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The Function of Coordinated Neuronal Ensembles in the

Auditory Thalamocortical System

Congcong Hu

Abstract

Coordinated neuronal activity plays an important role in information processing and transmission

in the brain. With current research predominantly focuses on understanding the properties and

functions of neuronal coordination within cortical areas, however, whether coordinated neuronal

ensembles (cNEs) are unique to cortical local networks or extend to neuronal populations in other

brain regions, such as the auditory thalamus, remains unknown. Additionally, questions persist

regarding whether information carried by cNEs is effectively transmitted to downstream areas

compared to single neurons. In this study, we use single-unit recordings in female Sprague-Dawley

rats to investigate the properties and functions of groups of neurons exhibiting coordinated activity

in the auditory thalamus – the medial geniculate body (MGB). We reliably identify cNEs, which

are groups of neurons that fire synchronously, in the MGB. We demonstrate that cNEs in the MGB

have enhanced information encoding properties and are stable between spontaneous and evoked

activity. These MGB cNE properties are similar to what is observed in the cNEs in the primary

auditory cortex (A1), suggesting that ensembles serve as a ubiquitous mechanism for organizing

local networks, playing a fundamental role in sensory processing within the brain. Furthermore,

spikes from MGB neurons synchronized with other cNE members exhibit higher efficacy in driving

A1 neuron firing compared to spikes unrelated to cNE activities. This increased efficacy of cNE

spikes is target-specific and cell-type specific, rather than resulting in a general increase in the

firing rate across all A1 neurons. These findings support the concept of a neuronal ensemble as a

functional unit for encoding and transmitting information in the forebrain processing.
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Introduction

The question of how neurons encode and transmit information has long been a central focus in

systems neuroscience. Early studies concentrated on unraveling the firing patterns of individual

neurons, yet an evolving body of evidence, particularly from investigations into neuronal

correlations, underscores the pivotal role of the temporal relationship of spikes fired by multiple

neurons. An analysis of pairs of visual neurons in the lateral geniculate nucleus (LGN) revealed

that when synchronous spikes are considered separately from non-synchronous ones, significantly

more information about visual stimulus can be extracted (Alonso et al., 1996). Recordings in A1

also showed that continuous sounds can induce sustained increases in pairwise correlations

between neurons while firing rate modulation of individual neurons is only transient upon sound

arrival (Decharms and Merzenich, 1996). These findings underscored the encoding potential of

temporal coordination of neural activities, complementing the information derived from the firing

rate modulation of individual neurons.

While studies focusing on pairwise correlations have demonstrated the encoding potential of

neuronal pairs, it has become evident that such correlations might not sufficiently describe the

role neuronal coordination plays in certain behavioral conditions. A study in the visual cortex

showed that precise temporal coordination of more than two neurons carries information about

the task performance of the animal, but such information cannot be extracted from pairwise

correlation (Shahidi et al., 2019). In the context of coordinated activities in A1 columns, the

identification of cNEs with multiple neuron members through dimensionality-reduction

techniques (Lopes-dos Santos et al., 2013) led to the discovery that cNEs represent functionally

stable and connected local network configurations (See et al., 2018). Remarkably, cNE events

were found to convey more information about auditory stimuli than the spikes of individual

member neurons. As single neurons can encode multiple signals (Lankarany et al., 2019), the

enhanced information value of cNE events suggests a reduction in noise, isolating specific signals
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from a mixed pool. This leads us to propose that cNEs serve as physiological units for auditory

information encoding and transmission.

To validate cNE activities as viable neural codes, it is imperative to identify a biological

implementation capable of propagating cNE activities to downstream brain regions. It was

suggested that temporal coordination, which is the nature of cNE activity, in a source population

can increase the efficacy of neural signaling (Zandvakili and Kohn, 2015). This was supported by

evidence from the physiological properties of neurons, which make them sensitive to the timing

of synaptic inputs (Alonso et al., 1996; Usrey et al., 2000). Neuronal spiking typically results

from the integration of a range of spatiotemporally distributed synaptic inputs. The effectiveness

of a spike can be influenced by its temporal relationship with spikes fired by another neuron

connected to the same target (Usrey et al., 2000). While earlier studies provided valuable insights

into how coordination influences the spiking of target neurons (Usrey et al., 2000; Zandvakili and

Kohn, 2015), these investigations primarily focused on pairwise correlation and did not explore

higher-order coordination captured by cNE activities. Thus, it remains unclear how higher-order

coordination, as captured by cNE activities in a source population, influences their ability to

induce firing in target cells and how response properties of target cells are shaped by the

coordinated inputs.

