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STRlJCruR\L Qt.\\CE, P)J{':lJ\lETER VARIATIO\, A\1) FORECAST1:;C*

Yair Mundlakt and Gordon C~ Rausser 7T

1. Introduction

Attempts to capture useful relationships for forecasting purposes in non

experimental sciences such as econoeics have lang been fraught with formidable

obstacles. i1any of these obstacles relate to unobservables and the lack of

concrolled effects. lmportanc urioDservables are gene rally associaCed with the

evolution of taste, the formation of expectations and antieipations, and socio

logical phenomena~ In the context of contralied effects, economists genarally

opera te with some version of the classical linear statistical model; this model

presumes that the effects remain constant over all sample observations.

For oost economic systems, the assuIDption of parameter consistency i5 im

posed in the face of ncncontrolled effects and many important unobservable in

fluences. Economists and other social scientists often neglect the problem of

isolating an appropriate set of data for which it appears reasonable to assume

parameters are "approximately constant." This problem is at the heart of the

issues faced bythe cla~sical· framewürk of e~eri~e~tal design. Economists,

of course, have recognized that difflilrent data sets of;:"n result in nQ<t;ic<'!ably

differ"nt coefficient estimates. Perhaps the best example of this recognition

is the typical treatment of pre- and postwar data on econümic phenomena. To

account for the difference in effects between pre- and postwar data, the gen

eral practice has been to introduce dummy variables to allow for possible

significant shifts in intercept and slope parameters.

Although the dummy variable approach is indeed convenient, in may in

stances it will lead to grossly inaccurate forecasts. Neglecting issues of

complexity, such specifications may be suboptimal. In a time series context,
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it is appealing to view the data from, say, 1970 as more relevant to forecast

for 1980 than data from the period of the ear1y 1950s. Taste, expectation

formation patterns, and socio10gica1 phenomena in 1970 are c1ear1y far dif

ferent than 1950; and it would appear that in this sense the year 1970 con

tains more relevant information than ear1ier periods in forecasting future

phenomena.

In agricultural economic forecasting, the above observations appear ,par

ticular1y relevant. Models constructed for various commodity systems, espe

cially feed and food grain commodity systems based on data prior to 1971,

have revealed notorious inaccuracies in forecasting important economic varia

ab1es for the years 1972 through 1976. These gross inaccuracies proved to be

a bitter disappointment to the Cost of Living Council during the years 1972

and 1973 in their attempts to control inflation. In addition to the obvious

need for respecification of the basic commodity models, other issues re1ated

to the conventional use of the constant parameter formulation have naturally

arisen ..

In other fields of economies, researehers have begun to question the

validity of the constant parameter formulat,ion. The potential advantages of

utilizing the forthcoming information to update or revise estimates of the

coefficients of econometric models has been clearly demonstrated. In part,

this increased awareness has resulted from the growing body of evidence,

both of a conceptua1 nature and from empiriea1 observations, that p8rameters

of econometric models generally change over time. For macroeeonometric

models, the empirica1 evidenee is reported in Duffy (1969), Cooper (1972),

and the experience of the econometric eonsulting eornmunity. Practitioners

have no ted the foreeasting aceuracy benefits that ean be obtained from
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mechanically "adjusting the constant term. u
1 Evidence has also accUl.llu1ated

on the parameter variability associated with wage/price data, especially

structural shifts in conventional Phillips Curve rormulations. Moreover,

numerQUS studies at the microlevel have revealed parameter instability

[see, for example, Balestra and Nerlove (1966)].

It seems, therefore, that more attention should be devoted to modeling

processes where the parameter effects themselves are subject to various sorts

of perturbations. Although such modeling processes have appeared with in

crea5ed frequency in statistics, as weIl a5 the quantitative economic litera

ture, there is nevertheless much uncertainty about the value of such approaches

in an ernpirical setting. Even though economists have recognized the pos5i

bility of parameter instability, the complexity of pinpointing the nature of

such variations has caused the profession to gravitate to varicus constant

parameter formulations. A view of many ernpirical researchers seem to be thnt

much of the recent conceptual work on parameter variation in both statistics

and econornics represent new gimmicks which contribute little in the way of

useful empirical information.

To be sure, there issome merit in consideringcertain parameter effeets

as r.elatively fixed in eeonomic models. Theprineipal merit is simplicity in

providing insights about economic interrelationships, unclouded by the metieu

lous details of a ehanging real world. There is also, however, some merit in

obtaining more aecurate representations, forecast, and eeonornic poliey evalua

tions. Henee, from a research strategy standpoint, the principal issue faeed

in deciding whether to employ a constant parameter formulation or some varying

parameter formulation depends eritically upon the trade-off between inaccuracy

and complexity. In the final section of this paper, the issue of complexity
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From the standpoint of potential model inaccuracies, many justifications

can be offered for the parameter variation formt,tlation. First, the "true ll

coefficients themselves can be viewed as genera ted by a nonstationary 01"

time-varying random process. Numeraus authars have dealt with a special case

of this view, namely, the random, stationery parameter formulation. This

formulatian has been advanced principally for time series and cross-section

observations [Rosenberg (197jb)J. In particlüar, a cross section of indi-

viduals are presumed to possess the same regression regime over time but

whose individual behavior at a given point in time is viewed as a random

sampie from a population of coefficients with a constant mean. When the

mean is allowed to change over time, there is the mbre general nonstationery

formulation.

Even when the underlying "true!' parameters are stable, situations arise

in which the parameter variation approach will prove valuable. By their very

nature, econometric models are abstractions; they i~volve simplifications im-
.'

pos.ed by available data, l'ese'arch tillt", and. budgets as wel'!. as the desire to

a,chieve tracrable results. Such simpJ:ifi,Ci'it;ions and abstra.etions often l'esult

in misspeeifications whieh in turn influence the.degree.of accuracyof the

model's forecasts. The effects of such misspecifications ean be countered

by an appropriate parameter variation strueture. The most important types of

misspecifications which arise in the construction of forecasting models in-

clude omitted variables, the use of prOXY variables, the use of aggregate

data, and nonlinearities.
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The omission of important explanatory variables arise fram inadequate

theoretical frameworks, unavailable data, or the desire for simplicity.

Such excluded variables oEten relate to structural changes resulting from

taste evolution, technological developments, changes in institutional

arrangements, and the like. The effects of such excluded variables are

presumed to be random with a distribution which has a time invariant mean

and variance. Such variables will have no effect upon the parameter ef-

fects of included variables, provided the omitted variables are independent

of those that are included. However, time series ror such omitted vari-

ables exhibit nonstationery behavior aud are often cot:relatedwith the

included variables. Under these circumstances, the estimated effects of

the included variabl,q cau be expected to change wirh time. Al: aminimum,

it seems reasonable to expect that excluded variables with rionzero effects

will result in time variations in the intercept or constaut efEecl:.

Due to data limitations, prOXY variables are oEten employed in the

construction of econometricmodels. Such proxy variables are invariably

introduce<;1 into dynamic representations .'hich irivolve· eJi:Pectati0J:\. 1'orma

tion patterns ;;md measureS of cacpita;J.. UnfQrtunat<i:~y, t,heSe acnd otherproxy

vad"bLes deteet only partial üha",~~s in the L.eve,l 9fel!ouomie s't;llllulithe'y

purport to measure.

. .

Furthettnore, the relatiClnShiPb~tweenthedesired vari-

able and its proxy ean be expected tO ehange over time. Under these cireum-

stanees, ehanges in the desired variable whieh measureS the aetual economie

stimuli induees instability in the estimated parameters assoeiated with the

proxy variables.

In the context of aggregate data, the potential for parameter ins ta-

bility has been demonstrated on numerouS oeeasions. Since aggregate data

are maasured by weighting the relative importanee of the heterogeneous sets
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of microunits, the parameters in the estimated aggregate equation will remain

constant so long as these weights do not vary. In the context of time series

data, the assumption of constant weights (i.e., relative importance of the

individual components of theaggregate remains unchanged) is indeed unlikely

to be satisfied. Henee, sinee shifts in the aggregation weights are the rule

rather than the exception, parameter effects assoeiated with the aggregate

variables in the estimated model will vary across time [Zellner (1962)].

Another potential causefor parameter variation arises from the inappro-

.pJ;üite spe<iificsd.on of functional forms. for example, if. under the pretext

of a Taylor series expansion a linear relationship is "Stima.ted as an appJ;oxi-

mation to a nonlinear equation, the assumpti6n of constant parameters for the

simplified equation constitutes a reasonableapproximation onlY if the ob-
,,' ,

·.servecl. explanatotyvariablesb"miiin witbin some nsrrow range. ForvariatiQn;s

beyond this range, it is a simple matter to demonstrate the nature of parame-

ter variation for the simplified equation. Moreover, the seeular evolution of

many economic time series strongly suggest the rejeetion of any model that is

based upon the assumption of narrow sampie ranges. In general, the approxima-

t:;iof\ of highly nonlinear "u:ue,i relaj:'ionships bysome simpler functional form

alollg w;ith·obs~:rVat:l;onsoutside a narcow sampie rangeprovides. rerhaJ's the

strongest motivatiOnS for a varying parameter steuctu"",.

In addition to the misspeeifieation rationale for varying par:ameter

formulations, eeonomic theory can also be advaneed to justify their potential

relevance. In IDa.ny situations, the very nature of economie theory leads us to

expect relationships that change over time. Lucas (1976), for example, has

argued that the constant parameter fotmulation is inconsistent with economic

theory. He notes that a change in poliey, for example, will result in a change
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in the environment facing economic units; and under the assumption that such

units behave rationally, this will result in shifts of the equations repre-

senting the behavior oE such units.

