as the desire to
achieve tractable results. Such'siﬁéiifiaétimns and abstractions often result
in misspecificéti@n; which in tumm ;ﬁfluﬁan_tﬁaxdégreehof accuracy of the
model’s forecasts. The effects of such misspecifications can be countered
by an appropriate parameter variation structure, The most important types of
misspecificatrions which arise in the construction of forecasting models in-
clude omitted variables, the use of proxy variables, the use of aggregate

data, and nonlinearities.




The omission of important explanatory variables arise from inadequate
theoretical frameworks, unavailable data, or the desire for simplicity.
Such excluded variables often relate to structural changes resulting from
taste evelution, technological developments, changes in institutional
arrangements, and the like. The effects of such excluded variables are
presumed to be random with a distribution whiech has a time invariant mean
and vaviance. Such varviables will have no effect upon the parameter ef-
fects of included variables, prﬁ%i&a& the omitted variables are independent
of those that are included. However, time series fe% such omitted vari-
ables exhibit nonstationery behavior and are often correlated with the
included variables. Under these gircumstances, the estimated effects of

Ar 8 mintwoum,

the %ncluéad Variahies can ke expected to changQ @ithgﬁime.:
it seems reasonagle to expeéf that excluded variables with ﬁ;ﬁzere effects
will result in time variations in the intercept or constant effect.

Due to data liwmltations, proxy wvariables are often employed in the
construction of econometric models., Such proxy variables are invariably

introduced into dyndmic representations which involve expectation forma-

tion pattarns and measures of capital. Unfortunately, these and other proxy

variablﬂﬁ.déﬁaatuonly*partiai ;ﬁagégs in the lé#é;'; {ééaagmic stimﬂli‘fh&y
purport to measure. Furthérmore, the relatiaméhip”ﬁé%ﬁeen‘thé éé;iréd vari-
able and its proxy can be expected to change over time. Under these circum~
stances, changes in the desired variable which measures the actual economic
stimuli induces instability in the estimated parazmeters assocciated with the
proxy variables.

In the context of aggregate data, the potential for parameter insta-

bility has been demonstrated on numerous occasions. Since aggregate data

are measured by weighting the relative importance of the heterogenecgus sets
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of microunits, the parameters in the estimated aggregate equation will remain
constant so long as these weights do not wvary. In the context of time series
data, the assumption of constant weights (i.e., relative importance of the
individual components of theaggregate remains unchanged} is indeed unlikely
to be satisfied. Hence, since shifts in the aggregation weights are the rule
rather than the exception, parameter effects associated with the aggregate
variables in the estimated model will vary across time [Zellner (1962)].

Another potentizl cause for parameter variation arises from the inappro-
priate specification of functional forms. For example, if under the pretext
of a Taylar'gaties expansion a linear relationship is estimated as an approxi-
mation to a ﬁénliﬂaar equation, the:assumptién of constant parameters for the
simplified equation constitutes a reasonable approximation only if the ob-
iééfvé& éx@la@ggéty’vaxiéﬁleétgaméin wiggiﬁ‘some narrow range.‘ Fﬁr”ﬁ&ni&tiﬁné
beyond this range, it is a simple matter to demonstrate the nature of parame-
ter variation for the simplified eguation. Moreover, the secular evelution of
many economic time series strongly suggest the rejection of any model that is
based upon the assumption of narrow sample ranges. In general, the approxima-—
tion of high}y ndﬁlinear "truaﬁ xel&tignships by some sim@léf ﬁuncgiqngl_fbrm
along Wiﬁﬁéobéé&vatians augsiﬁe a narrovw sample rangg‘ﬁrevi&es(gé£hééé the
strdngest mﬂtiyatééné for ai§éryiqg parameter sfructure. o

In addition to the misépecification razionaie for varying parameter
formulations, economic theory can also be advanced to juestify their potential
relevance. In many situations, the very mature of economic theory leads us to
expect relationships that change over time. Lucas (1976), for example, has
argued that the constant parameter formulation is inconsistent with economic

theory. He notes that a change in policy, for example, will result in a change
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in the environment facing econemic units; and under the assumption that such
units behave rationally, this will result in shifts of the equations repre-
senting the behavior of such units.

In the case of cotmmodity systems, a number of illustrations of the points
raised by Lucas are available. FPerhaps one of the best examples occurred
recently in the U. §. livestock séétar. 45 the result of the United States
Economic Stabilization Program over the period 1971-1974, price ceilings were
imposed on red meats at the end Qf“March, 1573. These c¢eilings, when com
bined with the biclogical nature of various red meat animsls, led to a dis-
tortion and clouded price signals which in turn resulted in stratégiec errors
on the part of various decisiom-makers. These signals, of course, led to
. instability in the expectation formationm papterﬁzafevéficus decigion-makers
along the vertical commodity chains in beef, pork, and poultry. During this
period, the cattle cycle poised for a sizable ligquidation, was substantially
altered by the distorted signals. #Price ceilings in fact became the expected
prices of producers for a short period of time. As a result, the liquidation
phase was curtailed which in tumrn. provided the basis for larger supplies,
substantially lower pfi;és) andzsignificaﬁf negéﬁ{ve margins. These dynamic
effects resulted in an extended liqﬁidatian phase whiéﬁuggceedéﬁ all-eﬁ@edtam
tions. Hence, the &fféctsVof the price ceilings had the immediate effect of
a substantial shift in price expectations which in turn resulted in rather
drastic implications for dynamic supply responses and thus ultimate market
realizations and cattle inventories.

Dynamic economic theory and the notion of rationale expectations does

pot in general provide us with well-defined behavioral equations whose
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parameter effects can be treated as constant. In particular, Lucas notes that
for the individual decision problem: "Find an optimal decision rule when
certain parameters (future price say) follow an arbitrary path is simply not
well formulated." He goes even further to suggest that, as expectaticns of
future policy behavior change, economic theory predicts that this will result
in shifrs in the relevant estimatable behavioral equations. This source of
parameter instability can only be avoided by reasonably accurate measurements
of expectation formulation patterns and dynamic responses——a dubious hope at
best.

Finally, in employing constrgctad models for various purpeses, it is
crucial that the models ba Era&téble and interpretable. In using mg&els.for
generating forecasts and/or poli;y-analysis, a number of difficulties arise
due to the model dimensions-and problems of numerical accuxacy; The accuracy
is indeed an impertant issue when the structural model representation is non-—
linear. For such models which Involve simultaneous representations of large
systems, it 1s not possible to obtain a unique reduced form. Im cowmputing the
necessary derivatives to thain the reduced form for nonlinear models, issues
ofgagproximaﬁiﬂa;aQQ=rqund%@ff problems naturally arise. Hbrevi@pq;;autlyg
it is not possible ?9 derive.reliébility statistdcs fg; highl? ﬁaﬁ;ineéf
mqﬁéig. Thus, weasuyres @féforepast varianagﬁgné‘;isk aﬁﬂa&iéteg ﬁith v&féﬁus
policy actions are generally swept under the rug for such model representa-
tions. These problems can be largely avoided by specifying models as linear
in the variable space but in essence nonlinear in the parameter space., By
varying the parameter effects, any nounlinear representation can be appropri-
atrely approximated [Rausser (1978)]. This approach allows forecast probability

distributions~—~unconditional or conditicnal on altermative policy actions—to




be generated for a particular peoint in the parameter space. Along similar
lines, note that the approach also simplifies the validation of constructed
models, especially the derivation of its dynamic properties.

The cumulative implications of the above observations is that, given
the forces often neglected in economic wodels, it seems overly optimistic
to presume that parameters will be ildentical over the complete sample record
regardless of whether the model is linear or nomlinear. Frowm an operational
standpoint, the relevant issue is whether or not the explicit recognition of
varying parameters will provide accuracy agé impiem&ntation benefits which
outweigh the additional comstruction complexities gf*such formulations. Can
these formulatioms capture the enduring characteristics of the processes
under examination? T&enpﬁrpase ﬁ%:ﬁhis;paper iskgq géint u§;in:fhe diféatién

of answering this question in a definitive manner.

2. Parameter variation specification
In order to present the problem in the simplest possible form, a single
equation with one explanatory variable will be presented, viz,,
v o= x.B + c . ' o (1
yt tht ut’ B . ()
where
t

2
L 4" (é, qu)’ E (utxt) = E (utﬂt) =0, V_.

Note that the parameter 8t ig allowed to vary over time. The changes in B
can be induced or be completely random without any structure imposed. In-
duced changes can be caused by the outside environment and be completely

exogenous to the system or altermatively cam be induced by variables in the
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system itself. For instance, in demand equations it is possible that the
demand coefficient depends on past consumption. A commodity can be habit
forming or altarnatively its consumption can be at a lead saturation point.