In this study, we employ a combined analysis of coordinated activities among groups of neurons

and the response features of individual neurons to elucidate the functional consequences of

neuronal coordination. We conducted simultaneous recordings of neural activities from the

auditory thalamus (the medial geniculate body, MGB) and the A1. We consistently identified

cNEs in the MGB, representing groups of neurons exhibiting correlated firings. Shared key

characteristics were observed between cNEs in the MGB and A1, with both structures displaying

highly similar cNEs in spontaneous and stimulus-driven activities. Additionally, spikes associated

with cNEs (”cNE spikes”) were found to offer a more reliable reflection of auditory information

compared to random spikes from the same neurons. Notably, cNE spikes from MGB neurons
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demonstrated higher efficacy in driving A1 neuron firing than spikes unrelated to cNE activities

(“non-cNE spikes”). This increased efficacy of cNE spikes was exclusively observed in cases

where the A1 target neuron was narrow-spiking (NS), with no such effect observed in

broad-spiking (BS) A1 neurons. Furthermore, the heightened efficacy of cNE spikes was

target-specific, rather than resulting in a general increase in the firing rate across all A1 neurons.

These findings support that neurons cooperate in units of cNE to encode and transmit information

in the brain.
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Chapter 1: Basic Properties of Neuronal Ensembles in the

Auditory Thalamus

1.1 Introduction

The function of coordinated neuronal activity in cognitive processes has long been a subject of

interest in systems neuroscience (Konorski, 1948; Hebb, 1949). Initially, such activity was

difficult to observe experimentally. However, recent technological advancements in large-scale

recording, such as two-photon imaging and high-density multi-channel probes, have facilitated

extensive investigations into the properties and functions of coordinated neuronal firing, primarily

within the hippocampus and neocortex (Laubach et al., 2000; Baeg et al., 2003; Harris et al.,

2003; Bizley et al., 2010; Buzsáki, 2010; Bathellier et al., 2012; Oberto et al., 2022; Boucly et al.,

2022; Domanski et al., 2023). These studies have revealed temporal coordination among neurons

in several brain areas, shedding light on their potential roles in various cognitive processes, such

as perception, memory formation, and decision making. Indeed, neuronal ensembles have been

proposed as the fundamental units for information processing and transmission (Buzsáki, 2010;

Yuste, 2015).

In sensory systems in particular, temporal coordination among neurons has been proposed as a

mechanism to enhance information processing citepkreiter1996stimulus, dan1998coding,

See2018, See2021 and facilitate communication within and between brain regions (Zandvakili

and Kohn, 2015; Oberto et al., 2022). Neuronal coordination allows more reliable and specific

representation of stimuli (See et al., 2018; Yoshida and Ohki, 2020; See et al., 2021; Ebrahimi et

al., 2022), and considering neuronal coordination allows identification of emergent stimulus

encoding properties (Decharms and Merzenich, 1996; Shahidi et al., 2019). Additionally, elevated

coordination in neuronal activity in an output or sender area often precedes activity in a target or

receiver area (Zandvakili and Kohn, 2015). Thus, it is crucial to investigate the expression of cNE

structure and function at various stages along the sensory pathway.
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In the auditory system, A1 contains pairs of neurons with correlated activity (Brosch and

Schreiner, 1999; Eggermont, 2000; Atencio and Schreiner, 2013) as well as larger groups of

neurons with correlated firing. These groups contribute to the representation of auditory stimuli

(Kreiter and Singer, 1996; Miller and Recanzone, 2009; Ince et al., 2013; See et al., 2018). While

characteristics of coordinated activity within the cortex have recently been studied (Bathellier et

al., 2012; Chamberland et al., 2017; See et al., 2018, 2021), our understanding of the organization

and functional significance of neuronal ensembles in subcortical regions, such as the thalamus,

remain unknown. The thalamus is of particular interest since it is the gateway and a direct

intermediary between the peripheral sensory system and the cortex (Winer et al., 2005; Smith et

al., 2012; Bartlett, 2013). The auditory thalamus MGB and A1 are highly interconnected, with

structured connections linking neurons which share similar spectral and temporal response

properties (Miller et al., 2002; Bartlett and Wang, 2007). Considering the strong connections

between the thalamus and cortex, investigating the shared characteristics of neuronal ensembles

in both regions will help us better understand the role these ensembles may play in auditory

information processing and transmission, and sensory processing in general.

In this study, we aimed to identify and characterize coordinated neuronal ensembles (cNEs) in the

MGB. We reliably detected cNEs, defined as groups of neurons exhibiting temporally highly

coordinated activity, in the MGB. The applied detection method showed robustness, consistently

identifying cNEs across different time bin sizes. Importantly, we observed a high degree of

similarity between cNEs derived from spontaneous and evoked activity, suggesting that these

ensembles represent functional networks that can operate, to a substantial degree, independently

of specific sensory stimuli. Furthermore, cNEs in the MGB and A1 shared key characteristics. In

both structures, spikes associated with cNEs reflect auditory information more reliably than

random spikes from the same neurons. These findings support the hypothesis that cNEs serve as a

ubiquitous mechanism for organizing local networks and function as fundamental units for

sensory processing in the brain.
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1.2 Results