In the case of commodity systems, a number of illustrations of the points

raised by Lucas are available. Perhaps one of the best examples occurred

recently in the U. S. livestock sector. As the result of the United States

Eeonomic Stabilization Program over the period 1971-1974, price eeilings were

imposed on red meats at the end of March, 1973. These ceilings,when C<lm-

bined with the biological nature of various red meat animals, led to a dis-

tortion and clouded priee signals whieh in turn resulted in strategie errors

on the part of various deeision-makers. These signals, of course, led to

instability in the elqleetatlon fo:rmation pattern: of variou3 decision-makers

along the vertical commodity chains in beef, pork, and poultry. During this

period, the eattle eyele poised for a sizable liquidation, was substantially

altered by the distorted signals. Priee eeilings in fact became the expeeted

priees of producers for a short period of time. As a result, the liquidation

phase was eurtailed whieh in turn provided the basis for :I-;.:rger supplies,

swstantia11y lower prices, and signifieant nega1:ive margins. These dynamie

eff",ets resulted in an, "'xt",nded 1i;quidation phas", whi~l\. e?;:eeeded a11 ·",xp",eta

tions. H",nee, the ",frects of the prie", eeilings had theimmE!diat", effeet of

a substantial shift in priee e:x:peetations whieh in turn resulted in rather

drastie implieations for dynamie supply responses and tbus ultimate market

realizations and cattle inventories.

Dynamic economie theory and the notion of rationale expectations does

not in general provide us with well-defined behavioral equations whose
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parameter effects can be treated as COnstant. In particular, Lucas notes that

for the individual deeision problem: "Find an optimal deeision rule when

certain parameters (future price say) follow an arbitrary path is simply not

weIl formulated." He goe.s even further to suggest that, as expeetations of

future policy behavior change, economic theory predicts that this will result

in shifts in the relevant estimatable behavioral equations. This souree of

parameter instability ean only be avoided by reasonably accurate measurements

of expeetation formulation patterns and dynamie responses--a dubioushope at

best.

Finally, in employing eonstrueted models fot various purposes, Ir is

erneial that the models be traetable and interpretable. In using models for

generating forecasts and/or poliey analysis, a number ofdiff:ieulties arise

due to the model dimE!nsions· and problems of numerieal aecuraey. The aecuraey

is indeed an important issue when ehe structural model representation is non-

linear. For s~ch models whieh involve simultaneous representations of large

systems, it is not possible to obtain a unique redueed form. In eomputing the

neeessary derivatives to obtain the redueed form for nonlinear models, issues

ofapproximatlon. an<!,. round~off proP;l;ems naturally apise. Horeimpo,tan.tly;

.1.t 1$. not possible to derive reli:a.bl.lity statist.ics fOl'highiy n,onJ:ineat

Thus, tl1easures o:tforecast vari<,!nee. and risk assoeia.:ted with v<'!rioilS

poliey actions are generally swept under the l'ug for such model representa-

tions. These problems ean be largely avoided by speeifying models as linear

in the variable spaee but in essenee nonlinear in the parameter spaee. By

varying the parameter effeets, any nonlinear representation ean be appropri-

ately approximared [Rausser (1978)]. This approach allows forecast probability

distributions--uneonditional or eonditional on alternative poliey aetions--to



9.

be genera ted for a particular point in the parameter space. Along similar

lines, note that the approach also simplifies the validation of constructed

models, especially the derivation of its dynamic properties.

The cumulative implications of the above observations is that, given

the forces often neglected in economic models, it seems overly optimistic

to presume that parameters will be identical over the complete sampie record

regardless of whether the model is linear or nonlinear. From an operational

standpoint, the relevant issue is whether or not the explicit reeognition of

varying parameters will provideaccuracy and implementation benefits whieh

outweigh the additional construction complexities "r such formulations. Can

these formulations capture the enduring characteristics of the processes

Ulfder examination? Theepurpose oE >this paper i5 to point u~inthe direct:ion

of answering this question in a definitive manner.

2. Parameter variation speeification

In order to present the problem in the simplest possible form, a single

equation with one explanatory variable will be presented, viz.,

(1)

Note that the parameter ß is allowed to vary over time. The changes in ß. t

can bee induced or be completely random without any structure imposed. 1n-

duced changes can be caused by the outside environment and be completely

exogenous to the system or alternatively can be induced by variables in the
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system itself. For instance, in demand equations it is possible that the

demand coefficient depends on past consumption. A commodity can be habit

forming or alternatively its consumption can be at a lead saturation point.

In both cases the actual demand response depends on past experience. Further-

more, social change and its effect on the taste can lead to variation in the

parameter structure. One instance of this behavior has been observed for the

case of meat demand. During the early 1970s, forecasts of meat demand based

On sampie data through the year 1970 are consistently below a~tual levels of

demand. One possible eX'Planation for such forecasts is ltrovided by the de-

mand for convenience foods emanating from the.women's liberation movement and

the participation of females in the U. S. labor force. These and similar in-

fluences can be repre$ent.~d, in Cl. parameter variati,QU equation by variables

from outside the system {~enbted by z) while factors associated with habit

formation and saturation may be represented by variables appearing in the sys-

tem denoted by the general function of L(x). These arguments can be summa-

rized by

(2)

where

As indicated above, the term Zt represents the outside effect on the

coefficients whereas the term L(x ) represents the effect of thc variables
t

within the system. ffi,en these two cffects are not present, then St is de

scribed as a random variable with mean So and an error term e
t

. In the most
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special case when the variance 01 e is 0 and the effects Zt and L(x
t

) are not

present, then ß becomes constant coefficient which is the usual regression
t

analysis formulation.

More generally, however, ß
t

is eoneeived as a random variable with a

systematie eomponent affeeted by the two forees deseribed above. Combining

equations (1) and (2), equation(3) is obtained whieh differs from equation

(1) by the addition of two terms, viz.,

(3)

In

where

The third termin (3) is the product or interaetion between x t and Zt' and

the second is the interaetion between x t and the general funetion L(xt ).

Note that the variable Zt eau be a qualitative variable (0, 1 variable)

which introduces a switch in the regression eoeffieient. Of course, there

c?ln be mOre than one switeh; ?lud the introduction oE more than one switch is a

Sli'11a:l.lilhtfPrWar.:t eJl:li'ens ion. 'the funct:i;<m L (xt ) :1$ a genera.l function, btit>it~

main teat:nr~ is t:hat it is speclfled as a. Ltm.<;tion ofpsl>li' experlenee inlih",

ot'd~r tD d'l't:eet an ijllponant lind int<l17as ting featul;'e of. this func-

tlou, lt may be expressed as a geometrie distributed lag function, i.e.,

D ~ D + ox + 02x 2 + '"'"'t "0 t-l t- (4)

Multiplying equation (2.4) by 0 and subtracting oßt _l from St:,the following

equation is obtained:
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" Note that equation (5) expresses St as proportional to ß
t
_

1
additional

ter8S~ It is, therefore, clear that expression (5) is a generalization and

extenstion of the Harkov ehain formulation examined by Rosenberg (1973a)

and Eelsey (1973a,1973b); it is also widely used in the engineering litera-

ture. wnen 0 is a fraetion between 0 and 1, the term oß . represents a deeay
t-~

process. The eonvergence of this proeess is to ß (1
o

0) plus the terms in-

v01ving x 1 and z. Henee, expression (5) generalizes the Harkov process
t- t

where the eonvergence 1s to a term S .
o

It should he noted that aquation (3) has aheteroseedastic structure.

Under the assumption of independence betWeen u and ei for the variance of the

error term St the follow1ng expression is obtained:

X2 ~2 2
u + CJ •

t e u

2.1. Alter'Y'.ative specifiaations

The above framework admits a numher of specifications which have ap-

(6)

peared in the literature. The sp"cif3.cation in (S) i5 obtaiqed l,IIlder the

ass,umption that L(x!;) ha" a:",peeific distributed lag form. Other forms "re

possible and eari oe admitted b:t rewriting exprEl:ssi9u, (5) as:

(7)

where the parameters associated with ß
t
- l and x

t
_

l
differ. For (7) to be

equivalent to (5), 01 = O2 = 0; 00 = 1 - 0; z~ - OZt_l; and ~t = e t - oe
t

_
1

•

This general representation embeds as special cases all of the parameter

variationspecifications which have been introduced in the literature. Hore

specHically,
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(7a)

b. Coo1ey and Preseott (1973a) adaptive regression model: ° ~ 0,o

°1 ~ I, °2 ~ 0, a ~ 0, u t ~ 0, x t ~ I, for all t. Henee,

e. Belsey (1973b) systematie parameter variation model: °
0

~ 0,

01 ~ 0, °2 ~ O. Henee,

d. Swamy (1970) random eoeffieieut model: 00 ~ 1, °1 ~ 0, °2 ~ 0,

a -; O. Hence,

(7b)

(7e)

(7d)

e. cooley and Fre$cOtt (l97Jb) tilne-vary:i.#gpaxaIlieter mo4~1:

s~ ~ S~_1 + <Pt'

and

o '" 0,.Il

(7e)

where w
t

~ (~ n l' 0 ~"'t' "t' 0
[I, 11; and 01 ~ [0, -1].



f. 5ingh et a1. (1976) mean response model: 0
0

= 1, 01

z~ = 1, and a = af(t). Thus,

14.

0,

where f(t) is same funetion of time.

g. Goldfeld and Quandt (1973) switehing regression model: o
o

o = 0 = ~ = 0, a1 Z t

tEIz, where 1
1

an~ 1 z represent the sets of indices for whieh two

separate regression e~uations hold. Henee,

(7g)

h. Sp1ine regression model [Poirier (1976), Buse and Lim (1977)]. In

this formulation linear, quadratic, cubic, and other special forms

of sp1ines ean be speeified. n,is simp1est ease is the linear sp1ine

where the interoept it assumed constant; and for the slope, 0 = 1,
o

ö = ~ = ~ = 0, and a and z are defined as the vectors, a' =t ..

Hence, for the slope coefficient

(7h)

where t - t is restricted to be zero for t < t. The parameter St

is referred to as a linear spline across time with a known knot at t."

The above special cases (a) through (h) admit at entire spectrum of possi-

ble parameter evolutions. The first ease (a) is the eonventiona1 constant
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parameter specification. The second, the adaptive regression model of Cooley

and Prescott, treats the parameter evolution only in terms of the intercept or

constant term. This parameter evolution evolves in accordance with a random

walk model and clearly does not allow for turning points in behavior of the

time-varying parameters. The third fOrIDulation is especially important when

influenees from outside the model motivate struetural changes in the parameter

effeets. Such influences are often qualitative in nature and cannot generally

be measured with any acceptable degree of aeeuraey. The fourthfQrmulation or

the random eoeffieient model has been widely applied especially in the context

of time series and cross-section data [M~dlak (1978b)]. The varying parameter

fOrIDulation of Cooley and Prescott (e) has been applied tomoney demend rela-

tionships· lRausser and Laumas (19 7f;) ] "nd supply rg,spense elasticity for wheat
« • " '

[Cooley and DeCanio (1973)]. This formulation allows systematie variation in

both the intercept and slope coefficients whieh appear in multiple regression

models. The two-eomponent process on the unknown parameter effeets allow

similar interpretations to Friedmlli"s permanent income hypothesis. Both

transitory end permanent variations in the time~varying parameters are al.\.ow"d

The sixeh .spect"l ca»e aclVllnCed by Singh ee al. (l~.7Q) provides a mild

generalization totue Belsey(c) and tue random coefficient model of Swamy (d).