In both cases the actual demand response depends on past experience, Further-
more, social change and its effect on the taste can lead to variation in the
parameter structure. One imstance of this behavior has been observed for the
case of meat demand. During the early 1970s, forecasts of meat demand based
on sample data through the year 1970 are consistently below actual levels of
demand. One possible explanation for such forecasts is provided by the de-
mand for convenience foods emanating from thé‘women's liberation movement and
the participation of females in the U. 8. laﬁer force. These and similar in—
fluences can be repre5¢n§g§<i§ a parameter variation equation by variables
from outside the system féénétad by z) while factors associated &ith'habitv
formation and saturation may be represented by variables appearing in the sys-
tem denoted by the general function of L{x). These arguments can be summa-

rized by

Bt = Bo + L(xt) + Z£& + e (2)

t

e, y (o‘, 03), i?t N

E (ez) =E [e, L(Xt)] = 0.

whare

As indicated above, the term z, represents the outside effect on the

t
coefficients whereas the term L(Xt) represents the effect of the variables

within the system. When these two effects are not present, then Bt is de-

seribed as a random variable with mean BO and an error term at. in the most
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special case when the variance of e is 0 and the effects zt and L{xt) are not

present, then Bt becomes constant coefficient which is the usual regression
analysis formulation.
More generally, however, 3t is conceived as a random variable with a

systematic component affected by the two forces described zhove, Combining

equations (1) and (2), equation (3) is obtained which differs from equation

(1) by the addition of two terms, viz.,

I

X, 80 + I;;:(_xt} xt + xtzg:% + 8t {3)

where

g = x e+t u_.
t t t t

The third term in (3} is the pr@é#ct or imtéraction bet#aen X, and Zos ané
the second is the interaction between X, and the general function L(xt).

Note that the variable zt can be a qualitative variable (0, 1 variable)
which introduces a switch in the regression coefficient. OFf course, there
can be more than one switch; and the introduction of more than one switch is a
’ét@a&%ﬁtﬁprwéiéxagﬁgngionz ‘ihe fuaaﬁing:L(be.%s a geaeralhfnﬁctédﬁ,>baﬁ{§t§
main ﬁ&atﬁr§ i$ that it is-spaa?fiedlas a fqggtianfokyagﬁlekpexi@gée'in‘ghe
x's. In O%%é%ftﬂ detect ag(importén% and'intéﬁgs;ing-featﬁgéa5%;this,%ﬁéér

tion, 1t may be expressed as a2 geometric distributed lag function, i.e.,

2
St = 80 + 5thl + & X o + .. F oz, + e, (4)

Multiplying equation (2.4) by & and subtraecting éﬁt“ from Bﬁ,the following

I

equation is obtained:

B = 68 gt (L - &) go + 5Kt~l ta (z, - 6zt*1) + (et - e, ). (5)

4 t -1
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Note that equation (35) expresses St as proportional to 8t~1 additional

terms. 1t is, therefore, clear that expression (5) is a generalization and
extenstion of the Markov chain formulation examined by Rosenberg (1973a)

and Belsey (1973a,1973b): it is also widely used in the engineering litera-
rure. When § is a fraction between 0 and 1, the termm 68t_1 represents a decay
process. The convergence of this process is to Sa {1L - &) plus the terms in-
volving X1

where the convergende is to a térm<5°.

and 2, Hence, expression {5) generalizes the Markev process

It should be noted that equation (3) has a heterosecedastic structure,
Under the assumption of independence between u and e; for the variance of the
error term £ the following expression is obtained:

7.2
t

2 ' -
g~ + Gu. {6)

C?'z:x
g e

2.1. Altervative specifications

The above framework adwmits a number of specifications which have ap-
peared in the literature. The specification in (5) is obtained under the
asgumption thaﬁzifxt} has aﬁ?pecifiétaistfihuteﬁ lag‘form_ é%her forms are

possible and can be admi:tedfby:reﬁriqing‘@xprassignxgﬁ} as;

- , R % '..; ..
By = 0B ¥ 8By F Oy x g i+l M
where the parameters associated with Bt—l and X, 1 differ. For (7) to be
i - oy = = A = - . & _ » = a -
equivalent to (5), 8, 62 83 50 1 - §; z¥ Szt_l, and £ e, 5et—l',

This general representation embeds as special cases all of the parameter
variation specifications which have been introduced in the literature. More

specifically,




Classical linear model: 00 = 1, él = 0, 52 =0, o =0, £, = 0.
Hence,
Bt = 80 for all t. (7a)

Cooley and Prescott (1973a2) adaptive regression model: 60 = {,

¢ = 1, 62 =0, a =0, u, = a, %, = 1, for all t. Hence,

A = + .

B, at*i Et {(7b)
Belsey (1973b) systematic parameter variation model: 50 = 0,

éi = 0, 82 = 0. Hence,

Bt = iz + gt. (7¢)
Swamy (1970) random coefficient model: 50 = 1, 61 = 0, 52 =0,

a = 0. Hence,

B = By + & B <L

Cooley and P%eﬁeq;t (1973b) time-varyiiig parasmeter model: 5%7%»0,

ﬁl =1, §2 :'-"‘:{»,O, a = Q, !’lt =0, ‘Et = T’tt - V;t:__l + ¢t. Thus, -

g = g%

e 8t + ﬁt,

* _ p%k

81: N Bt“l t 9y

and

B = Buog T oW v (7e)

whers L ='[¢t, ﬁt}; o, = [1, 11; and oy = [0, -11}.
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f. Singh et al. (1976) mean response model: 60 = 1, 51 = 0, 62 = 0,
zt =1, and o = af(t). Thus,
= +_h"
Bt 80 af(t) + gt (7£)

where f{t) is some function of tine.

g. Goldfeld and Quandt {1973) switching regression model: 60 =

§, =8, =E =0, a=1, and z_ = ﬁl for tel

t 1

. and z, = 82 for

tEIz, where 1. and 12 represent the sets of indices for which two

1

separate regression equations hold. Hence,

g
v ytﬁl u tel

t t 1

(7g)

V. = Xtﬁz + u, telz.

h, Spline regression model [Poirier (1976), Buse and Lim (1977)]. In
this formulatien linear, quadratic, cubic, and other special forms
of splines can be specified. This simplest case is the linear splins
where the intercept it assumed comstant; and feor the slope, 53 = 1,
§ = S = Et = 0, and 0 and z are defined as the vectors, o' =

——

(al, GQQ‘ and z, = {£, t "‘tl)' Henge, for the slope coefficient

st = 50 + alt + a2 (¢t - t), (7h)

where t — t is restricted to be zero for t < t. The parameter Bt

is referred to as a linear spline across time with a known knot at t.

The above special cases (a) through (h) admit at entire spectrum of possi~

ble parameter evolutions. The first case (a) is the conventional constant
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parameter specification. The second, the adaptive regression model of Cooley
and Prescott, treats the parameter evolution ounly in terms of the intercept or
constant term. This parameter evolution evolves in accerdance with a random
walk model and clearly does not allow for turning peoints in behavior of the
time~varying parameters. The third formulatien is especislly important when
influences from ocutside the medel motivate structural changes in the parameter
effects. Such influences are often gqualitative in mature and canpot generally
be measured with any aaceptablemd;gnae of accuracy. The fourth formulation or
the randcom coefficient model has been widely applied especially in the comtext
of time series and cross-section data [Mundlak (1978b)]. The varying parameter
formulation of Cooley and Prescott {e) has been applied tomoney demand rela-
tionships’ [Rausser and Laumas (1976)1 and supply xgggéhse elagticity for wheat
[Cocley and DeCanio (1973)]. This formulation allows gystematic vafiation in
both the intercept and slope coefficients which appear in multiple regression
models. The two-component process on the unknown parameter eiffects allow
similar interpretations to Friedman's permanent income hypothesis. Both
transitory and permanent wvariations in the timewvatying-parameters ara»a;;oweﬁ
by this formulation. | |

The sixth.spaeiél case advanced by Singh et al. (1978) provides a nild
generalization to the Belséyh(c) aﬁé the random coefficient model of Swamy (d).
A pnew feature offered by this formulation is the inclusion of a linear fudc-
tion of time which leads to a presumed continuous evolution of the parameter
effects. The switching regression model generalizes the conventional Chow
{1960) formulation. The latter formulation presumes that g priort information
is available to classify wvarious regimes whereas the Goldfeld and Quandt ap-

proach endogenizes the distribution of the regimes. When g priori information
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is not readily availlable, the Goldfeld and Quandt approach is preferable,
particularly when the parameters move by discrete jumps. Finally, the spline
formulation offers some distinct advantages in structuring the nature of
parameter variation. In the g¢ase of linear spline, the formulation is equi~

valent to a piecewise linear approximation.

2.2, Desired estimates

In operating with specifications which allow time-varying parameters,
issues askociated with the type of estimates desired waturally arise. The
resolutions of these issues déapends upon the amount of information availaﬁle‘
An estimate for a particular point in time might depeénd not only on past and
current information but also on future information. For example, 1if Bt/t+ﬁ
is to denote the hest estimate of Bt B&sed on information ﬁp to and ipcluding
the time period t + j, three situations can be distinguished. The first per-
tains to swooth estimates of the parameter effects (j > 0), the second to
filtering estimates on the parameter effects (j = ), and the third to pre-
diction estimates of the parameter effects (j < 0). Econometricians are often
concerned with the ?est estimate based on the entire data sample, l.e., 6t/T;
but this requiras*fiitex dand prediction estim&tg§ gf‘the'pa?amecar aﬁfecﬁs;

i.e., 5tft and . § with j < 0. Furthermore, from thé~stand§di@;;bf'fa¥e—

P e+
casting and policy evaluation, there is spefial concern with the prediction
estimates of the parameter effects (j < 0). The generation of these estimates

are crucial in the updating and rvevision of ewmpirical model representations,

3. Estimation procedure
In this sectiom operational estimation procedures are developed for equa-

tion {3). The rtreatment begins with the consequances of specification errors
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which arise with the application of conventional estimation methods followed
by the suggested estimation procedure. This procedure involves a tweo-stage

approach and places emphasis on the estimarion of the variance components,

e  and G, - Finally, the possibility of negative variance estimates is
examined and the basic estimation method is modified to preclude this poten-—

tial outconme.