Auditory responses in MGB

We conducted extracellular recordings in the rat MGB (Figure 1.1A) using a 64-channel linear

probe, which allowed us to cover most of its span along the dorsal-ventral axis. To obtain the

tonal response properties of the recording sites, we presented pure tones of various frequencies

and intensities. In the MGB, we usually observed a gradient in the frequency preference of multi-

unit (MU) responses from low to high along the dorsal-ventral axis, which could vary gradually

(Figure 1.1A-i) or abruptly (Figure 1A-ii) depending on the probe’s location. Responses on most

channels in the tonotopic region exhibited clear frequency tuning (between the red lines in Figure

1.1A), which likely reflect activities in the ventral MGB, the primary input station to the A1.

We included all single units (SUs) from the MGB in our analysis after spike sorting, without

distinguishing between sub-regions although the vast majority was likely from the ventral nucleus

according to its tonotopic organization.

To estimate the spectrotemporal receptive fields (STRF) of SUs, we used a 15-minute dynamic

moving ripple (DMR) stimulus, which is a broadband noise with varying spectral and temporal

modulation (Escabı́ and Schreiner, 2002). The STRFs of MGB neurons also showed a clear

gradient in frequency preference from low to high along the dorsal-ventral axis (Figure 1.1B),

consistent with the MU responses to pure tones. We then examined the firing correlations

between pairs of simultaneously recorded SUs. MGB neuron pairs showed widely different

correlations in their firing activity, even if they were close in proximity and had similar STRFs.

For example, Neurons #1, #2, and #3 had similar receptive fields (Figure 1.1B). While neurons #1

and #3 showed correlated firing in both stimulus-driven and spontaneous activity, neurons #2 and

#3 showed no significant correlation in their activity despite similar STRFs (Figure 1.1C). This

diversity of correlation patterns, even among neurons with similar receptive fields, parallels what

was previously observed in the cortex (Brosch and Schreiner, 1999; Eggermont, 2000; Atencio

and Schreiner, 2013; See et al., 2018; Mogensen et al., 2019; Wahlbom et al., 2021). Although
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the role of neuronal coordination in information processing in the cortex has been extensively

proposed and studied (Paninski et al., 2004; Bizley et al., 2010; Buzsáki, 2010; Carrillo-Reid et

al., 2015; See et al., 2018), less is known about the organization of neuronal ensembles in

subcortical regions. Therefore, we aimed to identify clusters of neurons that exhibit consistent

synchronized firing in the MGB and compared the properties of these ensembles with those in A1.

Identifying groups of neurons with coordinated firing in MGB

To identify cNEs, i.e., groups of neurons with synchronous firing, we performed a combined

principal- and independent-component analysis (PCA-ICA) (Lopes-dos Santos et al., 2013; See et

al., 2018). The procedure for detecting cNEs in a population of neurons is demonstrated in Figure

1.2A using a recording of spontaneous activity from the MGB (Figure 1.2A). Among the 20

isolated single units in the recording, some pairs of neurons had highly correlated firing with each

other, as shown in dark red in the correlation matrix, while others showed low correlation (Figure

1.2A-i). We performed PCA on the correlation matrix of 10ms-binned spike trains, resulting in 20

eigenvalues and corresponding eigenvectors or principal components (PCs) (Figure 1.2A-ii).

These eigenvalues describe the contribution of each PC to the variance in the neural population

activity. To determine the significance of the patterns extracted by PCA, we compared the

eigenvalues to a threshold drawn based on the Marchenko-Pastur distribution (Peyrache et al.,

2010; Lopes-dos Santos et al., 2013) (Figure 1.2A-ii). In this example recording, we observed

four significant eigenvalues above the threshold, indicating the presence of four detectable cNEs

in the recorded population. Although PCA efficiently extracts ensemble patterns, it has some

limitations due to its variance maximization framework. When two ensembles account for similar

variance in the data on their corresponding axis, the first PC will represent the average of the two

instead of an individual ensemble. This problem is even more pronounced when ensembles share

neurons. To overcome these limitations, we applied ICA to the subspace spanned by the

significant PCs (Figure 1.2A-iii). This approach is not constrained by the orthogonality

requirement of PCA, allowing for a more precise identification of individual cNEs. After the

PCA-ICA procedure, we obtained the weights of neurons on the axes that define cNEs in the
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neural population, which were color-coded as columns in Figure 1.2A-iii. Neurons were

considered members of a cNE if their independent component (IC) weights were higher than what

would be expected from an even weight contribution from all neurons (Figure 1.2A-iv). The

activity resulting from co-activation of cNE members can be obtained by projecting the spike

matrix on the corresponding IC weights of the cNE. To determine the significance of cNE activity

magnitude, we generated a null distribution of the cNE activity values by circularly shuffling

spike trains and set the significance criteria at 99.5% (Figure 1.2A-v). For example, when cNE #1

was active, multiple member neurons (2-5 out of 6) fired together. The combined PCA-ICA

approach provided a useful framework to investigate the organization and function of coordinated

neuronal activity in the MGB.