A new feature offered by thi» formulation is the inelusion of a linear func-

tion of time whieh leads to a pre»umed continuous evolution of the parameter

effects. The switeuing regression model generalizes the conventional Chow

(1960) formulation. The latter formulation presumes that a prio,~ information

is available to classify various regimes whereas the Goldfeld and Quandt ap-

proach endogenizes the distribution of the regimes. When apriori information
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is not readily availab1e, the Goldfeld and Quandt approach is preferable,

partieularly when the parameters move by discrete jurops. Finally, the spline

formulation offers some distinct advantages in structuring the nature of

parameter variation. In the ease of linear sp1ine, the formulation is equi-

valent to a pieeewise linear approximation.

2.2. Desi:r::ed estirrates

In operating with speeifications whieh allow time-varying parameters,

issues associated with the type o·f estimates desirednatura1ly arise. The

resolutions of these issues depends upon the amount of information available.

An estimate for a partieular point in time might depend not only on past and

eurrent information but also on future information. For examp1e, if Bt/t+j

is to denore the best esrimate of 1\ based on information up to and ip:cluding

the time period t + j, three situations ean be distinguished. The first per-

tains to smooth estimates of the parameter effects (j > 0), the seeond to

filtering estimates on the parameter effeets (j ~ 0), and the third to pre-

dietion estimates of the parameter effeets (j < 0). Econometrieians are often

concerned with the best estimate based on the entire data sampie, Le., Bt/Tl

Out this requires filter and prediction estimat~~ of theparameter effecis,

Le., Stlt andllt/t-fj 1ri.th j < O. Ful'tMrmore, ftom thestandpointof :tore

casting and policy evaluatiOn, there is specIal cancern with the predietion

estimates of the parameter effects (j < 0). The generation of theSe estimates

are crucial in the updating and revision Gf empirical model representations.

3. Estimation proeedure

In this seetion operational estimation proeedures are developed for equa-

tion (3). The treatment begins with the cnnsequences of specification errors
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whieh arise with the applieation of eonventional estimation methods followed

by the suggested estimation proeedure. This proeedure involves a two-stage

approach and places emphasis on the estimation oi the varianca components,

e
t

and u
t

' Final1y, the possibi1ity of negative variance eStimates is

examined and the basic estimation method is modified to preclude this poten-

tial outcome.

;) .1. Consequenae of $peaifiaation-eZ'ror

In order co l\lOtivate the estimation of ehe equacion deScriJ;red abo.ve ,the

properties of the estimates whieh ignöre the time-varying eoefficients will be

investigated. WithiIl the framework of the simple regression, the estimate o.f

the constant slape is given by

by/x

(8)

1'he expected '\Talnenf this e$~iID#ltor i5 giv'en by

where w
t

= x2Jrx2; henee, 0 < W < 1, LW = 1. It turns out that the expected
t t t t

'\Talue of the regression coefficient is a weighted average of the individual

coeffieients. The weights are given by the squared x's. The expression (9)

in terms of the reduced form equation (3) may be written:

E(b / ) = E [ß + E L w +a E z w + E e w ]
yx 0 tt tt tt

(10)
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where r denotes correlation coefficients; S, the standard deviation; T, the

number of sample observations; and the upper bar, the average mean value

with all moments eomputed from the sample.

For the expßeted value to be equal to a parameter independent of the

sample data, it is neeessary that both the eorrelarion eoeffieienrs between

rhe weights and the variables Land Z and the produet of rhe averages of rhe

eorresponding variables be idenrically zero. The requirement on the zero

produet of the average is indeed very restrietive; therefore, it 1s 11kely

that the expßeted value of the simple regression eoefficieht will always de-

pend on the. sample data.

Another consequence of the present formulation 18 the possible lntroduc-

tion of seriel correlation into an equation whieh is used for the e15.ti.nlat·ion

of tbe eonstant para'ineter. In partieulat, note that aquarion (1) may be·

written as:

= x p,... c ..... 0
(11)

The term in brackets is the combined error term. This erraT term may be se-

rially eortelatad even thaugh the u t ' s are. un,relate4. SpeclfieallY,

E(p t - So)

(12)

Combining equation (12) with equation (2), it becomes obvious that, if there

is aserial correlation in either Lt or Zt' the Sr is serially correlated.

Consequently, (8) is not an efficient estimator of Po' On the other hand,

the redueed form expression (3) for Yr eliminares the se rial eorrelarion by

the explieir inelusion of L(xr ) and Zt and eonsequently al10"15 a more effi-

cient estimate of S .o
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Für the varying parameter model, it is of particular interest to esti-

mate the individual B
t

, Equation (8) gives an estimator for the constant

coefficient B
o

but not the individual B
t

, Of course, (8) is a biased esti

mator of the individual B
t

, The square of the bias is given by:

(13)

The variance of the estimator conditiona1 on x
t

and Pt is given by the

expression:

(14)

Coobining the bias square and the variance, the express ions for the m~an

square error (NSE) is obtairied:

HSE (15)

Note that the mean square error can be reduced in estimating the varying

parameter equation by incorporating equation (2),

The error.tetm in (3) hasa.h.ete,oscedasticstrncture; therE;i:t<;>:re,it is

desirabl" to use a !:Wo-stage GLS estimator. The first stage invblves estima-

tion of (3) by OLS fo110wed by the estimation of an appropriate covariance

matrix. The second stage employs the estimated covariance matrix to obtain

the GLS estimator. Tbe computation of the covariance matrix is not immediate;

this issue will be investigated in Section 3.4.

Tbe procedure outlined above provides estimates of 8
0

and of a. The

values of the parameters obtained in such a way can now be introduced in the
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structural equation (2) from which an estimate oE St may be obtained. Such

an estimate may be represented by

(16)

The estimates of Sand aare unbiased even for the first stage of the two
o

stage procedure.

It is interesting to note that the most recent data play an important

role in the estimation of St' That appears specifically in the two terms

L(x t ) and Zt' Early values for xt get very: little weight in Lext) whereas

early values forzt do not appear in (16). TrrQs, the early observations af
feet St ,only through the effects of So' a, and the estimates of L. Clearly,

under the present structure, there is no need to throw away early observa

tio!j~ since they stillprovide infeiWl'Jition <'><1 the ccinstantteJ."TIl)l, Sei anda.

3. J. The es timated equation

The major conceptual problems have been reviewed in the context of the

simple regression framework. The model involving more than one explanatory

variable can now. be easily formulated. Let.!St be a k vector of e,xplanatory

valtiables and write for thetth observt';ti9h a generalized version of (1):

d
Z=X E+~

(17)

(18)

where Xd = diag {~~} is a TxTk matrix; §.' = [§.i' ... , §.~J; St is kxl vector;

and Land u are T component vectors. Far this specification, a generalized

version of (2) is given by:

a + e
-t

(19)
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or equivalently,

(20)

where ~ is the mean value of E.c for zero values of lc.c and z . 1 is a T-t' -c

component vector of anes; TI' = mi, .. " " , TI' ] • TI. is a vector of coefficients- ;' -J

TI. ; j, r = 1, k, expressing the effect of L on R • L' = [Llt , .. " .,
Jr " " . , rt ~tj , -1;

LktJ ; Ljt is a function of past value of x..;; z' = [zlt' " " " , z ] • and e' =
J --r mt '

[~i' " " .. , ~~J .

I k ® .E..i I k ® Li

z L = (21)

I ~ z' I k ® L~k ~

Combining (18) and (20) ,

y= Xdß + X
d

L TI + X
d

Z Cl + [Xd e + uJ (22)4J

x'
-1

•
where X _ •

x'
"'T

Letting ~ = Xd ~ + ~, it follows that

and

( 23)

E [E x']- --r O,E[EZ'J
- t

0, E(e e') I (i9 t:.
T

where the elements of the diagonal matrix t:. represent the variances of randorn

coefficients ßko
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Note that in (22) there is a generalized form of L whieh appeared in

equation (3). Eaeh S rnay depend not only on the L funetion eonstrueted on

the x eonjugate to this ß but also on all other x's. This is a general spe-

eifieation, but it is not suggested that every S will necessarily depend on

all the lagged x·s. In empirical applications, it is likely that any par1',ieu-

lar ß will depend on the x conjuga1',e to it and perhaps a few other x·s. Never-

theless, the general form will be maintained here 1',0 allow flexibility in

adapting the model to verious circumstances.

Since no ob~ervations are available on L(Xt ), seyeral possibilities

.can be .considered inesJ',imaUng (22). It. i g possiblato impose a struct;lre

on L(Xt ) such as a firsJ',~order distributed lag function. The weights of such

a function are not known, but it is.pqssible, to iterate by.assumi14g saveral

alte,mative vslues for the, weights snd examine the associated likelihood

funetions. If the likelihood function is not particularly flat, then the

choiee will be easy. If the likelihood function 1s flat, then the ehoice is

immaterial 1',0 a large extent; and any of the weighting schemes may give

aqually good rasults. In the special case where Land n are known, the fol-

lowing tJ::ansformation can be. rna<le:

(24)

Alternatively, instead of enforcing a strueture on L(x
t
), a sequenee

of lag values for x t may be speeified. This beeomes equivalent to introdueing

several terms; eaeh one is a produet of x t and a lagged value of x. The ad-

vantage of this approach is that it does not assume a strueture. However,

the eost is rather high and perhaps excessively high. Too many lagged values

for x will introduce mul1',icollinearity in the syste111; snd in many instanees,
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there will be sufficient information to sustain only one or two terms. This

problem is particularly troublesome in the case of Eorecasting. The problem

arises not only because of the L(xt ) function but it is intrinsic to the

basic framework. It is due to the dependence of the systematic components of

the coefficients on the x and z. This issue will be discussed further in

Secti.on 5.