3.1. Consequence of spectfication.error

In order to motivate the estimation of the equation deseribed shove, the
properties of the estimates which ignore ;he time~varying coefficients will be
investigaﬁeﬁ. Within the framework of the simple regression, the esfimate of
the constant slope is given by

G -
by/x v 2

(8)

‘ﬁﬁe expected wvalue of this gsiiﬁazor is gi@éﬂaﬁy

E(byfx) = Ewéﬁt i . - B S f9)

2. 2 -
where L xt/Zxé; hence, 0 < v, <1, v = 1. It turns out that the expected

value of the regression coeificient is a weaighted average of the individual

coefficients. The weights are given by the squared x's. The expression (9)

in terms of the reduced form equation (3) may be written:

Ecby/x) = E {BD + I Lw, *a P z, W, + z etwg]

(10)

=B YT IS5, YTLw+a Tr, B85, teaTzw
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where r denotes correlation coefficients; S, the standard deviation; T, the
number of sample observations; and the upper bar, the average mean value
with all moments cowmputed from the sample.

For the expected value t£o be equal to a parameter independent of the
sample data, it is necessary that both the correlacion coefficients hetwsen
the weights and the variables L and z and the product of the averages of the
corresponding variables be identically zero. The requirement on the zero
product of the average is indeed very restrictive; therefore, it is likely
that the expected value of the simple regression coefficient will always de-~
pend on the sample data,

Another consequence of the present formulation is the possible introduc—
tiogﬁof serial correlation into an equation which is usad ﬁgr the estimarion
of tﬁe constént>§araméter} Innﬁarticulaf; note that 9q§aﬁié£ (1) a&y'ha“

written as:

= a - x + . (1)
v, =X By + 1B, - B x, +u]
The term in brackets is the combined error term. This error term may be se-

rially correlated even though the ut’s are unrelated. Spé@ifigally#.

ELB, - By x, +u] B, _; ~8) x,_y tu, ] T BB - B

s ' (12)

’ -8
{Sthl “Q}'

Combining equation (12) with equation (2), it becomes obvious that, if thexe
is a serial correlation in either Lt or z, the Bt is serially correlated.
Consequently, (8) is not an efficient estimator of 50. On the other hand,
the reduced form expression (3) for Ve eliminates the serial correlation by

the explicit inclusion of L(xt) and z, and consequently zllows a more effl-

client estimate of SQ.
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For the varying parameter model, it is of particular interest to esti-

mate the individuzl Bt. Equation (8} gives an estimator for the constant

coefficient £ but not the individual 8{. 0f course, (8) is a bilased esti-
o

mator of the individual St. The square of the bias is given by:

2 2 \
B = (gwtﬁt - Bt) . (13)

The variance of the estimator conditional on X and Bt is given by the

expression:

. (14)

L o

. 2/“
war {bij) = ﬁd LX

Combining the bias square and the variance, the expressions for the mean

“gquare error (MSE) is obtained:

2f. 2 N2
MSE = Uu/ﬁxt + (Etht - Bt) . (15)

Note that the mean square error can be reduced in estimating the varying

parameter equation by incorporating equation (2}.

“3.2. Egtimation method
The error term in (3) has 4 heteroscedastic structure; ﬁhenéf@fé,’it:is
desirablé to use a two-stage GLS estimator. The first stage invoblves estima-

tion of {3) by OLS followed by the estimation of an appropriate covgriance

matrix. The second stage employs the estimated covariance matrix to obtain
the GLS estimator. The computation of the covariance matrix is not immediate;
this issue will be investigated in Section 3.4.

The procedure outlined above provides estimates of 86 and of . The

values of the parameters obtained in such a way can now be introduced in the
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structural equation (2) from which an estimate of 5t may be obtained. Such

an estimate may be represented by

ét = éo + i(xt> + azt. (16)

The estimaces of So and @ are unbiased even for the first stage of the two-
stage procedure.

It is interesting to note that the most recent data play an important
role in the estimation of 8:‘ That appears specifically in the two terms
L(xt} and z, - Early values fi‘cs.rnxt get veryflitgle~WEighﬁ in L(xt) whezgas

early values for z_ do not appear in (16). Thus, the early observations af-

t
fect,8E=only through the effects of BO, ¢, and the estimates of L. Clearly,

under the present structure, there is no need to throw away early observa-

tions since they still provide information én the constant terﬁé;ﬁo,andi@,

3.3. The estimated equation

The maior conceptual problems have been reviewed in the context of the
simple regression framework, The model involving more than one explanatory
variab}encan aog,be_easily formuiapgd.‘ Lﬂa,ﬁt be a k vector of explanatory

variables and write for the;tﬁﬁ obSe:VAti@h g generalized version of (1):

= ! B & 1T
Yo T E Bt LN
o4
y=X B+ (185
where XO = diag fgé} is a TxTk matrix; B8' = [B], ..., §%]; Bt is kxl vector;

and y and u are T component vectors, For this specification, a generalized

version of (2) is given by:

B, =8, + (1, @rir+1,8z1a+e 19
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or equivalently,

8=1L,Q@8)+m+zate (20)
where §0 is the mean value of §{ for zero wvalues of Et and o3 i{ is a T
component vector of ones; [I'" = [II}, ..., ﬂij; Eﬁ is a vector of coefficients
3 = i EF B 3 f o= .oy
er, i, r =1, ..., k, expressing the effect of Lrt on By L [th,

. . . ; . | B . y LI
th}, th is a function of past value of xj, z [zlt’ ceagy mt}’ and e
[gi, ey g&]. e

T
L @z} QL
z = L = - (21)
1 ® z; 1 @rLy
Combining (18) and {(20),
yexg v rn etz et u (22)
where X = .
Letting £ = Xﬁ e + u, it follows that
d ¥
£ [o, X E (e g_’)xd + cZIT} (23)

and

El£x]] =0,Elg2]] =0, E(ce) =1,@24

x‘!
=t

where the elements of the diagonal matrix A represent the variances of random

coefficients ﬁk.




Note that in (22) there is a generalized form of L which appeared in
equation (3). Each B may depend not only on the L function constructed on
the x conjugate to this 8 but also on all other x's. This is a general spe-~
cification, but it is oot suggested that every 3 will necessarily depend on
all the lagged x's. In empirical applications, it is likely that any particu-
lar B will depend on the xz conjugate to it and perhaps a few other x's. Never-

theless, the general form will be maintained here te allow flexibility in

adapting the mcdel to various circumstances,

s A

Since no observations aze)agaiiéhié dn'L(Xt), several possibilities
can be considered in g§gimating (22), Tt is possible to impose a structure
on E{xt) such as a fir$t4order distributed lag function., The weights of such
a function are not known, but it is,pﬂssiblg to iteraFa byJ?SSuming several
alta;native values for the éeight; and examine the associated likelihood
functions. If the likelihood function is not particularly flat, then the
cholce will be easy. If the likeliheod function is flat, then the choice is
immaterial te a large extent; and any of the weighting schemes may give
equally good results. In the special case where L and Il are known, the fol-

lowing transformation can be made:

S )ﬁ, . B
L- X1 = %8, + ¥ Za te. (24)

Alternatively, instead of enforcing a structure on L(xt)’ a sequence

of lag values for xt may be specified. This becomes equivalent to introducing
several terms; each one is a product of X, and a lagged value of . The ad-
vantage of this approach is that it does not assume a structure. Howvever,

the cost is rather high and perhaps excessively high. Too many lagged values

for % will introduce multicollinearity in the system; and in many instances,
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there will be sufficient information to sustain only one or two terms. This
problem is particularly troublesome in the case of forecasting. The problem
arises not only because of the L{xt) function but it is dntrinsic to the
basic framework. It is due to the dependence of the systematic components of
the coefficients on the x and z. This issue will be discussed further in
Section 3.

Equation (22) provides the form to be estimated. The error term of this
equation ﬁas a heteroscedastic SQfﬁcture; therefore, a.two~staggeproceduré
must be developed. For thatupurpose, the caééiiance matrix of the error struc-

ture must be estimated. This issue is dealt with in the hext subsection.

3.4. Estimatian of variance COMPONSNts

Tﬁeréstimati%niéf théﬁvgrianceigsmpaﬁéﬁgg”iﬁyvafyiﬁg coeﬁﬁiéi;££s modéi
is discussed in Mundlak {1978a). The method developed by Mundiak (1978a) is a
generalization of the standard method used in components of error ANOVA. Spe-
cifically, the method requires repeated observations on the sampling unit. As
Sﬁﬁh? this method cannot be applied to the framework examined here since only
g,éhe(Qbséﬁ#agion(ger,year_i§séy§i%able, Co&sggﬁégt;y;'aﬁgfher(ﬂeﬁﬁgé muggfpg
developed. o | - -
- f@a”m@ﬁhm&~dé#gipged'h2re utiliées fﬁégféct that tﬁete?rar';érﬁlof’faé} is
a linear combination of ;he various e's and u, where the coefficients of the
combinations are the x's themselves, Since the various error terms have dif-

1

ferent known “coefficients,™ it is possible to estimate. the variances and co-~

variances in question. Letting X* = (X, XﬁL, Xd 7Z) and M(X*) = I - X*
(x*" X*)”l X*', it follows that the vector of the computed residuals of (22)

may he expressed as
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2= MM . (25)