To provide evidence that cNEs captured groups of neurons with correlated firing, we compared

the correlations of 10ms-binned spike trains based on their cNE membership. Pairs of neurons

that participated in the same cNE (“member pairs”) exhibited significantly higher correlations

compared to pairs of neurons that did not share membership in any cNE (“non-member pairs”)

(Figure 1.2B). To examine the correlation between member and non-member pairs at a finer

timescale, we cross-correlated the spike trains using 1ms bins. The correlation among cNE

member pairs was significantly higher compared to non-member pairs within the [-50, 40] ms lag

window (red-shaded area in Figure 1.2C, bottom left). These results provided evidence that

groups of neurons with coordinated firing exist in the MGB, and that their coordination was

captured by the PCA-ICA procedure, resulting in the identification of cNEs.

Variability in cNE identity for different bin sizes

The temporal frame used to identify neuronal ensembles plays a critical role in shaping our

understanding of their nature and function (Buzsáki, 2010). To investigate how different choices

of timescale affect the identification of cNEs, we calculated cNEs using various spike train bin

sizes, ranging from 2ms to 160ms (Figure 1.3). Some cNEs showed consistent IC weights across

different time bin sizes, with a high correlation to IC weights obtained using 10ms bins (Figure
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1.3A-i). Other cNEs could only be consistently identified using smaller time bin sizes but

deviated from those when assessed with larger bin sizes (Figure 1.3A-ii). We matched cNEs

calculated using different bin sizes to evaluate their similarity (Figure 1.3B). With only small

change in the bin size, the cNEs identified were highly similar. For example, 96% of cNEs

identified using 10ms bins had a significant match with 20ms cNEs. However, when compared to

cNEs calculated with larger differences in bin sizes, their identities could vary substantially. For

example, 43% of 10ms cNEs did not show a significant match with 160ms cNEs (Figure 1.3B).

The remaining 57% of 10ms cNEs that significantly matched 160ms cNEs exhibited high

correlation (>0.6) in their IC weights (Figure 1.3C-i). Moreover, the majority of significantly

matched cNEs shared more than half of their neuron membership. Nonetheless, approximately

25% of 10ms cNEs had no common members with the 160ms cNEs (Figure 1.3C-ii). There was

no significant difference in the firing rate of MGB neurons participating in 10ms and 160ms cNEs

(Figure 1.3D). In summary, small variations in time bin sizes have a limited effect on cNE

identity. However, using large time bin sizes to identify cNEs, such as 160ms, may result in the

loss of half or more of the cNEs identified using small bin sizes, such as 10-20ms.

In cases where differences in cNE membership arise due to different bin sizes, we investigated the

firing correlations between neurons that had shifted in or out of the ensemble. We compared the

membership of neurons in cNEs identified using 10ms and 160ms bin sizes (“10ms cNEs” and

“160ms cNEs”, Figure 1.3E) and categorized neurons in each cNE as the following: members in

both 10ms and 160ms cNEs, members only in the 10ms cNE, or members only in the 160ms

cNE. Neurons sharing memberships in both 10ms and 160ms cNEs (stable members) had positive

correlations in their firing (Figure 1.3E-i). Neurons only in 160ms cNEs were positively

correlated with stable members, although the correlation was significantly weaker in the [-17, 10]

ms window (Figure 1.3E-ii) compared to the correlation among stable members (Figure 1.3E-i).

Furthermore, some members of 10ms cNEs were not identified as members in 160ms cNEs.

These neurons showed no significant difference in their correlations with stable members (Figure

1.3E-iii) compared to the correlation among stable members (Figure 1.3E-i). Therefore, using
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wider bin sizes to identify cNEs results in neurons with weak correlations being included in the

ensemble, as well as neurons with strong correlations being omitted.

Variability in cNE structures across spontaneous and evoked activity

Several studies have shown that cortical neuronal ensembles have stable structures across

spontaneous and stimulus-driven activity, suggesting a consistent local network organization

utilized in processing stimulus information (Jermakowicz et al., 2009; Luczak et al., 2009; See et

al., 2018; Filipchuk et al., 2022). To investigate if this property also exists in cNEs in the MGB,

as was observed in A1 (See et al., 2018), we recorded continuous segments of neural activity in

the absence of sound (spontaneous, hereafter ’spon’) and during the presentation of the DMR

stimulus (’dmr’). We divided each activity type into two segments and detected cNEs in each

segment separately. We then compared the stability of the cNEs within and across stimulus

conditions, measured by the correlation of IC weights between adjacent segments (Figure 1.4A

and B). We observed that while some cNEs exhibited high stability across stimulus conditions,

with IC weights correlation comparable to that within the same stimulus condition (Figure