Equation (22) provides the form to be estimated. Tbe errOr term of this

. . -
equation has a heteroscedastic structure; therefore, a two-stage.procedure

must be developed. For that purpose, the covariance matrix oE the er.ror struc-

ture must be estimated. Thisissue is dealt witli in thenext subsectipn.

3.4. Es tirrxation of vrzriance aompo1!'ü2nts

Tbe estimatiÜnp.f tne 'ladence compoflentsin varying coefl;icients model

is discussed in Nundlak (1978a). Tbe method de'leloped by Mundlak (1978a) is a

generalization of the standard method used in components of error A,~OVA. Spe-

cifical1y, the method requires repeated observations on the samp1ing unit. As

such, this method cannot be applied to the framework e>:amined here since only

on!'! .obsel:'Vation p!'!r yearis Ävailable. Cotlsequently, another metllod mu"j;be

develoPt>.d.

ThemethoddeV'e}oped here utilizes the'tat,t that tue e~rOcr tern of (12) is

a linear combination of the various e's and u, where the coefficients of the

cOmbinations are the x's themselves. Since the various error terms have dif-

ferent known "coefficients," it is possible to estimate·the variances and co

variances in question. Letting X* = (X, XdL, xd Z) und M(X*) = I - X*

-1
<X*' X*) X*', it follows that the vector of the computed residuals of (22)

may be expressed as
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E: ; M(X*) E:.

24.

(25)

(26)

Under tne assumption that X* is of full rank, say, k*, rank TI = T - k*.

Proceed by evaluating

(27)

where m is the tth column of M(X*). The second term on the right-nand side
-t

may be simplified by

and

diag {x' !i x }
-t -t

(28)

l d - d']_mt' X (I
T

® !i)X E!... = tddiag(x' !i x )m rn'}
~ -t: t -t-t

T 2 2' -
=-!i ';'

~ mt "! x +
11 T=l

tT

x ,
Ts j, s = 1, .•• , k, expression (27) can be

';.,,·Yi t ten 3.$:



( 29)

and the eoefficients 0 2 , b.
JS

on m
tt

and the w's, directly

A2
can be estimated from the regression 01' E

t

observable variables.

by T _ 1. > k(k + 1) + 1 (li:. + 1.}(li: + 2,)
" 2' orT> 2 Rowever, with ±arge k, multi-

eollinearity will.preclud€ rel:i;a~le estimati!.s unle",,,, T is very1.at"ge. Theet'€<före,

in tim€ s€ries studies where the number 01' observations is far from exeessive,

it wOuldbe desirable ta keep t.he nUlliber 61' eoefi;.kients whieh are a119wed to

vary reasonably small so that thel r varianee eould be estimated from the data.

Tnis issue will be formally diseussed in Seetion 5.

Note that only T 01' the elements 01' (ii') are used in deriving the esti-

mation. At first glanee it might appear that some information is lost by

igtloring the off-di,agonal elements. However, this is not ;t;he <;ase bi!!.cause

the tankof t~' is 1; a.nd,therefore,%t)~i"dge,l:lf",~e eolumil .01' thi.s matri~

feC1l1tatesthe.cpmputation ,,1' the. r,,~n;Üning coJ;1ill\l1~k A givMcolU1ll!1is not

used1:i:u.trather thedi=$onal el"!ll~nts:Whiah, 01' .toia·se, ean be obtaine« by

elementary row and eoluum opera.tions on i $'.

For the special ease 01' f:, :E 0, note also that (26) beeomes the standard

2
formula for deriving an unbiased estimate 01' o. As is weIl known, only T - k*

elements 01' t are independent inthe sense that, knowing these elements and X*,

the remaining f's Cllen be derived from X*' f ~ Q. The "lass" 01' k* independent

observations (or degrees of freedom) is, 01' course, due Co the estimation 01'

the regression coefficients. In some cases, .mich are rather importsnC in
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statistical analysis, this is not a loss but rather a source of important

information, speeifieally, when the estimated regression eoeffieients ean be

thought to be repeated drawings of a random variable with a given probability

distribution. Indeed, this is the situation presumed by the standard eompo-

nents of error analysis of varianee model. In its simp1est version, the model

ean be written as:

Yij = Cf.. + u .. 'V (0, 0
2 + t:,)

1. 1.J

where ß = var et.

It is weIL known that ß is estimated from

(30)

~2

G

J
(31)

~

where a.
1

1 J
-1:

J .
J

~2

Y and 0
ij'

1 1:
I (J - 1) i

The point made by this model is that eti are regression eoeffieients (of I

dummy explanatory variables).
~

on :th-e random variable {X~ 0-,
1.

Simultaneously, they are repeated observations
2

0, 0J + ß Thus, the\< deg",ees ofrrei'!<1om

"lost" in estimating d
i

provide I :-·1 ind:epend'eut observations for tl1e~sti

ma.tion of ß. Thi~ strueture does not exte;nd 1.eself to the pr4hlem where only

one observation on the veetor of regression eoeffieients is avai1able. Fortu-

nately, the error term (25) has a strueture that permits the deeomposition of

the varianee to its eomponents as demonstrated by (26)-(29).

In the ANOVA error eomponents model, the estimator given above (obtained

by subtraetion) may aetual1y be negative. The possibility of a negative esti-

mate of some varianee eomponents is not precluded from the ease as weIL
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although it appears that this possibility is less likely. However, if a

regression coefficient which serves as a variance estimate is negative and

signifieantly different from zero, it may be desirable to repeat lOhe estirna-

tion unaer eonstraint that none of the variances will be negative.

3.5. Nonnegative va:r-iance constraints

The possibility of negative varianee estimates for (29) ean be dealt

with in a number of fashions. .Th"" most obvioU5 i5 to apply the inequality

estimator [Judge anaTakayama (1966) J to (29). This simply involves intr9'-

aucing the restrietions

2
o , '-\k 2. 0, for all k. (32)

The sal1:pling properties ofthe resultingestimator reeently have been de-

rived by Judge and Yaneey (1978) under a squared error loss measure. Operating

with a general inequality estimator, they are able to demonstrate lOhat the

varianee of this estimator is equal to or less than lOhe varianee of lOhe maxi-

mum likelihood estimstor. As in our ease, they show that, if lOhe direetion of

lOhe ineql,la1:LtyeOiYsf,rai;nt information is known, lOhe inioql,lal:l.ty;restri;cted

estimstoris .$H6rm,1.y sl,lp.erinr .over lOhe rangenf the paramete, sPAce to the

cOilventional maximulijl'ikel;'t:J;i,<:>od <ast;'tmator un<:h"r a sqllared error loss measure.

Tbe sampling properlOies are derived by Judge and Yaneey for apretest esti-

mator, and lOhe relevant test statistie is distribllted as a eentral trandom

variable with eonventional degrees of freedom.

An alternative approach to lOhe problem of negative varianee estimates

is possible using shrunken estimators. 3 For this approach, the negative

varianee obtains in lOhe unrestrieted maximum likelihood estimation is ad-

dressed by lOhe ineorporation of a pT'ioI'i information whieh forees the esti-

mators toward zero. This information is less consistent with the true
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apriori conditions on variances than the inequality restrietions. On the

other hand, it is rouch easier to implement fram a computational viewpoint.

For example, the ridge regression estimator for which computational routines

are cornmonly avai1ab1e is a stochastica11y shrunken estimator where the

parameters are forced toward zero with a probability directly re1ated to the

value used to augment the diagonal of the sum of squares for the design

matrix [Fomby and Johnson (197 )]. The a ?riori information introduced may

be interpreted in terms of zero variances with a given probability. Final1y,

it should benoted that ridge-type and other shrunken estimators dominate

maximum like1ihood estimators over certain regions in <the parameter space.

4. Forecasting

The introduction of the varying parameter model is of particular impor

tance for forecasting. Since the parameters change with time, it i5 important

to capture the coefficients which pertain to the period of forecast. Thus,

there is a joint prediction problem, i.e., St and Yt are predicted simultane

ously. To place the problem of prediction within a useful fraoework, write

the Predicted value of y as:

(33)

",here bT+l in this case is an arbitrary est{mator of ßT+
l
,and 1+1 is a

known value. Such a formulation is directed at the prediction of y. The

error of such a forecast is given by:

(34)
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The eA~ected value of the error is given by

(35)

where Br+l represents the bias of predicting ßT+1 by bT+1 • Of course, when

bT+l is an unbiased predictor, B vanishes. The MSE Df the predic.tor Y~+l is

given by:

(36)

Within the Gauss-Markov framewotk, the bias is zero; and the variance is mini-

mized by usinga generalized least-square estimator. Rere, this approach is

infeasible since the variance of the error term is not known.

The properties of the predictor ba"ed on equation (8) proVide$ome in-

teresting insights. The determinants of bias which appears in (13) can best

be eva1uated by substituting equation (2) for ßt to obtain

C}7)

This exPression under$c"nie$ flie seop~a.trdilllPortatlCeof 6tking· i~to account

the explicit formu1ation of time-varying coefficient. If the va1ues of L(x t )

and Zt in the period for which a forecast is obtained vary or differ con

siderably from the past values of these variables, the bracketed terms will

contribute substantially to the bias. On the other hand, if values of L(xt )

and Zt are weil within the range of past Dbservations, then these terms may be

negligible; and the predictor·based on ignoring the varying parameters may give



30.

an unbiased prediction. Hence, it is particularly important to use varying

parameter approach when recent values of the explanatory variables deviate

from the average values for the sampie. From this analysis, it appears that

the present rramework can deteet turning points in cases which a constant

parameter fails to do so.

The bias in the estimate of ß
T

+
l

ean be avoided by utilizing equation

(3) from whieh the following eau be eonstrueted:

~ ~ ~

So + LT+l + azT+l , (38)

Note that x
T

is the latest value of x that .euters the function L
7

+
1

, and this

value is known at the time the foreeast is construeted. Moreover, § and ao

are unbiased estimates of the eorrespondingcoeffieieuts. Consequently, the

expeeted value of bT+1 eonditional on zT+l is equal to PT+l'

The problem with the above approach is that the resulting regression equa-

tion eau be blessed with too many variables. Inereasing the number of vari-

ables has a cast; it increases the sampling variance and thereby the forecast

variance. There is, therefore, a trade-off between an increase in ehe sampling

variante and a decline in the bias whieh are assoeiated with the ad.dition of

variables to the regression, That ereates a problem of a ehoi~e which is

particularly impartant in the framework. This problem is spelled ou·t expli-

eitly in the next seetion.