Hence,

1
BIE £ = oum) + uEnx® (1@ ajx wun. (25)
Under the assumptiom that X% is of full rank, say, k*, rank II = T - k¥,

Proceed by evaluating

~21_ 2 ¢ ed a’
E-[Et] =d m +m [X (IE@A)K ] m, )]

whera is the tth column of M(¥X*). The second term on the right-hand side

may be simplified by

’ t B . -
xd {IT® A]Xd = diag {35; A Et} (28)
and
d,. ¢ d'] .
¥ = {44 T A . IJ
m [X (ET®A)X =N trid ag(&t A xtj_flt:_u_tP
T 5
= Iomp G dxD
=1
T —-
2 2 2 2
= = A T
By & B ¥t w A Im X F
=1
4+ 24 x m2 X X .+t ..+ 24 Zmz X, ¥ .
12 T Tl T2 “kk-l TTtT Ttk Tk~
I o
Defining Yistt = Til @ Xpg Xpos 358 =1, ..., k, expression (27) cam be

written as:



M
"Wl

E[EEJ = Ozm &ll 11t + . F &&&;wkk,t + ZL}_?_wlZ,{: + ..
(29
1Y, &
and the coefficients 02, éjs can be estimated from the regression of Ei
on m and the w's, directly observable variables.
A necessary gondition for theéexistence of such egtimates is given
by T - &k > ELE€;¥£A +1or %> (%7+11)§£k +'2}. Bowever, wiéﬁ~£arge k, multi-

cdl&inéarity'Wiligyreclude raiiﬁgle»&stim@tas unléss T is very large. Therefore,
in time series studies where the nuwber of observations is far from excessive,
Qary reasonably small so that thalr variance could be estimated from the data.
This issue will be formally discussed in Section 3.

Note that only T of the elements of (£ £') are used in deriving the esti-
mation. At first glapce it might appear that some information is lost by

1¢norimg the ofr*dzagcnal elemants. Hawever, this is not xhﬂ casa hﬁaause

. the raﬁk of & g_ is 13 and, therefare, knad edge af Qne columm of’ th1s matrlx

=

- fac111tates the. anmputatlaa ef the remalnlng caiumms.“ A glven cgiumn 13 nnt

‘nsad‘bnt rather the’ ﬂlagﬁﬁal elements‘whlch of . course, ean be obtalned,by
elepmentary row and column operations on §“§’.

For the special case of A T 0, note also that (26) becomes the standard
formula for deriving an unbiased estimate of 02. As is well kaown, only T -~ k*
elements of € are independent in the sense that, knowing these elements and X%,
the remaining £'s can be derived from X*'_§ = 0. The "loss" of k* independent

observations (or dégrees of freedom) is, of course, due to the estimation of

the regression coefficients. In some cases, which are rather important in
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statistical analysis, this is mot a loss but rather a source of important
information, specifically, when the estimated regression coefficients can be
thought to be repeated drawings of a random variable with a given probability
distribution., Indeed, this is the situation presumed by the standard compo-
nentd of error analysis of variance model. In its simplest version, the model
can be written as:

N 2
yij = ai + uij ~ (0, o7 + A? {30)

where A = var a.

It is well known that A is estimated from

I ~2
! 22 _a°
A=yTT X %7 , (31)
i=1 ( 2
J
; ~ - 1 ~2 . ___‘_”_'_l:_____ - - 2
where Cti = yi. - Y", Yi, - 3 § Yijs and J - T {J — l) i ;‘ (Yij }'i,} -

The point made by this model is that &i are regression coefficients {of I

dummy explanatory variables). Simultaneously, they are repeated observations

b) -,
: , - gt ] o ) o

on ‘the random variable a, 0, i?-+ A, Thus, the.k degrees of freedom

"legt" in estimating4&{ provide 1.~ 1 indeggnﬁﬁnt obsérvations for the esti-

LN .

mation of A, This structure does not ei;gﬁd itself to the pr&ﬁigm wherévénig

one observation on the veéﬁer of regres%iﬁn coafficients is awvailable. Fortu-
nately, the error term (25) has a structure that permits the decomposition of
the variance to 1ts components as demonstrated by (26)-(29).

In the ANOVA error components model, the estimator given above (obtained
by subtraction) may actually be negative. The possibility of a negative esti-

mate of some variance components is not precluded from the case as well
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although it appears that this possibility is less likely. However, if a

regression coefficient which serves as a variance estimate is negative and

significantly different from zero, it may be desirable to repeat the estima-

tion under constraint that none of the variances will be negative.

3.5. Nowegative varianse comstraints

The possibility of pegative variance estimates for (29) can be dealt
with in a number of fashions. The most obvious is to apply the inequality
estimator {Jﬁdge and ‘Takayama (1966)] to (29). This simply invelves intf@w

ducing the restrictions

”
ag“ A -
g, “kk-z 0, for all k. | {(32)

%he sampling propertieszof?fhé fésu&ning‘éstimatsr récéﬁfly have been de-

rived by Judge and Yancey (1978) under a squared error loss measure. Operating
with a general inequality estimator, they are able to demonstrate that the
variance of this estimator ig equal to or less than the variance of the maxi-
muim likelihooﬁ estimator. As in our case, they show that, if the direction of
the in‘éq.l}?ii@%aﬁ:'@f}ﬁ%{&iﬁ}t igfbmatiqfﬁ ig" known, the ir—zéq;iag;iﬁgﬁ: :'rEé;t-;§gt-ad

B esggmét§£ is'uﬁiﬁérm;y‘#ngriﬁ$uover the rangéxéf—fhegparamétagﬁégaéé tp:th;
conventional g@ximu@él}kai f@ndfgstimﬁqu ug&ér a sq#?fed éfrofridés-meaSQre.
The sampling properties are derived by Judge znd Yancey for a pretest esti-

mator, and the relevant test statistic is distributed as a central t random

variable with conventional degrees of freedom.

Ant alternative approach to the problem of negative wvariance estimates
is possible using shrunken estimators.3 For this approach, the negative
variance obtains in the unrestricted maximum likelihood estimation is ad-
dregsed by the incorporation of a prior? information which forces the esti-~

mators toward zero. This information is less consistent with the truse
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a priori conditions on variances than the inequality restrictions. Oa the
other hand, it is much easier to implement from a computational viewpoint.
For example, the ridge regression estimator for which computaticnal routines
are commenly available is a stochastically shrunken estimator where the
parameters are forced toward zero with a probability directly related to the
value used to augment the diagonal of the sum of squares for the design
matrix [Fomby and Johnson (197 })}. The ¢ priori information introduced may
be interpreted in terms of zero variances with a given probability. Finally,
it should be noted that ridge-type and other shrunken estimators dominate

maximum likelihcod estimators over certaim regions in the parameter space.

4. Forecasting

The introduction of the varying parameter model is of particelar impor-
tance for forecasting. Since the parameters change with time, it is important
to capture the goefficients which pertain to the period of forecast. Thus,

there is a joint prediction problem, i.e., B and Yt are predicted simuliane—

t

ously. To place the problem of prediction within a useful framework, write

the predicted value of y as:

ok U1
Y41 T Fre1 Pray (33)
. it 2 . . aCRNCy ] ; e .

where bT+1 in this case is an arbitrary estimator of 8T+l’ and Xr,, is a
known value. Such a formulation is directed at the predicticon of v. The
ervor of such a forecast is given by:

ok . = % . -

Yr+1 T Vel T Sl Prer T *rd Srel T Ve

(34)
I - -
X1 Pray 7 Preg) 7 Upy




The expected value of the error is given by

ok . = * t - & ‘ =y k
E (574 = ¥pp) = B Uy gy *’T+1)}|T+1 *rp1 B (33)
where BT+§ represents the bilas of predicting ST%l by bT*l' 0f course, when

: . . i " : * ;
bT+1 is an unbiased predictor, B vanishes. The MS5E of the predictor yT+1 is

given by:

MSE Jh. = Wy Bpyy b verbo, *o (36)
Within the Gauss-Markov framewofk, the bias is zero; and the,vaniaqce ;s mini-
mized by using & generalized iaast—aguare estimator. Here, this apprééch is
infeasible since the variance of the error term is not known.

The prcﬁertiES‘af'thé prediﬁtor bgged on eqﬁgtion_(S) pfoﬁidélgéme,inw
teresting insights. The determinants of bias which appears in {13) can best

be evaluated by substituting equation (2) for Bt to obtain

B = Zwt {80 + Lt + oz, + et] - [80 + LT

+
e+l oz iy

gy T 0% T e,
(37

= [LWtLt’* LT+$J -+ g‘[Zwtzt ~ Zgyg

1+ {Zw-tex - e:,zﬁ_l]._

i*fihigwekprEssianvundeiscéfégfégé sgqpe«aﬁﬁjihﬁbrtaﬁce OE téﬁiﬁg’%ﬁgg aceount
the expiicit formulation of”tim;wﬁér§ing coefficient. ‘If ghe v%iues Df‘L(xt)
and z, in the peried for which a forecast is obtained vary or differ con~—
siderably from the past values of these variables, the bracketed terms will
contribute substantially to the bias. On the other hand, if values of L(xt)
and z, are well within the range of past observations, then these terms may be

negligible; and the predictor based on ignoring the varying parameters may gilve
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an unbiased prediction. Henge, it is particularly important to use wvarying
parameter approach when recent values of the explanatory variables deviate
from the average values for the sample. From this analysis, it appears that
the present framework can detect turning points in cases which a coastaat
parameter fails to do so.