1.4C-i), others showed structures that were less stable across stimulus conditions compared to

within a stimulus condition (Figure 1.4C-ii). Using null distributions generated by circularly

shuffling spikes, we determined the significance of the IC weight correlations and found that both

examples in Figure 1.4C were significantly stable across stimulus conditions, although one was

slightly more stable than the other (Figure 1.4D). In MGB, within spontaneous or stimulus-driven

activity, around 80% of cNEs exhibited stable structures across adjacent activity blocks (Figure

1.4E). Significantly fewer cNEs (54.8%) were stable across stimulus conditions than within a

stimulus condition (spon vs cross, p = 0e-4; dmr vs cross, p = 6e-4; spon vs dmr, p = 1.0,

permutation test with Bonferroni correction). The results provide evidence for the stability of

cNEs in the MGB, during both spontaneous and stimulus-driven activity, although fewer cNEs

exhibit stable structures across different stimulus conditions than within the same stimulus

condition.
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To test the possibility of false positive detection of cNEs, we generated shuffled data on each

segment by circularly shifting spike trains to disrupt their temporal correlations. We then applied

the cNE detection algorithm to the shuffled data using the same criteria as for the real data. Our

analysis revealed a drastically lower number of cNEs identified in shuffled segments (real data vs.

shuffled data, spon1: 3.2 ± 0.9 vs 0.2 ± 0.3; spon2: 3.1 ± 0.7 vs 0.3 ± 0.4; dmr1: 3.1 ± 0.9 vs 0.1

± 0.2; dmr2: 3.2 ± 1.1 vs 0.1 ± 0.1, mean ± standard deviation (SD)) (Figure 1.4F), suggesting

that the chance of false positive detection of cNEs is quite low. Furthermore, any cNEs identified

in the shuffled data did not exhibit the same stability across stimulus conditions observed in real

data (Figure 1.4E). In summary, our findings indicate that the detection of cNEs in the MGB is

reliable and not susceptible to false positives. Moreover, the properties of cNEs we observe, such

as their stability across stimulus conditions, are genuine and not artifacts of random data.

cNE properties in MGB

We determined some basic structural properties of MGB cNEs. The spontaneous activity in 34

MGB recordings revealed 115 cNEs with 3.4 ± 0.9 cNEs per penetration. More cNEs were

observed in penetrations that captured a higher number of isolated single units (Figure 1.5A). The

mean cNE size was 4.3 ± 1.5 members, dependent on the number of isolated neurons (Figure

1.5B). Of the 407 neurons isolated in MGB, the majority (78.6%) belonged to a single cNE,

11.5% did not belong to any cNE, and 9.8% belonged to multiple cNEs (Figure 1.5C).

Next, we investigated whether cNE members were physically and functionally closer to each

other than non-member pairs of neurons. The pairwise spatial distance of cNE members was

significantly smaller than that of non-member pairs of neurons in MGB (Figure 1.5D-i).

Moreover, the span of cNEs, defined as the longest pairwise distance among all members, was

shorter than that of randomly selected groups of neurons in the recording (Figure 1.5D-ii). The

tuning of cNE members was also closer to each other, as the difference in the best frequency (BF)

between cNE member pairs was smaller than that of non-member pairs (Figure 1.5E-i). The BF

span of cNEs, defined as the largest difference in BF among all members, was smaller than that of
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randomly selected groups of neurons (Figure 1.5E-ii). Our results demonstrate that cNEs in the

MGB are composed of neurons that are physically and functionally closer to each other than

non-member pairs, suggesting a pattern of local circuit organization as well as local functional

congruence.

cNEs enhance stimulus information encoding

Synchronization of neuronal spikes in the cortex has been found to enhance information encoding

about a stimulus compared to the participating neurons alone (Dan et al., 1998; Atencio and

Schreiner, 2013; See et al., 2018). This is consistent with the multiplexed nature of an individual

spike train, whereby spikes representing distinct stimulus aspects are mixed but can be separated

based on their synchrony with other neurons (Lankarany et al., 2019; See et al., 2021). To

investigate whether spikes from individual neurons that participate in cNEs also exhibit

differential coding compared to the neuron’s entire spike train, we compared the STRFs

calculated using all the spikes emitted by a neuron to STRFs only based on the subset of spikes

that contributed to cNE events (’cNE spikes’; Figure 1.6A). The spike trains were subsampled to

ensure an equal number of spikes across conditions. Our analysis revealed that the STRFs of cNE

spikes exhibit stronger excitatory and inhibitory fields compared to the STRFs of all spikes from

the same neuron, as evidenced by the larger peak-trough difference (PTD) of the cNE STRFs

(Figure 1.6B-i), which quantifies the difference between the largest and smallest value in the

STRF. Given that PTD only considers two extreme values in the STRF, we further evaluated the

reliability of cNE spikes relative to all spikes in encoding the sound features represented by their

STRFs by calculating the mutual information (MI) between the stimulus and the spikes. Our

results demonstrate that cNE-spike STRFs have higher MI than STRFs constructed from all

spikes (Figure 1.6C-i).