4.1. Seleation of explartatol:>Y va-~abZes :lo:p .forecasting

The problem posed at the end of the previous seetion is of a general

nature and can be treated as such. It is asS'umed that the true equation con-

tains k explanatory variables. This set of variables i3 suggested by the
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theory (or perhaps by a theory) underlylng the equation. Using the sample

data, the equation is estimated and the null (or other) hypotheses are tested.

Having this information, it is now desirable to predict y for a set of values

given by ~he row veetor of values ~*' for the regressors: The Best Linear

Unbiased Predietor (BLL~) is:

~*y :;: x*' ~; (39)

and the varianee of the predietion error, eonditional on X, f = y* - y, 1s,

(40)

where

h = ~*' (X'X)-l x*. (41)

The question 1s what X's should be ineluded in the predicting equation. As

usual, i:he answer depends on the criterion. The problem is analyzed here

within the framework of sma11est conditional MSE.

rO,deal with this problem, Xis partitioned into X = (X
1
,X2) oIorde,

tern"t1"e,ly, to use a, predicrot: which ,15 <based pn1y on Xi:

y* = x*' a (4Z)
-1

(n x 1«1' n x

( *'>i')xl '.!ft .

RZ}, k1 + kt '" k; and .!i*' is P<ti't:itiolled accordfni$lY, ,,~'

The questi:on i:s wh<;ther tP}lße the ptej;l;ictorin~39) or, a1-

where ~ is the L. S. coefficient of y on Xl. The error of this predictor is

f l = y* - y and its variance conditional On Xl'

(43)
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(44)

2
The evaluation of 01 and the relationships between the two predietors require

some further specification of the model. Basic in this spe.cification is the

relationships between Xz end Xl whieh are written as foliows:

and

(45)

The term E(XzIX1) may refleet the design of the experiment if X is nonstoehas-

tie or the population relationships if the X's are random variables. Write

for the unrestricted equation

z
(Q, ° I).n

Combining (45) and (46), the restricted equation is written:

where

Let ui
i

be the ith row of Uz and assume

Hence,

(46)

(47)

(48)

(49)

(50)
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Note that o~ is the conditional variance of y given Xl' At [he same

time it can be viewed as the MSE of zlx given Xz-
1

Tne difference between 0i and oZ is the square of the bias genera ted by

The difference ean be estimated by usingevaluating E(yIX) from E(yIXl ).

~z ~z
o =l/(n - k) l.'N.z. and 01 = l/(n-

K = X(X'X) -1 X' and K
l

= Xl (Xi~)-l

kl ) y'Hl l. where H = I - K, ~ = I - Kl ,

X'
l'

Let F be the statistics used for testing the null hypothesis 0: 22 = O.

~ ~Z· jBy a simple eran~formation, it can be shown that °1/0 ; 1 + (F - l)kZn -kl ,

~z > ~2 >
Consequently, 01 <0 <=> F <1. Of course, the verdict with respect to

ehe null hypothesis depends on the critical value of F (which is distributed

with kZ and n - kl degrees of freedom).

Z 2Deciding thae 01 - o· is significaotlY different froml!!ecro still does not

justify the use of the unrestricted model for purpose of prediction. For that,

2 " 2G
f

anu 0fl needs to be evaluated which, in turn, requires an evaluation of h

and hl as given by (41) and (44) above. Using the expression for an inverse of

a partitioned matrix

" - "] (51)

Combining (41), (44), and (51):

h (5Z)
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where

::!:z = x*:-'2
(53)

is a vector of errors cf forecasting ~2 by Pf~~.

There are several possible interpretations of (52). These interpretations

are most easily developed by denoting ~l and ~z as the unrestrieted OLSE oE

~l and ~z in (46), respeetively, and the varianees oE the two estimators by

(54)

and, hence,

(55)

Clearly, the sampling component of the unrestricted forecast vari2nce in-

creases with the variance of l2" The less accurate the estimator of ~2 is~

the larger the sampling varianee of this forecast. Perhaps it might be useful

to reeall the eonditions Ieading to a large sampling varianee with referenee

to the case on hand: smail sample varianeein XZ' high multieollinearity be-

eween Xz
,rhe

. 4and X, and a amall sample S:Lze.
1

varianee of the'unrestrietecl Eoreeast This

result is a generalization of arestatement of a known prope~ty--that the

forecast variance increases with the square of the de.viations of x*' s from

their sampie means. In the case under investigation, the marginal contribu-

tion of Xz is evaluated. Consequently, the marginal eontribution of xi to

the forecast varianee is due only to that part of ~2 that is not linearly

aecounted for by !:'Ot. Consequently, when "'-2 only deviates slightly [rom

p'~iJ this contribution is small.
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When ~2 is a random vector, the variance cf v
2

cau be evaluated and ex-

pressed in terms of such variance. Write:

v = (TI - p)" x* +-2 -1 "'2

and

Hence,

= X2 + E {U' [ .] U 'Z 2J

= Xz + E{··}

XO (1 + hl )·
5

"

An unbiased estimator of Xz is obtained fram:

(56)

(57)

2Z = -n-_-,,-l-'-k
1

V2VZ ' (58)

Utilizing (58), (52,) can Oe rew~:i;tten as:

~..;1 Vz
h - b: = v' Z·· . >

. 1. -Z :2 TI ., .k
l

and utilizing (57),

(59)

h - h1
;:::. v'

-2
;'l-l
/. Z ~2

v
(60)
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It is now possible to make the following comparisons:

2 2
h h

lOn °1 -
> > 1 + h

2"" = 1 <=> -= = 1 +< 02 < 1 + h
l

1 + h
l

°f

ß' Zz il.z
A-l

v' Z v-z > -2 "'""V2 -2
<=>

li k1
< n - (61)

A large variance Xz increases the Las of the inequalities and tends to decrease

the RHS and, hence, leads to preferring the unrestricted foreeast (the aetual

values of the terms, of course, also depend on il.z and ~2)'

The· R."1So.f the inequalities arerandom variables. A s;t:ronger statement

with respeet to their distribution ean be made if an assumption of normal

distribution is added:

E(~2i'~2i*IXl) =0,

It thenimmediate1Y follows that6

for aH i F i*.

(62)

v'
-2

-1 n
Z 2 ~2 n - k

v 1
(63)

where T
2

is Hote11ing's genera1ized T
2

statisties. Utilizing the relation

ships between TZ and F, (61) can be re,,,,,itten as a probability statement:?
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, (";,1 ,,) ~ p [, (k n - k +]) < C-:~ + 1 ) pt lZ 0 ,,]
C;~ lXI

2' 1· !:cz .t:.2

(64)

~ rF (kZ' n - k + 1) dF - P (T) •

0

As n .,. "', peT) .,. 1 so that the uurestrieted model dominates (eJi < eJi1) with

probability 1. For finita n (and -not "exeessively 1argen), it: is possib1e

t:o benefit trom rest:rieting the model by eliminating variablas whieh eoutain

uo net information. !henet information is dfreetly re1ated to tue size of the

variance of t:hese variables or more aeeurately to the quadratie form in t:he

covariance matriJl. Ihns, it is d.es.:lxab1a ta aliminate vari".b1as ",hieh va:ry a

littla·and have law valnes for their eoaffieients.8

The eondition in (64) depends implieit1y on the nUillber of variables

whieh are already ineluded in the restricted model (k
l
). Other things being

equal, the larger k1 is, the smaller the varianee Xz' that is, the variance

pf the unaccounted part of Xz• 1t seems that this property is overlpoked

.inf'r.ameworks whieh· are based ii>ü foreeasting from as l?rge ? njjli(be~ Qf vari4

ables?<; possibie.

1;t maY s!'!em strang~ thattherelat:ivesljle of. :th~ förac·ast variance is

t:reated as a random variable. Tbe reason is t:hat t:he st:at:ement is condit:ipnal

pn~, in which ease Xz has a probabilit:y distribution and, eonsequent:ly, h

has a probability distribution. For any set of values ~~ used for a·foreeast,

there are many various values for ~2 and, eonsequently, of ~Z. In same cases,

".Z may contain large (absolute) valu.es for some componeuts. In this case, it

is better to forecast from a restricted model. Such events ara rapresented

by larga values for F which exceed ...ny preassigned values for 1;.
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The foregoing discussion is pertinent für designing an operational ap-

proaeh to foreeasting. In praetiee, a narrower question ean be asked: Whieh

forecast is more accurate, given X and ~*, that is conditional on Xl' ~~ and

In this ease the distribution of 22 is now irrelevant as 22 is given.

The answer again is provided by (61). It is very straightforward; the true

forecast variances are given and their ranking is thus determined but unknown.

It is possible to estimate &2 and Gi and aceordingly to state:

I + v,
-2

-1 2 2
X 2 n- k
v I

(65)

Recalling the discussion above following equation (50):

<=> F
> 1= _.- v,
< k -2

2

"'_I
X 2 2 2 + I

v

> I (66)

where F is the statistic for testing the null hypo thesis ~2 = O. Under the

null hypothesis, ~2 has a distribution of eentral F with k2 and n - k degrees

of freedom. Consequently;

When F < 1, the restrieted forecast is·preferable.

2. ·Let F pe the critical value for. teating the null hypo thesis ;a
>

then the inequality F <Fa is not directly related to that in

(66) in the sense that the verdict on the null hypothesis is

neither necessary nor suffieient for determining whieh fore-

cast is more accurate. F ean be larger than the eritieal value

but smaller than the RES of (66); eonsequenrly, rhe re-

tricted forecast should be preferred. The eonverse is also

possible.
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The dlseussion ean be eoneluded as follm.;s: one has to differentiate

between a ehoiee of a foreeasting method and an aetual foreeast. In the

first case the relative accuracy of the restricted and unrestricted fore-

easts eonditional on the restrleted set of variables are evaluated. Under the

assumption of multivariate normal distribution of the veetor of the variables

affeeted by the restrietion (E
Z

) , (64) summarizes the pertinent information.