The bias in the estimate of 8T+ can be avoided by utilizing equarion

L

(3} from which the following can be constructed:

... =8 +1_ . +a&

T+ T P T P T %y (38)

Note that x., is the latest value of x that enters the function L and this

T T+’

value is known at the time the foreecast is constructed. Moreover, %o and &
are unbiased estimates of the corresponding coefficients. ponsequently, the
expected walus of bT+1 conditional on zT;i is egual to ﬁ?%l.w

The problem with the above approach is that the resulting regression equa-
tion can be blessed with too many variables. Increasing the number of vari-
ables has a cost; it increases the sampling variance and thereby the forscast
variance. There is, therefore, a trade-off between an increase in the sampling
variance and a decline in the bigs which are associated with- the sdditiom of
variables to the rggre$sionrx That‘creétes a problem of & choide which is

particularly important in the framework. This problem is spelled out expli-

citly in the next section.

4.1. Selection of explanatory vartables for forecasiing
The problem posed at the end of the previous section is of a general
nature and can be treated as such., It is assumed that the true equation con~-

tains k explanatory variables. This set of variables is suggested by the




theory (or perhaps by a theory) underlying the equation. Using the sample
data, the equation is estimated and the null (or other) hypotheses are tested.
Having this information, it is now desirable to predict y for a set of values
given by the row vector of values g?' for the regresscrs: The Best Linear

Unbiased Predictor (BLUP) is:

;& = x*' b; (39)

R .o - _ o .
and the variance of the prediction error, conditional on ¥, £ =v% - vy, is

¢ = g% (1 + h) (40)

2
£
where

h = g*' (X‘X)_l x*. : . . (41)

The gquestion is what X's should be included in the predicting equation. As
usual, the answer depends on the criterion. The problem is analyzed here
within the framework of smallest conditional MSE.

To deal with this problem, X gs partitioned iﬂ;e A= §X1, X2} of order
{n xiki; n x“kzi; ky bky = kg and ﬁf"is ﬁ%%xitiéﬁéé accordi3g1§; §:i,§f
w:igi‘,,ggf). The question is whgghgrdtﬁ‘y§e théTQraéiétnr"iazééé) or, al-

ternatiyeély, to use a. predictor which is based aaly.én‘xif

v e a 62)

*

where a2 is the L. 8. coefficient of z_on-xl. The error of this predictor is

£, = v* -~ v and its variance conditional on s
2 2
gfl = Ui {1+ hl) (43)
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hy o= T X)) R (44)

2
The evaluation of O] and the relationships between the two predictors reaquire

jo

some further specification of the model. Basic in this specification is the

relationships hetween K2 and X1 which are written as follows:

I

E(X,[X)) = X,

and

X, = X+ U, (45)

The term E{Kz!Xl) may reflect the design of the experiment 1f X is nonstochas-
tic or the popﬁlatioa relationships if the X's are random variables. Write

for the unrestricted equation

= X1§1 + X2§2 +u

2 (46)

sV (0, 0" I).

Combining {(45) and (46}, the restricted squation 1s written:

r= éig +.51 (47)
where

2= B + 8y, uy = u+ Uy

Let uéi be the Zith row of U, and assume

o ly v (0, 1), (48)

1

Hence,

ulo o, o?1 (49)

-1 Xl =7 71 "mf?

s% = g* + RL.5.. (5%
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Note that Uf is the conditional variance of y given Xl. At the same
time 1t can be viewed as the MSE of XIX glven X,.
1
The difference between 02 and 62 is the square of the bias generated by

1

evaluating E(y|%) from E(Yle)r The difference can be estimated by using

2‘:
1

K = x(:x:‘x}'lx' and K, = X},(X.’Z.Xl)”l xi

82 = 1/{n - k) y'My and g 1/ (n - kl) thgz_where M=1--K, Ml = 1 - Kl’

Let ¥ be the statistics used for testing the null hypothesis of §2 = {.
By a simple rransformation, it ééﬁ,be shown that 81/82 =3 + (F - l}kgfm ~;kl.
~ > oA} > ’
Consequently, Gi z 02 <=>F = 1. Of course, the verdict with respect to

the null hypothesis depends on the critical value of F (which is distributed

with kz and n - kl degrees of freedom).

Daciding thac G§

Justify the use of the unrestricted model for purpese of prediction. For that,

2 - .
- 07 is significantly different from zere still does not

¥

4

2 . . . .
¢, and © needs to be evaluated which, in turn, requires an evaluation of h
A.

£ £l

and hl as given by (41) and (44) above. Using the expression for an inverse of

a partitioned matrix

' -1 £t _'”l I £
x'x) © = 1 * (51
o 0. | \-1 [
s R . .
where P = (xixi) ‘Xiﬁz is the QLSE of @I, and V2 is the residual of such
regressions, V2 = MIXZ, with rank Vz = k2 <mn - kl.
Combining (41), (44), and (51):
e ' ¥ -1 -
h o= hl +-EJ(V2V2) v, (32)



where
v, = xt - P'x¥ (53)

is a vector of errors of forecasting 33 by P'ET.

There are several possible interpretations of {(52). These interpretations

are most easily developed by demoting b as rhe unrestricted OLSE of

1 and b

2

él and éQ in (46), respectively, and the variances of the two estimators by

z ; and sz. Then,

b

PPN S I
a1, (54)

and, hence,

h-h =7y

B o Yoo (55)
Clearly, the sampling component of the uarestricted forecast variance in-
creases with the variance of EQ‘ The less sccurate the estimator of §2 is,
the larger the sampling variance of this forecast. Perhaps it might be useful
to reecall the conditions leading to a large sampling variance with reference
to the case on hand: small sample variance,in XZ, high multicoliinesarity be-

tween X, and Xiﬁaﬁﬁ 2 small sample size,é'

2
The warianc¢e of the unrestricted forecast also increases with 1v2[. This

result 1s a generalization of a restatement of a known property--~that the

forecast variance increases with the square of the deviations of x*'s from

thelr sample means. In the case under investigation, the marginal contribu-

tion of X2 is evaluated. Consequently, the marginal ceontribution of =¥ to

2
the forecast varlance is due only to that parrc of 5; that is not linearly
accounted for by gﬁ. Consequently, when 53 only deviates slightly from

p';i, this contribution is small.
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When x, is a random vector, the variance of v, can be evaluated and ex-
2 ¥

pressed in terms of such wvariance., Write:

¥, = (= B)' xy +u, (56)
and

P-1= (xixl}“l XU,
ﬁence,

1

] - ol 3 e kT r ~1 -l g
Fop = Elugu)) +E 3“2 [glikikl) = o (HE) Xi] sz

i

32 + E {U2 {*] [Py

(37
= -I'o-‘
22 + E{s~}
_ 3
= 22 (1 + hi).
An unbiased estimator of 22 is obtained fronm:
i.=—2— vy, (58)
2 n -k 22
1
Utilizing (58), (52) can be rewritten as:
- v, .
. - ¥ - - - “:. .
h-h =vy I, 52 &y (59
and utilizing (57),
(L + h.)
= ut 971 T i
h-by =wy BN, oo (60)

v 1
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It is now possible to make the following comparisons:

2 2
RN T I W
7 < <1 +h 1+n
¢ g 1 i
£
81,8, v
oy T2 7222 2 =2 292 (61)
GZ < n - kl
<> B T, By 2! L, ..
TRy 2 B T Y, S I

4 large variance Iz_increases the LHS of the inequalities and tewnds to decrease
the RHS aﬁd,hence,ieads to preferring the unrestricted forecast (the actual
values of the terms, of course, also degend on §2 and 32).

The" RHS .of the inequalities are féﬁdom variableg. A stfonger»$t££ément

with respect to their distribution can be made if an assumption of normal

distribution is added:

| :
“a1x Y B, (& E))

2

(62)

[ =0, A1l 1 £ 1%,

E (Eﬂi"EZi*JXl) a, for all i # i%.

It then immediafeiy follows thaéé -
1 -l n 2
val ¥y ooV T (63)
v 1

where T2 is Hotelling's gemeralized Tz statistics, Utilizing the relation-

ships between Tz and F, (A1) can be rewritten as a probability statement:
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v
H
i#
]

+ 1) <

Fo(k,, n -k

b
P -
g
.
Ito
PO
1§
,_JI

(64)

It
H

f. F {kz, n -k + 1) dF & P(1),

0

fi

probability 1. For finite n (and hot “excessively large”), it is possible

As n - =, P(1r) » ] so0 that the unrestricted model dominates (UE < 52 ) with

to benefit from restricting the model by eliminating variables which contain
ne net information. The net information is directly related to the size of the
variance of these variables or more accurately to the quadratic form in the
covariance méﬁr%g-.,TbHS, it iy das;rabia'maeliminaﬁg.variables which va?y a
1ittle whd have low valuss for heir cosfficients.® |

The condition in (64) depends implicitly on the number of variables
which are already included in the restricted model (kl). Other things being

equal, the larger k. is, the smaller the variaznce 27, that is, the wvariance

1
of the unazccounted part of %o It seems that thiskpxapertj is gvariookedv
/2in*£$émeworks which are based ﬁ@ foﬁgcastingkﬁrom asllaxge g)nuﬁﬁet fov;riﬁ
ab;esués(éﬁssibig. ] |
It may seem Stéange that the relative sige df?tﬁé‘f@fa&a&t variance.is
treated as a random variable., The reason is that the statement is conditiomal

on_xl, in which case XZ has 2 probabilivy distribution and, consequently, h

has a probability distribution. ¥For any set of values §§ used for a forecast,

there are many wvarious values for §§ and, consequently, Gf_gz. In some cases,

v_ may contain large (absolute) values for some compenents. In this case, it

20

is hetter to Fotecast from a restricted model, Such events are represented

by large values for F which exceed any preassigned values for T.
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The foregoing discussion is pertinent for designing an operational ap-
proach to forecasting. In practice, a narrower guestion can be asked: Which
forecast is more accurate, given ¥ and g&, that is conditional on Xl"ﬁi and

XZ’ EE? In this case the distribution of v, is now irrelevant as v, is given.