To demonstrate that the increased information conveyed by cNE spike STRFs was not simply

because cNEs integrate signals over multiple neurons, thus must enhanced information through

population encoding, we compared STRFs derived from cNE member and non-member neurons.
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First, we compared the multi-unit STRFs of cNE member neurons (cNE group STRF) with those

of a neuronal group devoid of neurons sharing membership from any cNE (non-cNE group

STRF). The cNE group STRFs exhibited a significantly higher MI than that of the non-cNE

STRFs, although no significant difference in PTD was observed (Figure 1.6B-ii and C-ii). As the

group STRFs did not take spike synchrony into account, we further compared cNE spikes and

coincident spikes of a cNE member. The coincident spikes refer to spikes that occurred within a

10ms window relative to firing of other neurons not sharing membership with the neuron under

examination. Both the PTD and MI of cNE spike STRFs were significantly higher than that of the

coincident spike STRFs (Figure 1.6B-iii and C-iii).

Collectively, these findings suggest that cNE spikes can enhance information processing by

increasing the signal-to-noise ratio and promoting more consistent encoding of certain stimulus

features compared to including all spikes from the neuron. Furthermore, the enhanced

information encoding of cNEs is not a trivial result of population encoding but rather hinges on

the identity of cNE members and synchronous spike events.

MGB and A1 cNEs have similar properties

The properties and functions of cNEs have previously been explored within A1 (See et al., 2018,

2021), whereas investigations into cNEs in subcortical regions are limited. Hence, we aim to

determine whether the properties of cNEs in the MGB differ substantially from those observed in

A1 cNEs, or if they share similarities. To target A1, we used a 2-shank probe with 64 channels.

The MU responses to pure tones from the two shanks of the probe exhibited similar frequency

tuning, as the shanks sampled nearby cortical columns (Figure 1.7A). The responses on each shank

showed small variation in their frequency preference along the depth of the probe, as neurons in the

same cortical column have consistent characteristic frequencies across the active middle and deep

cortical layers (Atencio and Schreiner, 2010; Merzenich et al., 1975). Much like cNEs in MGB,

cNE spike STRFs in A1 exhibited higher PTD and MI compared to all spike STRFs (Figure 1.7B-i

and C-i). Compared to A1 neurons, MGB neurons displayed significantly higher STRF PTD (all

13



spike STRF PTD, p = 3.1e-42; cNE spike STRF PTD, p = 8.6e-36) and mutual information (all

spike STRF MI, p = 1.9e-25; cNE spike STRF MI, p = 4.2e-22). We did not observe, however, a

significant difference between MGB and A1 cNEs regarding their gain in cNE spike STRF PTD

and MI values over that of member neuron spiking (Figure 1.7B-ii and C-ii).

Addressing concerns of potential false positive detection in A1, we compared the number of cNEs

detected on real and shuffled activities. A substantially smaller number of cNEs were detected

on shuffled data compared to real data (real data vs. shuffled data, spon1: 4.6 ± 1.5 vs 0.9 ± 0.6;

spon2: 4.2 ± 1.2 vs 1.1 ± 0.6, dmr1: 4.3 ± 1.5 vs 0.9 ± 0.6, dmr2: 4.2 ± 1.2 vs 1.0 ± 0.8, mean ±

SD) (Figure 1.7D). Moreover, A1 cNEs were mostly stable across stimulus conditions, similar to

MGB cNEs, whereas false positive cNEs did not show such stability (Figure 1.7E). The similarity

between MGB and A1 cNEs in their stability across stimulus conditions and enhanced information

encoding provides support for the concept of cNEs serving as a universal mechanism for neuronal

organization and information processing.

cNE formation does not rely on strong slow oscillations

Slow-wave oscillations, characterized by alternating periods of large and sustained network

activity (UP states) and neural quiescence (DOWN states), are frequently observed in the cortex

and thalamus during anesthesia (Steriade et al., 1993; Contreras et al., 1996; Sanchez-Vives and

McCormick, 2000; Hasenstaub et al., 2007; Chauvette et al., 2011; Neske, 2016). To quantify the

level of slow oscillations in the recording and their potential influence on cNE properties, we used

two measurements: silence density and the coefficient of variation (CV) of the MU firing rate.