When a particular forecast is evaluated, it can be done so conditional

~ 9On all the variables, as they are all known. In this case, the various fore-

cast varianees ean be estimated. It is interesting to note that the test of

the null hypothesis with respect to the eoeffieients of the restrieted vari-

ables (~Z = 0) is neither suffieient nor neeessary for determining the relative

preeision of tae forecasts in question.

The eonditions leading to more preeision of a restrieted forecast are of

a similar nature in both eases: a small sample, little net information embedded

in the restrieted variables used in the regression,and eonsiderable information

in the values of these variables used for forecasting.

In view ofthe developillents in <t;he previcit\ssection,it .is clearthat,

when the sample 18 of finite s:l.~e, .there isa l:l.1llit tot1?:eml1nber of vari~

ablas that should be included in a regression aquation forecasting purposes.

This raises a eammon problem in eeonometric analysis, that of a ehoiea of

variables. Apriori, the model may suggest more variables than the data

can support. By eliminating some variables, the model is reduced to a man-

ageablesize. Such a reduetion need not be done arbitrarily. The problem of

too many variables is that of the sampling variance and, therefora, the

choice of variables to be aliminated can be done in such a way as to minimize



the sampling variance for any predetermined number of explanatory variables.

Thus, the framework of the previous section could be applied by adding vari-
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ables as long as the MSE declines. Such an approach leads to a consideration

of the principal components framework which is now briefly outlined.

An orthogonal matrix P (P'P = I
k

) is selected such that

>-1

P' (X'X)P = _ D (67)

where >-1 > ••• > >-kare the characteristic roots of (X'X). Note that

I. = pp' = P1J?i + J?~ (68)

(69)

In this setting, as is weIl known, the basic equation to be estimated can be

rewritten as:

y = Xß. + !±

= (xp) (P 'ß.) + u = s<5 + u.

Then the OLSE of <5 is:

I s 'v }§. = (P'X'xp)-l P'X'1. = D-1 8'1. = l--:,jj~-' j=l, ... , k

and

~ 2 -1
var I) = cr D .

(70)

(71)

(72)



From (67) and (7Z), it follows that the estimators of the various coeff1-

eients are uncorrelated.

The relat10nships to OLSE of b 1s given by:

41.

iS = P'b and b (73)

Combin1ng (7Z) and (73) and recalling that the elements of D are ranked, it

is evident that the first row of pI, say, pi, gives the a linear combination

of b, whieh has the Idwast variance in t1;te elass of ,,11 no:rmaliz.ed linear

combinations of b. This result is dua toGreenb~rg (1975). This irlterpreta-

tion is extended by Fomby, Hill, and John/ii.on(1978) by showing that, if

~ in (70) is to be estimated subjact to some (say, kZ < k) homogenous linear

;:e$trietion$ (RE. = .Qh· the trac<!' of the covariancelliatHx.of ttLe est'1-lliator.is

bounded from below by the sum of the variances of the first kl = k - kZ re

gre$sion coefficients in a (a2 Z~=l A- l
) .

In apply1ng th1$ discussion to the probleIll of foreeasting, divide Sinto

submatric<!'s,

.*Consider the row v<!,etor !:

(74)

Tne unrestricted forecast of y is:

(75)

But noting that:

s*6 (x*P) (P't) = x*b,
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which is equivalent to (39), the unrestricted forecast obtained without the use

of principal components. Thus, the interest in using principal components

arises when some variables are eliminated.

Consider the forecast based on the first k
1

principal components:

Ypl = ~ill

and the forecast error

(76)

e = Y YpI - pI
= s.*s + u _ _*1 = s* (~ 1) +

l) ~1l)1 -1 -"-1 - -"-I

The variance of ep1 conditional on SI is:

where

(77)

-1 1
= s* (S'S) s*

-1 1 1 -1
( 78)

By (67),

and

S'S
o

(79)

E {p'
2

x*'

If ~* is stochastic and randomly draw~. then ~~ is also stochastic.

Furthexmore, if it i8 drawn from the same distribution as the rows of X,
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then S2SZ!n - I ~ DZ!n - I is the estimator of ßZ which is the variance of

~2' ~1en x is nonstochastic, then ~2 is a parameter determined by the design

of the experiment.

The restricted rorecast has to be compared to the unrestricted forecast.

Following (61),

(l 2 h h
(J I > -

.....h > I + h pI
~ 1 <~> -U~ = I + (80)

2 < ? < I + h I + h
O'f er pI pI

On the surface it is not quiteclear that a restrieted forecast with k1

principal components is preferable to such a forecast with k l original vari

ables. The procedure of selecting principal eomponents according to the size

of the characteristic roots does not; provide such an optimality erit;I';rion.

The optical results eall for entering the principal components in a deereasing

order cf their t ratios (in absolute values). Since the regression coefticients

on the prineipal eomponents are uncorrelated, the addition or omission of vari-

ables does not affeet the values of the t ratios of those variables which are

ret"'ined in the regr1l>$sion. This procedure mq.ximizes the 1\2 in thec:tass of

regression eq·uatiQns with k
l

explanatory .variables;and .as a conse'qJ,ll'lnCe, it

minimü:es· thl'; expeCt.Eld value of the noneentrality parameter;
.. 2 2

n.,1lle1y ,0'. 1 - 0'.. P

and, consequently, the ratio of a~l/(JZ. At the same time it also minimizes

in a probability sense, the value of hpl in the same class. Consequently,

for any forecast based on k
l

explanatory variables, the aforementioned pro-

cedure has the lowest forecast MSE. Once the forecast is optimized for any

given k
l

, the selection of the number of variables to be included in the re

gression follows the rules developed in 8ection 4.1.
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4.3. Implications Jor para~eter variation model

Thc detailed evaluation of the choice of variables for purposes of fore-

casting is of special interest to the mo-deI advanced in Section 3. The essence

of the model calls for increasing the number of the variables and it turns

that such a procedure is not priceless. It seems thst a reasonable procedure

would be to formulate the model according to a priop~ considerations. This

stage of formulation should bring out the more imporrant relationships that

are expected to exist betweEln the variablEIs. The next step is.that qf the em-

pirical analysis. lt turns out that, for the purpose of forecasting, the model

will have to be reducEld in tElrms of the number. of variables.lt is suggested

that the reduction will be made by shifting to principal component regressions

where the variables are added to the regression in.s declining order of the

absolute value of their t ratios.

A possible objection to the. use. of principal co=:ponent i8 that the vari-

ables da not appear in a natural form. For instance, one would want to have

in a de~4nd function the income ~nd O\~ price variables or, alternatively, in

tenilS of the analys-i?, one -~-Y want to have the, original variables, th;;tt is,

the set of v"rlables wlrieh 2l.:ppear in the model prior to the ppdifieatfon due

to the variable coefficient framework. This preference ean oe aaeommodated

in the analysis. However, ·first itis to be noted thzt it is pos.sible toob-

tain an estimate of ß from the regression on the first k1 principal eomponents.

In terms of the coefficients of (70),

~l
~

P~öl

(81)
~

a 2p'o-1var (Spl) p
I 1 ·1



'Where.
A

K is
""'pI the estimate of f in (70) based on a regression on the first
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K 1 principal components.

Next, to retain same variables in their original form in the regression,

the design matrix ean be partitioned into X = (X*, X**), and the basic equa-

tion becorees

y = X*f* + X**f** + u.

Let

v H(X*)X**

a~d rewrite the basic equation as

y = X*.ß* + Vfi.** + u

= X*i3* + 56 + u

(82)

(83)

where. the relevant P matrix used to construct S is now the matrix cf character-

istie veetors of V'V and the rest follows along the previous diseussion.

;;. Simultane.qus equations

In this section the foregoing formulat.ion and approi;1cn are adapted t.o deal

with th<; mOd<;ls of simul);ai\eous Iilquations. In part, such an adaptation is simply

an extension of the size of the system resulting in an additional eomplexity of

eA~ressions and perhaps of eomputations. However, in part, the introduetion of

the time-varying para~eters to simultaneous equations introduces conceptual con-

siderations whieh have to be dealt with explicitly. This is particularly the

ease with the identifiability of the system. In any event, this sectionis

devoted to the fOrIDulation of the problem in such a way as to allow the utili-

zation of the foregoing discussion and thereby minimize repetition,



Consider a system of G simultaneous equations, with a row vector y cf
-t

endogenous variables in time t, and a row vector x cf exogenous variables:
10

-t
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u
-t

(84)

where Bt is a G x G now singular matrix and r
t

is a K x G ~~trix. Both

matriees, Bt and r
t

, are allowed to vary with time as the index t indicates.

In addition, it is assumed that:

U ~ (0, L ) and E (u'u*) = 0-t u -tt l;f t # t* (85)

E (u , x *t*) = 0, l;f
g,t,g*,t*gt g

E (ugt ' ß~r,t*) = 0, V
g,g*,t,t*,r

E (ugt ' Yg* s t*) = 0, V, , t,g*,s,t,t*

(86)

(87)

(88)

PUm i x'x M < 00

x
(89)

where X = EI . • • 2Sr is a T x K matrix.

AB in the ease o.f single equation, the coeffieient matriees, Band r ,
t t

ean be deeom~ose4 into systematie snd error eomponents:

(90)

where the starred matriees are the systematic eomponents. Combining (84)

and (90):

(91)



Each of the systematic components can be further decomposed into a

constant, a functiQD which depends on past values of internal variables

(endogeneous aue exogenous) and on variables external to the model~ Such

a decoffiposition 1s integrated irrte the following discussion~ In SQ doing,

the Syst€ID 15 first rewritten for the T observations:

ydB + Xdf ; U (92)

where

yd ; diag< (Yt ) , T x GT

Xd diag (3St ) , T x KT

G {u } T x G
-t '

r : )
I,

B ; Ii\ GT x G

l:
",nd

r; f
t

, KT x G.

It should be noted that the system in (92) is not a complete system;

it artificially expands the number of endogenous variables from G to GT

variables while at the same time the number of e'luations remain unchanged.

47.