2
The answer again is prowvided by (61). It is very straightforward; the true
forecast variances are given and their ranking is thus determined bur unknown.

It is possible to estimate 32 and 82 and acceordingly to state:

1

~2 ~2
c g )

£1 > as L 2 e .
e R R R T ak (€3
g g v 1

£

Recalling the discussion above following equation (50):

82

£l z - z 1 31 >
5 2 1 <=>F 3= vi 7 , ¥, t 11 (66)
¢ 2

el

where F is the statistic for testing the null hypothesis By = 0. Under the
null hypothesis, é& has a distribution of central F with k, and n ~ k degrees

of freedom. Consequently:

1. When F < 1, the restricted forecast iS‘preferabie.

2. 'Let Fa be the ecritical value foriﬁﬁéﬁiﬁg the null hypothesis;
then the inequality F % Fa is not directly related to that in
(66) in the sense that the verdict on the null hypothesis is
neither necessary nor sufficient for determining which fore-
cast is more accurate. F can be larger than the critical value
but smaller than the RHS of {66); conseguently, the re-
tricted forecast should be preferred. The converse is alsc

possible.
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The discussion can be concluded as follows: one has to differentiate
between a choice of a forecasting method and an actual forecast. In the
first case the relative accuracy of the restricted and unrestricted fore-
casts conditional on the restricred set of variables are evaluated, Under the
assumption of multivariate normal distribution of the vector of the wvariables
affected by the restriction (52), {64) summarizes the pertinent information.

When a particular forecast is evaluated, it can be done so conditional
on all the wvariables, as they are all kﬂown.g In this case, the various fore-
cast variances can be estimated. It is interesting to note that the test of
the null hypothesis with vespect to the cﬂaffi;ients of the restricted vari-
ables (§2 = ) is neither sufficient nor necessary for determining the relative
precision:of the fofécast$ in question.

The conditions iea&ingtx3more precision of a restricted forecast are of
a similar nature in both cases: & small sample, little net information embedded
in the restricted variables used im the regression, and comnsiderable information

in the values of these variables used for forecasting.

4.2, Utilization of principal eomponents

In view of ghajdeVﬁlapments»inifhe pzeviauqﬁsactiaq,'it,ig éiﬁﬂ; that,
when the sample is of finite s%%e,‘ﬁhere is' & iiﬁiﬁi?é‘tﬁa“nﬁﬁbet ﬁf Vafi—
ables that should be included in a regression equation forecasting purpeses.
This raises a common problem in econometric analysis, that of a choice of
variables. 4 priori, the model may suggest more variables than the data
can support. By eliminating some variables, the model is reduced to z man-
ageable size. Such a reduction need not be done arbitrarily. The problem of
too many variables is that of the sampling variance and, therefore, the

choice of variables to be eliminated can be done in such a way as to minimize



the sampling variance for any predetermined number of explanatory variables.

Thus, the framework of the previocus section could be applied by adding vari-

ables as long as the MSE declines. Such an approach leads to a consideration
of the principal components f{ramework which is now briefly outlined.

An orthogonal matrix P (P'P = Ik} is selected such that

kl
PYX'X)P = . =D (67)
}‘k
where }\1 > e e s> }‘xk ‘are the characteristic roots of (X'X). Note that
_ F o p ot ' P Ki
I.= PP El‘g-l + P Py 2 (68)
Ty o t t \ L
X'X = PDP )\lRl‘?-l I )_ng_k (69)

In this setting, as is well known, the basic eguation to be estimated can be

rTewritten as:

y=%8+u
(70}
= (XP)(P'R) # u = 88 + u.
Then the OLSE of § is:
-1 -1 ‘_.swt:f_
8= qx'xe)”" p'x'y =D S'y :I—L §=1, «eus k} (71)
y

and

>
Mo

var § = @ p . (72}

40.
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From (67) and (72}, it follows that the estimators of the various coeffi-

cients are uncorrelated.

The relationships to OLSE of b is given by:
8§ =9'b and b = P3. o

Combining (72) and (73) and recalling that the elements of D are ranked, it

is evident that the first vrow of P', say, p], gives the a linear combination

l’
of b, which has the lowest variance in the class of all normalized linear

combinaticns of . This result is due to Greenberg {1975). This interpreta-

tion is extended by Fgmby, Hill, and Johnson (i978§ by showing that, if

B in (70) is to be estimated subject to some (say, k2 < k) heomogenous linear

restrlctlons (RP = O) the trace of the covarlance matrlx of the. estlmator is

bounded from belnw by the sum of the variances of the flrst kl =k - kz re-

An

gression coafficients in § ( 2 § 1 A—l) .
In applying this discussion to the problem of forecasting, divide 5 into

submatrices,
5 = (Sl, 52) = X (Pl,‘Pz)q
Lonsider the Tow gagtartéf #iéggﬁ sgjlm §f"£?i,'P2) and rewrigg'f§§3:
- g* % )
¥ §1§1 + §2§2 + u. {(74)
The unrestricted forecast of y is:

~

3’;:5': = _§*5. (75}

But moting that:

s*8 = *P)(®'b) = b,




L~.
L%

&

which is equivalent to (39), the unrestricted forecast obtained without the use
of principal compeonents. Thus, the interest in using principal components
arises when some variables are eliminated.

Congider the forecast based on the first kl principal components:

S = o%3
Vo1 = 818 L e

and the forecast error

=y - ¢ = g* - %3 = &% (8. - 3.} + (g%
Sp1 =¥ T Ypy T &G w810 = st () - 9y) + ggd, + )
The wvariance of e?l conditional on S1 iss:
2 2
Gfp = Upl (1 + hpl) (77>
whera
-1 .1 -1 _
= gk ' Kt oo oR &1 7
=87 (843 87 =570 sy (78)
3y (67):
1
518, 0 (;:}l 0
S,S = =
[}
0 SZSZ 0 D2}
and .
gh = g% + 8! E (s%' s%)8, = 0> + 8§ A, 8
! =2 =2 2242 <2 T2 22
(79)
”
- o a® ' oHY = ¥ LR i,

If x* is stochastic and randomly drawn, then Ef is also stochastic.

2 2

Furthermore, if it is drawn from the same distriburion as the rows of X,
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then SéSzfn - 1= D2/n -~ 1 is the estimator of éz which is the variance of
5,- Wnen x is nonstochastic, then Az is a parameter determined by the design
of the experiment.

The restricted forecast has to be compared to the unrestricted forecast.

Following (61),

o2 o* h - h
fp 2 oooplz 1+h 77 Tp1
53 1 <=> R 1+ TR ] (80)
9g C pl - - pi

On the surface it is not quite:clear that a restricted forecast with kl

principal components is preferable to such a forecast with k, original vari-

1
ables. The procedure of selecting principal components according to the size
of the characteristic roots does not provide such an optimality criferion.
The optimal results call for entering the principal components in a decreasing
erder of their t ratios (in absolute values). Since rhe regression coefficients
on the principal components are uncorrelated, the addition or omisszion of vari-
ables does nor affect the values of the t ratios of those variables which are
e s ) o . i 1 2, Oy
retained in the regréssion. This procedure maximizes the R™ im the-c¢lass of
1 explanatory variables;- and as a coaseguence, it

2 2

minimizes- the expected value of the noncentrality parameter, uamgly?,ﬁpl-— a

regression eguations with k

. . 2 2 . . P
and, consequently, the ratio of Gpl/Aj . At the same time it also minimizes

in a probability sense, the value of hpl in the same class. Consequently,

for any forecast based on k, explanatory variables, the aforementioned pro-

1
cedure has the lowest forecast MSE. Once the forecast is optimized for any

given k., the selection of the number of variables to be included in the re-

gression follows the rules develeoped in Section 4.1,
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4.3. Implicatioms for parameter variation model

The detailed evaluation of the choice of variables for purposes of fore-
casting is of special interest to the model advanced in Sectiom 3. The essence
of the model calls for increasing the number of the variables and it turns
that such a procedure is not priceless. It seems that a reascnable procedure
would be to formulate the model according to a priori considerations. This
stage of formulation should bring out the more lmporrant relationships that
are expected to exist between the wariables. The next step is.that of the em—
pirical analysis. It turns out that, for the purpose cof forecasting, the model
will have to be reduced in terms of the number of variazbles. Tt is suggested
that the reduction will be made by shifting to principal component regressions
where the variables are added to the regression in a declining erder of the
abgolute value of their t ratios. E

A possible objection to the use of principal cooponent is that the vari-
ables do not appear in a natural form. For instance, one would want to have
in a demand function the income and own price variables or, alternatively, in
terns of the anmalysis, one may waat Lo have the original va;iahles, that is,
the set of vgriables which appear in the modesl prior to the modification dus
to the variable caef?icient framemonk. 4This pﬁgference can be aeeemmqaatédé
in the analysis. However, first it.is to be noted thet it is possible to ob-
tain an estimate of B from the regression on the first kl princiéal companents.

In terms of the coefficients of (70},

(81)
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~
where‘épl is the estimate of £ in (70) based on a regression on the first
¥, principal components.