Silence density represents the proportion of recording time when no spike was fired by the neural

population, which is characteristic of the DOWN state in slow oscillations. In brains without

strong slow oscillations, the population of neurons fires continuously, resulting in low silence

density. The MU firing rate CV measures the level of variation in the firing rate of the MU, which

is high for neurons going through UP-DOWN state cycles, but small for neural populations with

less synchronized oscillatory activity. Recordings with high silence density and high MU firing
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rate CV showed prominent slow oscillations, with epochs of synchronous firing of neurons and

epochs of quiescence with no spikes (Figure 1.8A-i). In contrast, recordings with low silence

density and low MU firing rate CV did not exhibit strong slow oscillations, displaying relatively

stable and continuous firing (Figure 1.8A-ii). Recordings with moderate silence density and MU

firing rate CV exhibited moments of elevated firing, although not as synchronized as in recordings

with strong oscillations (Figure 1.8A-iii). By utilizing silence density and MU firing rate CV, we

were able to differentiate recordings without strong slow oscillations from those with strong slow

oscillations.

The relationship between cNEs and slow oscillations was investigated by applying the cNE

detection algorithm to recordings without strong oscillations in response to DMR during

15-minute recordings. Recordings exhibiting low silence density and low CV of the MU firing

rate were selected to ensure the absence of strong slow oscillations (n(animals): MGB = 8, A1 =

18; n(recordings): MGB = 13, A1 = 10). To determine whether cNEs were solely a byproduct of

slow oscillations, we compared the number of cNEs detected in these recordings against the

expected false positive rate. We found a significantly higher occurrence of cNEs in activity

characterized by low silence density and low MU firing rate CV in both MGB (n(cNE) = 3.9 ±

1.0, mean ± SD; p = 2.4e-4, Wilcoxon signed-rank test) and A1 (n(cNE) = 5.2 ± 1.9, p = 0.002)

when compared to shuffled data (as in Figure 1.5). This supports the notion that cNEs are not a

byproduct of slow oscillations.

Slow oscillations in thalamic and cortical firing rates are commonly observed and can be related

to synchronized and desynchronized states of the system (Metherate and Ashe, 1993; Steriade

et al., 1993; Cowan and Wilson, 1994; Sanchez-Vives and McCormick, 2000; Hasenstaub et al.,

2007). However, the effect of firing rate changes on the information carried by cNEs is not known.

Therefore, we tested whether cNE spikes exhibit enhanced information encoding in recordings

without strong oscillations in response to the stimulus. The results showed that cNE spike STRFs

have higher MI compared to all spikes in both MGB and A1 (Figure 1.8B), indicating that enhanced

15



information encoding is not specific to synchronized states under slow oscillations. Additionally, a

subset of recordings did not show strong slow oscillations in either stimulus-driven or spontaneous

activity (n(animals): MGB = 4, A1 = 6; n(recordings): MGB = 5, A1 = 8). We also examined

the stability of cNEs across and within stimulus conditions in these recordings. The majority of

cNEs were stable both within and across stimulus conditions (Figure 1.8C). In summary, cNEs

exist in both MGB and A1 without the presence of strong slow oscillations in neural activity. Their

enhanced information encoding and stability across stimulus conditions are not due to a special

behavior of neurons in synchronized states under slow oscillations.

Synchrony-based cNEs are distinct from rate-based neuronal groups

Previous studies have proposed a manifestation of ensemble coding based on neuronal groups

with co-varying firing rate (Wills et al., 2005; Niessing and Friedrich, 2010; Aschauer et al.,

2022). Similar to such a study (Aschauer et al., 2022) we observed groups of neurons (referred to

as ’response modes’, Figure 1.9C-E) that jointly increased their firing rates in response to various

pure tones. With shifts in stimulus frequency, these groups appear to show either step-wise

(Figure 1.9E) or more gradual response shifts (Figure 1.9C). Step-wise changes of group

composition have been interpreted as a sign of nonlinear properties reflecting the formation of

ensembles (e.g., Aschauer et al. (2022)). However, an alternative interpretation is that the

observation of distinct ’response modes’ simply reflects co-activation due to the overlap between

receptive fields along the tonotopic axis. The observed seemingly step-wise transition from one

’response mode’ to the next with changes in stimulus frequency likely reflects best-frequency

discontinuities in the tonotopic organization (see our Figure 1.1A; Imaizumi et al. (2004)).

Additionally, assessing co-activation based on firing rate alone is only a very limited basis for the

identification of neurons that functionally cooperate. This is especially noteworthy when using

larger bin-widths, as is used in calcium imaging approaches. A more stringent criterion, that of

tight temporal synchrony, as utilized here, can help differentiating between neuron groups based

on coincidental co-activation (’response modes’) and groups based on synchronous co-activation

(’coordinated ensembles’) (Figure 1.9F). This preliminary analysis revealed that neurons grouped
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by firing rate alone do not appear to substantially coincide with neurons grouped based on

temporally aligned co-activation.