~'However, this apparent problem is handled by expresslng thc coefficients as

functions of the various variables as was done in the case of the single

equation. In so doing, it is not necessary at this point to distinguish

between the various kinds of such variables. The systematic parts of the

coefficients are, therefore, expressed as:

48.

f*t =: Wr A...,
.. t l

(93)

where WBt and Wrt are GxSB and GXS r matrices of variables and AB and Ar

are SB x G end Sr x G matrices of their respective coefficients wh ich ere

held constent over time. It is now possible to combine (93) end (84):

(94)

Combining (90), (92), (93), end (94), the system cen now be wrltten as:

01 [WBll [Xl
0

f" 1-'fl

I • I1
I

.
I . AB + I II A~ =

I . J
1

I

• I

l0
I

wrTJYT) lWBT XT)

0 1
.
HllYl

El 3':'1

o l BI
l T)

all in a compact form:

PA = E

~here P represents the matrices of product variables:

(95)

P -

r 1
I

W I

Y"'j' (96)
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PB and Pr are T x SB and T x Sr' respeetively; henee, P is a T x S matrix. The

_ [AArB]matrix A is a S x G matrix, with S = SB + Sr' and

E: = U - yd E _ XdH (97)

E =
r:

H = :,1E
t

,

1' I• , I
!

In eonfrontillg this system with the data, a number of issues arise:

1. Estimation of struetural parameters. Sinee these parameters

vary with time, the best that ean be accomplished is to esti-

mate the systematic components B~ and r~. Having obtained

such estimates and making appropriate assumptions about the

distribution of the enor te~, i"l1:erences can be~d:ewith

respect to the distribution of the.Cöefficients th.etriilelves .•

2. Pliedicting X for a giv"n vectp:r.!.<i\nth~basisofp<ls'tipb.,.
. " .

servatio!lsof the y's, x's, and oth:er.Jariables ",nich appear

in the B* and r* functions.

3. Same as (2) above combined with policy constraints on some of

the variables.

These issues are dealt with in the following two sections.

5.1. Identifieation and estimation

The estimation of A in (95) can be divided iüto two parts: First,

obtainiriga consisterit estimator cf A and,seeorid, obtiiinirig"ari efficiEmt
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estimator. This distinction requires emphasis in view of the complex variance

structure of the error term in (95).

The problem of obtaining a consistent estimate ror A oeC002S a standard

problem in simultaneous equation estimation. Rowever, it should be noted that

the endogenous variables on the LHS are now replaced by the product terms with

the w's which in general are exogenaus or lagged endogenaus variables. As

such, the original endogenaus variables are in the raw space of the w's.

Therefore, much of the simultaneous equatian problem disappears; and the

OLSE of (95) are likely to be coasistent.

It may be useful to relate this discussion to the problem of identification

in the original model. ll If a particular equation is originally identified,

it remains so under the present case. This is simply because, instead of using

the original exogenaus variables for estimation, their product with the W

variables are now used; and, consequently, the number of exogenous variables

are increased. Für this reason, an equation that originally was not identi-

fied may now be identified. Basically, the identificatian is used through the

variability of the coefficients, a factor which does not exist in the constant

coeffici<int models. Ta further elaborate an this point, it might be helpful

to view the system from a somewhat different point af viel". The system basi

C!'llly consiiltsaf two blocks; the Urst is give+l by equadon (84) and the second

is given by equations (90) and (93), i.e.,

(98)

Since the w's are predetermined, it is passible to esti~~te (98) by OLS,and

the only abstacle ta this is the fact that the dependent variables are unab

servables. It is for this reason that it is necessary to bring in (84) and
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to use its structure so as to infer the B
t

and f
t

from the observed variables

in (84). This, however, by itself does not destroy the identification if it

exists and helps to identify the system when the identification does not exist.

Tne latter is achieved by the introduction of the additional exogenous vari-

ables, W's. As it is weIl known, identification can be achieved through varia-

tions of equations caused oy the variations of the exogenous. variables or by

the variations of the disturbances if those are known. The fOrmulation

utilizes both; itre1:al:es $ome of the va,iations in the disturbances to varia..

tions in th" coefficientsand those, in turn,l;i,e related to "new" exogenous

variables. The rcaagr may fin'! ituseful to il1:ustrate this to himself uslng

the simple framework of supply and demand.

Once a consis.tent esUmateof tho system is aiiaHaP'ie, thet$csidualsa,·.,

computed and those, in turn, are used to estimate the various variance compo-

nents using the same approach advanced in Section 3. These estimates can be

used to ootain a final estimate using OLS procedure.

5.2. F'orecasting

{fuce the syst'i'\lll isestilllCted,.:j;t c;,anbe use4 fu" fO;r'ecasting. .write the

C:ollstrailled' r·edllced fOrm equatJ:on;:t:9r •yeax t:

(99)

-IT ~ f B-I v ~ u B-
t
l

t tt'--j: -t

where f
t

and B~l contain the various restrictions of the system. For fore

casting, estimates of the parameters in question; replace the aotual parameters.

If policy affected the parameters in question, then this influe~ceshouldoe

taken intoaccount in the e<>timation.
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The estimates of the parameters in the system are used for predicting

the values of the parameters in B
t

and ~t

redneed form estimation for IT
t

from

1t is possible to obtain direet

(100)

where W c.onsists of WB and W
r

• By substituting (100) into (99), i.e.,
7ft .

(101)

l",gged fi:m,ctions of

It is easyt;o s.liow that OLS 'lppliedt~(lOl) is 'lsympt6tieally unbi'lsed 'lnd

very likely also unbi'l'led in finite sampies , depending onthe. reli;ition'lbips

between the W' sand the error terms in (84).

Fol" direet struetural eg,uationspredictions, estimates of AB and Ar are

first obtained; the:ri.'frottl (93), estimates of B~ andr~ whieh are also used

as predictors are obtained. These values are, in turn, used to compute TI für

the predicted period,and this estimate is nsed for predieting y.

With regard to W matrices, sorne explicit statements can he made. They

are basieallji similar in nature to the variables employed in. the ease of

As for this e",Xlie:.formulation, it is possi1>le: 1;0 ßl:ljt'ltruc.t;

the expiil!1:!iltpry<variables, .but Mwthey iuay bein' tenns

6fbcjth endogenousalJ,d ßX<.lt;eneousV'ariables:.,.'fl},? data c.atii be employed ,in

part, to determine the nature of the lag s trueture and the number of variables.

In addition, external variables or qualitative variables ean be inc.orporated.

Prineipal eomponent methods ean, again, be used in order to reduee the number

of variables in the system.

For prediction under poliey eonstraints, basieally the proeedure is re-

peated; but the constraints are brought explieitly irrto the :oodel. In general
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thc sampling error of the estimates declines when constraints are imposed.

Does it, therefore, improve prediction? This, of course, depends a great

deal not only on the statistieal properties of the model but also on its

actual performanee--specifieally, the gap between the eonstraint which was

assured in the model and the level of this eonstraint in reality. The greater

the discrepaney between the rwo, the larger is likelY to be the net effect

on the error term.

6. Concluding remarks

While there is same merit in treating parameter effeets as relatively

fixed, the most prevailing eireumstanees in eeonomie analysis, espeeially for

agrieultural systems, eall for the speeificaticm of parameter variation

formulations. These eireumstanees relate to the nature of available seeondary

data and the abstractions that are imposed to eonstruet eeonometrie.models.

When these eireumstanees are added tö the observations of Lueas on the theo

retieal justifieation for parameter variation formulation and their operational

implementation in the eontext of model use, the overwhelming evidenee is in

. favor oisueh fonnulations. The model-use arg\jl'll1i:trl' is .oiteU negle:eted; but

for those of us whcQhavti attempted tö derive reliabilit'liilleasur~$j r6reeasts,

or p.olicy impact prohability distr'ibutions ,this argument is. ver;! .impoc't.ta,nt

indeed. Finally, many eireumstanees arise in which the "true" coefficients

themselves are generated by a nonstationary or time-varying proeess.

The general speeifieation advaneed in this paper has the unique feature

of ineorporating lag and eurrent effeets of included variables and the effects

of exeluded variables on the systematie movements of the parameters appearing

in equations of interest. It has been shown that this general formulation

admits as special eases the classieal linear model; the Cooley-Preseott adaptive
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regression model; the Belsey systematic variation model; 5wamy random eoeffi

cient model; the Cooley-Prescott time-varying parameter model; the 5ingh et al.

mean response model; the Goldfeld and Quandt switehing regression model; and

the spline regression model.

Due to the nonobservability of the varying parameters, the estimation

takes place in the eontext of ap estimable form whieh ineludes both additive

and interaetion effeets. The estimator that was constructed for the general

ease eonforms to the two-stage Aitken meth~d for unknown varianee; the first

round involves appliea:tion of the ordinäry least squares to the estiTIl3ble

equation, the second round generates estimatBs of the indueed heteroscedastic

structure of the error terms in the estiTIl3ble equations, and the third rotmd

reestimates the additive and interaction effe~ts taking iuto account the

hetero5cedastic structure. As with all two.:..stage Aitken procedures of this

sort, the nonnegativity property of the variances may be violated; hence,

procedures requiring the applic3tion of inequality estiwators er ridge re

gressions cau be employed to force the conformity of the enpirical results

with this property.

It h'ls been demonstrated thilt the g(ineral sfiecification snd estimation, for

the single equation model can be gen"ralized toSimultan1!!ous equation sys.tema.

In this setting, one of the mo.re ip.terestin.~ .. implications of the general speci

fieation is that the identifiability of the complete syscem is often enhanced.

In contrast to conventional constant parameter simultaneous equation specifica

tions, the formulation advanced in this paper replaces explanatory variables

with the product of these variables with the systematic faetors influeneing

equational parameters. In essence, this result augments the number of pre

determined variables and exogBnous distinguishing infonr.ation to identify the
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structural parameters. For this reason, an equation that originally was not

iderrtified may beeome identified. Henee, the identification is enhanced

through the variability of the eoeffieients themselves--an influence whieh

does not exist in constant eoeffi<:;ient models. In tenns of the usual sources

of identifiability, namely, variations and equations eaused by variations of

exogenous variables or by variations of the disturbanees, the fonnulation

relates some of the variations in the disturbances to variations in the coef

fieients and those, in turn, are relaten to "ne,," e:xogenol,lS variables.