Next, to retaln some vaviables in their original form in the regression,

the daesign matrix can be partitioned into X = (3%, X%%}, and the basic egqua-

tion becomes

v
e

#
g
e

kok X‘k‘k—@*'* + u. (82)

Let

‘7

il

M{E¥*)KF=*

and rewrite the basic equation as

g o= ERBF + VEFF 4+ u

(83)

it
»
%
R0y
b
+
75
O
+
o

where the relevant P matrix used to construct § is now the matrix of character—

istic vectors of V'V and the rest follows along the previous discussion.

5. Simultaneous equatioms

In this section the foregoing formulation and apprcgch.are aéaptéﬁ to deal

an extension of the size of the system resulting in an additional complexity of
expregsions and perhaps of computations. However, in part, the introduction of
the time-varying parameters to simultaneous equations introduces conceptual con—
siderations which have to be dealt with explicitly. This is particularly the
case with the identifiability of the system. In any event, this section is
devoted to the fermulation of the problem in such a way as to allow the ubili-

zation of the foregoing discussion and thereby minimize repetition.
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Consider a system of G simultanecus equations, with a row vectorAgt of

; , , . 10
endogenous variables in time t, and a row vector_:ﬁt of exogenous variables:

B -+ T o= 8¢
Tp B TE TR (84)

where Bt is a G x G now gingular matrix and Ft is a K x G matrix. Both
matrices, Bt and Ft, are allowed to vary with time as the index t indicates.

In addition, it is assumed that:

‘ YuR) = * :

4, v (0, Eu) and E (Etut) 0 ¥r#t (85)

B lugeXgaee) 700 Yo o oo e (86)
* -

¢ (ugt’ gr,t*) R R (&7

= (ugt’ Tg*’s’t’k) - 0, gt:g*:sst:t* (88)

. .,

Plim —— X'{ = M < = (89)

T p:<

where X = Xy -+ - K dsoa T x K matrix.
As in the case of single equation, the coefficient matrices, Bt and Ft,

¢an be decomposed into systematic and error componénts:

= P& . - T . -
B, = B+ E_and [ =TT +H, | (20)

where the starred matrices are the systematic components. Combining (84)

and (90):

* - — -
Y Brrx Mi=w -y E - x H. (91)

et st s
e R A Sk
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Each of the systematic components can be further decomposed into a

constant, a function which depends on past values of intermal variables

(endogeneous and exogenous) and on variables external to the model. Such

a decomposition is integrated into the following discussion. In so doing,

the system is first rewritten for the T observations:

vy + ¥ = v (92)
where
¥4 - diag (3.0, T x 6T
g (7,05
X = diag (x,), T x KI

U={§_t},TxG

B=|B_|, GT x G

and

= I |, KT x G.

It should be noted that the system in (92} is not a complete system;
it artificially expands the number of endogenous variables from G to GT

variables while at the sams time the number of equations remain unchanged.
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"However, this apparent problem is handled bv expressing the coefficients as

functions of the varicus variables as was done in the case of the single

equation.

berween the various kinds of such variables.

coefficients are, therefore, expressed as:

In so doing, it is not necessary at this point to distinguish

The sygtenmatic parts of the

A o= TR o :
Bt wBtAB’ e Wrtﬁp {93)
1} 1 : 4 a1 = , ;
where JBt and wft are GXSB and GXST matrices of variables and AB and A?

are SB x G and S? x G matrices of their respective coefficients which are

held constant over time.

(v, Wgy) Ag *+ (B M) Ap =

(93),

(B

Combining (90}, (92),

£ y (- 1
X1 0 ¥g1
\0 Zrj (e
Yyl o[y @

\ET' 4 \ G XT"

all in a compact form:

PA = E

LT

2

e~ Tt

E -

t

Ee

Ht.

It is now possible to combine (93) and (84):

(94)

and {94), the system can now be written as:

%,

4

Q

v

rt.?
*

1]
|
|
|
)

where P represents the matrices ¢f product variables:

W

X
-t I'r

(96)
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?B and ?? are T x SB and T x Slﬂ respectively; hence, P is a T x § matrix. The
AB
matrizx A T A is a § X G matrix, with 8 = §_ + 8 ,» and
d .
e=v-v'E- % (97)

In confronting this system with the data, a number of issues arise:

1. Estimation of structural parameters. Since these parameters
vary with time, the best that can be accomplished is to esti-
mate the systematic components B? and Pz. Having obtained
such estimates and making appropriate assumptions about the
distzibutiaﬁ*gﬁ the error terms, @gﬁgxeﬁc&s canlbélﬁaéévwith
:éspgt&it‘ tb:the dié‘tributicn of the ~‘éc-éfﬁici§n§ts theﬁiéah;é;s, .

2. Predicting y for a given ﬁéﬁiﬁf;gian=g§§bﬁ§sis-pfgya§§f6§ﬁ=

servatiohs of the ¥'s, x's, and otHer variables which appeat
in the B* and I'* functiomns.

3. Same as (2) above combined with policy constraints on some of

the variables.

These issues are dealt with in the following two sections.

5.1, Identification and estimation
The estimation of A in (95) can be divided into two parts: First,

obtaining a consisteit estimator of A and, secénd, obtaining ‘an efficient



50.

estimator. This distinction requires emphasis in view of the complex variance
structure of the errar term in (95).

The problem of cbtaining a consistent estimate for A becones a standard
problem in simultaneous equation estimation, However, it should be noted that

the endoganous variables on the LHS are now veplaced by the product terms with

the W's which in general are exogenous or lagged endogenous variables. As
such, the original endogenous variables are in the row space of the W's.
Therefore, much of the simultaneous equation problem disappears; and the

OLSE of (95) are likely to be consistent.

It may be useful to relate thié discussion to the problem of idsntification
in the original model.ll If a particular equation is originally identified,
it remains so under the present case. This is simply because, instead of using
the criginal'exogenous variablés for estimation, thelr product with tﬁé ﬂu’
variables are now used; and, consequently, the number of exogenous variables
are increased. For this reason, an equation that originally was not identi-
fied may now be identified. PBasiecally, the identification is used through the
variability of the cecefficients, a factor which does not exist in the constant
coeffigient models. To further elaborate on this point, ir migﬁf bé-bélpful
‘to view the svystem from a somewhat different point af”view. The system basi-
qail§ consigts 'of two blockd; the first is givem by equation {(84) and the second

is given by equations (90) and (93), i.é.,

(98)

law |
It

J
e = Yo AP + Ht'
Since the W's are predetermined, it is possible to estimate (98) by OLS, and

the only cobstacle to this is the fact that the dependent variables are unob-

servables. It is for this reason that it is necessary to briag in {84) and

“
&
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to use its structure so as to infer the Bt and Ft from the observed variables
in (84). This, however, by itself does not destroy the idemtification if it
exists and helps to identify the system when the identification does not exist.
The latter is achieved by the introduction of the additiomal exogenous vari-
ables, W's. As it is well koown, identification can be achieved through varia-
tions of equations caused by the variations of the exogenous variables or by
the variations of the disturbances if those are known. The formulation
utilizes both; it relates some Q%I;ﬁe variations in the disturbances to varia-
tions in the goaﬁfici&ntﬁgand those, in turn, are related tc "new" exogeéﬁuﬁ
variables. The reader may fin& it*useﬂﬁi to illustrate this to himself using
the simple framework of supply and demand,

nce a‘éénsisﬁaﬂt esﬁimaaegof ﬁhg_sys?e@.;§=aﬁaila§ie3Vt&g;réﬁiﬁﬁéléha§é7
computed and those, in turn, ére uséﬁ to égtin;te the vé?iou; ;ériance céﬁpa—
nents using the same approach advanced in Section 3. These estimates can be

used to obtain a final estimate using OLS procedure.

5.2, Forescasting

‘Once the system is éstimated, it o

(39)

~1 _ ~1
R A

where ?t and B;l contain the various restrictions of the system. TFor fore-
casting, estimates of the parameters in question replace the actual parameters.
If policy affected the parameters in question, then this influenaeeshould‘be

taken into account in the estimation.
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The estimates of the parameters in the system are used for predicting
the wvalues of the parameters in Bt and ?t' It is possible to obtain direct

reducaed form estimation for Ht from

ﬁt - wnt Aﬁ + Eﬂt (100)

where Hﬁt consists of WB and WT' By substituting (100) into (99), i.e.,

Zp = Vp) A+ (B T (101)

It is easy to aﬁéw that OLS applied to (101} is asymptétiééliy unﬁi&ééd and
{y%ry likely also unbiased %n fin&tg samples, depending on-the réiéﬁiqﬁships
getween the W's and the e?rér terms” in (84).

?or;direct.égfycfﬁ?ax eggationgfpreé%p§%ag§, esggmgteg_of 5B~and_érga;e
first oBtaiméd; E%éﬁfafrom (93), estimaé%ggéf Bi andjft”wﬁiﬁh are #iééwnsad‘
as predictors are obtained. These values are, in turn, used to compute Il for
the predicted period, and this estimate is used for predicting vy.

With regard to W matrices, some explicit statements can bé made. They
are basically similar in nature to the va;iables employed in the case of

Vﬁ*téggéééian; As forﬂthis ég%iiﬁ:“fgg@élati&n, it is passi&ié:ﬁg géégtrunz
iéé@é#«fhﬂgtipns'cf'thé exﬁiaﬁgggryﬁ?ggig§i§$,fbpﬁ‘nﬁ%jﬁﬁéy ﬁa?,ﬁﬁ;invtérﬁ%
of both endogenous’ end exogencous varisbles, The data cax be employed, dn
part, to determine the nature of the lag structure and the number of variables.
In addition, external variables or qualitative variables can be incorpeorated.
Principal component methods can, again, be used in erder to reduce the mumber
of variables in the system.