In the eontext of aetual empirieal. applications, partieularly those

oriented toward model uses such as forecasting and l'üliey analysis, the above

story is ineomplete. The estimable form resulting from the parameter varia

tion formuli'ltion introdu.ce.s problems of multieollinearity ; Qperationi'll pro

eedures for i'lpproprii'ltely dei'lling with these multieollinei'lrity problems hi'lve

been examined in detail. Formal variable seleetion rules have been developed

which recognize the trade-off between an increase in sampling variance and a

deeline in bias assoeiated with the inelusion of additional variables. The

.c0nditions lllading to a large sampling va:;-ianee are small sampie varianee of

potent.ial explanatory variahles, high multicollinei'lt"ity between potential ex

pli'lmitory vari'i'bles and iac1tided exjHanatory variables. aad a small si'lniple

size. An operational test is developed to select expli'lnatory varii'lbles for

forecasting purposes. This test demonstri'ltes thet the conventioni'll procedure

of testing to determine whether or not the coefficients of potential ex~lana

tory variables are zero is neither necessary_nor sufficient.

The above selection procedures in the context of the parameter variation

formulation are made operationi'll by the use of principal components. The

multicollinei'lrity problem i'ltises primarily among the interaction terms and

hetween the interaction terms i'lnd the additive terms included in the estimable

equation. It is recommended'thi'lt principal componentsbe taken only on the
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interaction terms to preserve the additive effects in termS of original vari

ables. Here, too, conventional selection rules for the principal components

are not appropriate. That is, the procedure of selecting principal components

according to the size of the appropriate characteristic roots does not provide

an optimal result; instead, optimality calls for entering the principal com

ponents in a decreasing order of their respective t ratios.

The integration of all of the results of this paper that properly balances

the cost of the complexity and the value of simplicity leads to the following

procedure: (1) förm the estimable equation, derive printipal compön'mts of

the interaction terms according to the specified selection criteria, and apply

ordinary least squares; (2) estimate the covariance matrix of the heterosce

dastic structure of the estimable form; and (3) combine the estimated covari

anc,e matrix wit:h the principal components oE the interact:'1;oll yari:ablas ~n~ j:he

original additive variables to generate generalized least squares estimates.

Of course, this approach can be easily augmented to deal with simultaneous

equations by deriving appropriate instrument variables for the explanatory

endogenous variables prior to implementing the suggested procedura.
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Footnotes
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University oE Chicago.

t-rr'rofessor <lnd Chairman, Department oE Agricultural and Resource Economics,

University of Califomia, llerkeley. Note that senior authorship is not assigned.

IThese practit.ioners have also demonst:pated that more variability iEipre1!ient:

in econometric models than can be capttired by conventionalautoregressive error

spacifications.

2In this paper, the issues of appropriate experimental designs in deter-

mining ",hat d,H;a oU'ght to beused shallnot;l;>e examined expÜci;;ly in thecolJ.-;

struction of forecasting models. In nonexperimental areas such as econometr'ics

alJ.d other social sciences, auxilliary conditions ought to be examined to

determine whether a given set of data i5 appropriate for estimating parameter

effects. Such auxilliary conditions playa crucial role in experimental

fields. Procedures which incorporate the lastpa,ece of infoUna;;ion minl1ll:l,za

the imPortance oE decidlngwhether 010 not the last.:Observa~io.nsati$ttes'1i",~'
parimeq.tal desigdconditions fore.stimating pal'amet~l1Ei,"teating,hypothes.is,

<lnd ma.king inferenceS; Focusing önupdating 610 fotec.astirig"ignores other

equally importaJ;lt problems in sampIe selection regarding what the first obsar-

vation ought to be. In the axparimental sciences, the first observation is

easily identified; and updated estimates of the unknown effects are appropriate

provided the same experiment is ongoing. Such clarity is unavailable in eco-

nomic modeling. Specifically, it is not clear that the process generating



58.

the da ta is continual1y under the influence of the saue experiment. This, of

course, is why the choice of sampie data for econometric model construction

contains many elements of art rather than science.

3The authors wish to thank S. R. Johnson for this suggestion.

4The discussion is of no interest for large sampies where the sampling

error is of no quantitative importance~

5The term tzh
l

is obtained from the evaluation of the last term on the !UiS.

For instance, to obtain the j, r element (j, r ~ k l + 1,

row of Ui and rth co1umn of Uz is taken:

... , k), the jth

E {U'.["jU } ~
-ZJ ~Zr

!i'J (n, t'1.) and
kZ

and has a kZ -

6Under this assumption, ViVl has a wishsrt distribution

is independent of ~Z (which öoes not belong to the sampie)

norwal distribution with zero mean and variance given by (57). Consequently:

v'v J.-
1

Z Z
n - k1

7Given the notations:

n - k + 11 2T ~ F (kZ' n - kl + 1)
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and, hence,

8This statement may seem to depend on the sealing of the variables (units

of ß2), but this is not so as the units of Iß21 1
2 and X2 are reciprocals.

9It is this property that does-not generalize to all~w a selection of a

method.

lON"ote h B • 1 d d b't at t was prevJ.ous y use to enote aJ.as.

s~bOl will be cleared from the content.

The meaning of the

llFor examination of the identification l'r~blem in context of simultanElous

equation models with random parameters, see Kelejian (1974). Unfortunately,

this treatment imposes the assumption that all random parameters are in-

dependent of one another and, thus, is of litt!e value in the current context.



aefer~nces

Balestra, P. and M. Nerlove, 1966, Pooling cross-section and time se1;'Ae" data

in the estimation of the dynamic model: The demand for natural gas,

Econometrica 34, 585-612.

Bels~l', I)avid A., 1973a, On the determination of sl'stematic paramet~~'V'ariat±on
~in the linear regression model, Annals of Economic and Soeial Measurement

2,487-494.

Belsel', I)avid A., 1973b, The applicability of the Cameron filter in the deter-

miliation of systematicpa'tameter variation; Annals of Econoliri,cand Soela1

Measurement 2, 531-533.

Buse, A.and L. L,im, 1977, ,Dubic spJ.inesa" aSpetiial caSe qf restricted

least squares, Journal of the American Statistica1 Association 72. 64-68.

Chow,Gtegol)' C" ];;9;60, Tests, of equ?lAt,y, betw""n sets of' coefficients in two

linear regressions, Econometrica 28, 591-605.

Cooley, T. F. and S. J. l)eCanio, 1973, Changing supp1y response in 1ate nine-

teenth century agriculture, Working paper (Tufts University" Medford,

Hassachuset ts) .

Coole)', Thomas F. aud Edward C. PreScott, 1973a, An adaptive regres"ion model,

J:nternation",l lkQnomi,c, Rev1<!w14,3i>4-371.

Cooley, Tho!\1asI. and Edwa,rd C.Preseott, 19}3b. Varyiugparall!,~ter regt',ession:

A theorl' andsome applieations, Anna1s ofECOnOmiC' amfSoCial Measurement

2, 463-473.

Cooper, R. L., 1972, The predictive performance of quarter1y economl1tric

models of the U. 5., Econometric Models of Cyelica1 Behavior, Studies in

Ineome and Wealth, Vol. 36 (National Bureau of Eeonomic Research, New

York).



61.

Duffy, W. J., 1969, Parameter variation in a postwar econometric model, unpub

lished Ph.D. dissertation, University of Ninnesota.

Fomby, T. B., R. C. HilI, and S. R. Johnson, 1978, An optimal property of prin

cipal components in the context of restricted least squares, Journal of

the American Statistical Association 73, 191-193.

Fomby, T. B. and S. R. Johnson, 1977, MSE evaluation of ridge estimates based

on stochastic prior information, Communications in Statistics A6(13),

1245-1258.

Greenberg, Edward, 1975, Minimum variance properties of principa1 camponent

regression, Journal of the American Statistical Association 70, 194-197.

Goldfeld, S. N. and R. E. Quandt, 1973, The estimation of structura1 shifts by

switi::hing regressions, Annals of Econorilic alid Soc;ia1 MeasulCementZ,47S

485.

Judge, G. G. and T. Takayama, 1966, Inequa1ity restrictions in regression

analysis, Journal of the American Statistical Association 61, 166-181.

Judge, G. G. and T. A. Yancey, 1978, Inequality restricted estimation under

squaJied error 10ss, worki"gpapi;lr no., .78-020, Cöllegeo.f l,üsilii;ss Adml.nis

tration., UniVelC$ity .of GeQ;J::gia.

Kelejian, H. H•., 1974, Random: palCameterS i1'\ a sinil);1tllneO)lSequation flCamework:

Identificlltion and estimation, Econometrica 42, 517-527.

Lucas, R., 1976, Economet;ric policy evaluation: A critique, Journal of Monetary

Economics I, Supplement 3, 19-46.

Mundl11k, Yair, 1978a, On the pooling of time series and cross section data,

Econometrica 46, 69-85.

Mundlak, Yair, 1978b, On valCiable coefficients models, Annals de L'Insee,

France.



, ,
\ 62.

%

Poirier, D. H., 1976, The eeonometries of struetura1 change (~lorth Holland

Pub1ishing Company, Amsterdam).

Rausser, G. C~, 1978, Model specification and use: Nonlinear parameters

versus nonlinear variables, unpublished r.ümeo. (Harvard Unive.rsity).

Rauss~r, G. C. and P. S. Laumas, 1976, The stabi1ity of denmnd for money in

Canada, Journal of Monetary Economies 2, 367-380.

Rosenberg, B., 19732., A survey of stoehastie parameter regression, Armals of

Eeonomie and Soeia1 Measuremen.t 2, 381-397.

Rosenberg, B., 1973b, The analysis of a cross seetion of time seriiasby sto

ehastical1y convergent parameter regression, Anna1s of Economie and

Soeia1 Measurement 2,399-428.

Singh, B., A. L. Nagar, N. K. Choudhry, and Raj. Baldev, 1976, On the esti

mation of strueturalchan'l?iia: A generalization of the random coeffieie"i:,:p'

regression model, International Economic Review 17, 340-361.

Swamy, P. A. V. B., 1970, Effieient inference in a random coefficient regres

sion model, Econometrica 38, 311-323.

Ze11ner, Arno1d, 1962, An efficient method of estioating seemingly unrelated

regressions and tests for aggregation bias, Journal of the Am",rican

Statistieal Association 62, 348-368.