For prediction under policy constraints, basically the procedure is re-

peated; but the constraints arve brought explicitly into the model. In general
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the sampling error of the estimates decliines when constraints are imposed.
Does it, therafore, improve prediction? This, of course, depends a great

deal nct only on the statistical properties of the model but also on its
actual performance-—specifically, the gap bhetween the constraint which was
assured in the model and the level of this constraint in reality. The greater
the discrepancy between the two, the larger is likely to be the net effect

on the error term.

6. Concluding remarks

While there is some merit in treating parameter effects as relatively
fixed, the most prevailing circumstances in economic analysis, especially for
ggricultural systems, call for the spgcifiaatiap’ci parameter variatien
Eérmulations. These circumstances velate to thé naturé of avéilaﬁie secondary
data and the abstractions that are imposed to construct econcmetric .models.
When these circumstances are added to the observations of Lucas on'the theo—
retical justification for parameter variation formulation and their operational
implementation in the context of model use, the overwhelming evidence is in
- favor oﬁj;s:z.;cl; f@fmqla.%:;g-né. The model-use argument is ;’af;:ezi»(hafglacteé; but
for those of us who have attempted o derive rel.i&b‘iﬁ;;itﬁﬁe&aréé; forecasts,
or policy impact probability digftibutions, this aréu%ent is’?&ry‘impaftaﬁt
indeed. TFinally, many circumstances arise in which the "true" coefficients
themselves are generated by a nonstationary or time-wvarying process.

The general specification advanced in this paper has the unique feature
of incorporating lag and current effects of included variables and the effects
of excluded variables on the systematic movements of the parameters appearing
in equations of interest. It has bees shown that this general formulation

admits as special casas the classical lipear model; the Cooley-Prescott adaptive
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regression model; the Belsey systematic variation model; Swamy random coeffi-
cient model; the Cooley-Prescott time-varying parameter model; the Singh et al.
mean response model; the Goldfeld and Quandt switching regression model; and
the spline regression model.

Due to the nonobservability of the varying parameters, the estimation

takes place in the context of an estimable form which inciudes both additive

and interaction effects. The estimator that was constructed for the general
case conforms to the two-stage Aitken method for unknown variance; the first
round involvés application of the ordinary least squarés to the estimable
gquatian, the second round gensrates estimates of the induced heteroscadastic
structure of the error terms in the estimable equations, and the third round
reestimates the additive and interac;ion effegts taking into account the
leteroscedastic structure. As with all two;stage Adtken procedures of this
sort, the nonnegativity property of the variances may be viclated; hence,
preocedures requiring the application of inequality estimators or ridgs re-
gressions can be employed to force the conformity of the empirical results
with this property.

It has been demonstrated thaz the géneral S?&Qi#iﬁgti@nxapd estimation for
the single equation model can be genera;;ze& ﬁe:éiﬁﬁit&§Eﬂg§ egquation systems.
In this setting, one df the more“iﬁtezéstémgﬁimg}?catiéns df(tha genergl géeciu
fication is that the jdentifiability of the complete system is often enhanced.
In contrast teo conventional constant paramster simultaneous equation specifica-—
tions, the formulation advanced in this paper replaces explanatory variables
with the product of these variables with the systematic factors influencing
equational parameters. In essence, this result augments the number of pre-

determined variables and exogenous distinguishing information to identify the
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structural parsmerers. For this reascon, an equation that originally was not
identified may become identified. Hence, the identification is enhanced
through the variability of the coefficients themselves--an influence which
does not exist in constant coefficient models. In terms of the usual sources
of identifiability, namely, variaticons and equations caused by variations of
exogenous variables or by variations of the disturbances, the formulation
relates some of the variations in the disturbances to variations in the coef-
fiecients and those, in turn, are.f;late& to 'mew" exogenous variables.

In the context of actual empirical. applications, garticularly those
oriented toward model uses such as forecasting and policy analysis, the above
story is incomplete. The estimable form resulting from the parameter varia-
tion formulation introduces problems of multicollinearity. -Operational pro-
cedures for appropriately dealing with these multicollinearity problems have
been examined in detail. Formal variable selection rules have been developed
which recognize the trade~off between an increase in sampling variance and a
decline in bias asscociated with the inclusion of additional variabiés. The
conditions leading to a large sampling variance are small sample variance of
potential explanatory variables, high multicollinearity between potential ex-
planatory uariablés'and,inﬁluded éxplanatory variéblgs; and 3 smalljsampla»
size. An operational test is developed to select explanatory variables for
forecasting purposes. This test demonstrates that the conventional procedure
cf testing to determine whether or not the coefficients of potential explana-
tory variables are zerc is neither necessary nor sufficient.

The above selection procedures in the context of the parameter variation
formulation are made operaticnal by the use of principal components. The
nmulticollinearity problem arises primarily among the interaction terms and
between the interaction terms and the additive terms included in the estimable

~equation. It is recommended that principal compounents bBe taken only on the
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interaction terms to preserve the additive effects in terms of original vari-
ables. Here, too, conventional selecticn rules for the principal components
are not appropriate. That 1s, the procedure ¢f selecting principal components
according to the size of the appropriate characteristic roots does not provide
an optimal result; instead, optimality calls for entering the principal com-
ponents in a decreasing order of their respective t ratiocs.

The integration of sll of the results of this paper that properly balances
the cost of the complexity and the value of simplicity leads to the following
procedure: (1) form the estimable egquation, derive principal components of
the interaction terms according to the specified selection criteria, and apply
ordingry least squares; {(2) estimate the covariance matrix of the heterosce-
dastic structure of the estimable form; and (3) combine the estimated covari-~

-ance matrix with the principal components of thé interaction variables and the
original additive variables to genarate generalized least squares estimates.
0f course, this apprecach can be easily augmented to deal with simultaneous
aquations by deriving appropriate instrumeat variables for the explanatory

endogenous variables pricr to implementing the suggested procedure.




Footnotes
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+Professar of Economics, Hebrew University, and Professor of Economics,
University of Chicago.

TiProfessor and Chairman, Department of Agriﬁultural and Resource Econemics,
University of Lalifornia, Berkeley. Note that senior authorshilp is not assigned.
lThesa pr&gti;s‘v_orﬁers have also demonstrated that more wvariability is present
in econometric models than can be captured by con;entional autcrengSine error

specifications.

2In this paper, the issues of appropriate experimental designs in deter-
mining what data ought to be wused shallvnﬁgbﬁg_exaéine&Vexplici;ly in the.con-
struction of forecasting models. In nonexperimental areas such és ecoﬁ;metfics
and other social sciepces, auxilliary conditions ought to be examined to
determine whether a given set of data is appropriate for estimatiﬁg parameter
effects. Such auxilliary conditions play a crucial role in experimental
fields. Procedures which incorporate theulggﬁlpiéte_of information gigimizg
the im?Qréanae nf &eéidiﬁg“whathe£ ér not the lastfébéerug%idﬁﬁséﬁi%éiéa‘%%%
pegim@npal)desigﬁ'éﬁg&i;;Ons'for-egtimatihg~paramegégg;.;gggingghygéﬁﬁééi;,x
and making inferences. Focusing on updating or fotécastiﬁg*igﬁbré#ﬂdthérT:
equally jmportant problems in sample selecrion regarding what the first obser-
vation ought to be. In the experimental sciences, the first observation is
easily identified; and updated estimates of the unknown effects are appropriate
provided the same experiment is ongoing. Such clarity is unavailable in eco-

nomic modeling. Specifically, it is not clear that the process generating
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the data is continually under the Influence of the same experiment. This, of
course, is why the choice of sample data for eccnometric model construction

contains many elements of art rather than science.
3The authors wish to thank S. R. Johnson for this suggestion.

4 ; . . ; .
the discussion is of no interest for large samples where the sampling

error is of no guantitative importance.

SThe term ZZhl is pbtained from the evaluvarion of the last term on the RHS.

For instance, to obtain the j, r element (j, r = k1 + 1, ..., k), the jgth

row of U! and »th column of U, is taken:

2 2

1! . m i.-‘_b = - =
E {1._2?;{ }y-Zr} tr E{+~: Osp ty [-] Ujrbl.

6Under this assumption, Vé@i has a Wishart distribution Wk (ﬁﬁ ﬁz} and
2

is independent of Y, (which does not belong to the sample) and has a k2 -

nornal distribution with zerc mean and variance given by {57). Consequently:

~1
vv
2 n . 1 n 22 1
T° = v (VIV,) Vo = T v, v
1+ hl 2 2°2 2 kl 2 n kl 21 + h1
- r sl
n -k, —2 7 2 =2

7.. .
Given the notations:

n - k} + 1 o
T—“T %F(kz,nmkl+l)

2
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and, hence,

BThis statement may seex to dégemé on the scaling of the variables (units

of 82), but this is not so as the units of lﬁéi'z and 22 are reciprocals.

9It is this property that does-not generalize to allow a selection of a
method.

10Note that Bt was previcusly used to denote a bias. The meaning of the

symbol will be cleared from the content.

3*A'zt’li“t:n: examination of the identification problem in context of simultaneois

equation models with random parameters, see Kelejian (1974). Unfortunately,
this treatment imposes the assumption that all random parameters are in-

dependent of one another and, thus, is of little wvalue in the current context.
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