1.3 Discussion

This study aimed to investigate whether the auditory thalamus (MGB) contains cNEs with

enhanced information properties, similar to those observed in A1. Our results confirm the

presence of cNEs in the MGB, with consistent compositions across various, but especially

smaller, bin sizes and stable structures across different stimulus conditions. Importantly,

coordinated spikes among cNE member neurons exhibit higher reliability and convey more

stimulus-related information than individual neurons. Neuronal groups formed by shared

firing-rate changes to stimuli appear not to be congruent with cNEs. Furthermore, our findings

demonstrate that cNEs are not the result of false positive detection or byproducts of slow state

oscillations in anesthetized animals. These findings provide support for the notion that

synchronized neuronal ensembles represent a general principle of local organization for

information processing in the auditory forebrain.

cNEs are ubiquitous in local circuit organization

Neuronal ensembles were proposed as fundamental units for information processing in the brain

(Hebb, 1949; Buzsáki, 2010),, supported by evidence of precise temporal coordination in cortical

columns (Atencio and Schreiner, 2013; See et al., 2018; Lankarany et al., 2019). Cortical

columns consist of neurons with fairly homogeneous properties maintained through intracortical

processing and shared afferent input (Mountcastle, 1997). This raises the question of whether

cNEs are unique to cortical organization or represent a general organizational and information

processing unit along sensory pathways. In the auditory system, reciprocal connectivity exists

between the MGB and A1, with convergence of frequency tuning and spectral and temporal

modulation preferences, preserving topographic organization in both regions (Miller et al., 2001,

2002; Bartlett and Wang, 2007; Read et al., 2011). Therefore, investigating neuronal coordination

in the MGB, where neurons possess similar properties but differ in their organizational and
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cytoarchitectonic patterns from A1 (Winer, 2010), can provide insights into whether cNEs are

general organizational principles of local circuits or specialized units specific to the cortical

circuit composition.

We conducted recordings of neuronal activity across multiple iso-frequency layers of the MGB

and were able to reliably detect cNEs in MGB (Figure 1.2). Neurons within the same cNE

displayed closer spatial proximity and shared more similar tuning properties (Figure 1.5D and E),

indicating functional coherence within cNEs. It is important to note that our recordings were

limited to relatively small populations of 10-30 neurons due to the techniques employed.

Therefore, the confinement of spatial and frequency tuning properties within cNEs may vary

when larger populations with hundreds or thousands of neurons are recorded.

We further demonstrated that the identification of cNEs relies on the temporal coordination among

neurons. When the original temporal order among neurons was disrupted through circular shuffling

of spike trains, a significantly lower number of cNEs were detected in both the MGB and A1

(Figure 1.4F and 1.7D). Moreover, the few false positive cNEs that were identified did not exhibit

the properties observed in cNEs identified in the real data, such as stability across different stimulus

conditions (Figure 1.4E and 1.7E). These findings provide strong support for the critical role of

temporal coordination in the formation and characterization of cNEs in the auditory thalamus and

cortex.

Time scale of cNEs

Previous studies have investigated neuronal synchrony and coordination across widely differing

timescales, ranging from a few milliseconds (Lankarany et al., 2019; Shahidi et al., 2019;

El-Gaby et al., 2021) to several hundred milliseconds (Miller et al., 2014; Tremblay et al., 2015;

Filipchuk et al., 2022). The selection of a specific timescale in these studies was influenced by

various factors, including the temporal resolution of the recording methods used, the targeted

functional timescale, and the inter-neuronal distance under investigation. In the context of

auditory processing, where information changes rapidly within tens of milliseconds (Rosen, 1992;
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Lewicki, 2002), we specifically chose a temporal resolution of 10ms. This choice aligns with the

timescale at which auditory information operates and holds relevance for synaptic integration.

Selecting an appropriate timescale is crucial for future investigations into the functional role of

cNEs in synaptic transmission within the auditory thalamocortical system.

We have demonstrated the robustness of cNE identification across different time bin sizes (Figure

1.3), which can be attributed to the sparse nature of neural activity. Since most synchronized

neuronal firing occurs at frequencies below 10 Hz (O’Connor et al., 2010), the choice of time

windows, whether 10ms or 20ms, has minimal impact on the observed correlations among

neurons. However, it is important to note that cNEs identified with longer time resolutions

(hundreds of milliseconds) may significantly differ from those identified with shorter resolutions

(tens of milliseconds). Specifically, cNEs identified with larger time bins may falsely include

’synchronous’ events from bursting or rebound activity rather than from an initial period that

dominates the transmission of stimulus-triggered information. Long synchronization windows

may also include neurons displaying weaker synchronization within short time windows, while

potentially de-emphasizing neurons with high temporal precision in synchrony (Figure 1.3D).

Hence, the chosen temporal resolution influences the composition and properties of cNEs,

emphasizing the importance of selecting the appropriate timescale for studying neural ensembles.

Stability of cNEs for spontaneous and evoked activity

Our study revealed that a significant proportion of cNEs (55% in MGB and 76% in A1) maintained

a consistent composition during both spontaneous and sensory-evoked neural activity (Figure 1.4E

and 1.7E). This suggests that cNEs generally represent stable configurations within local circuits

that can manifest independently of stimulus-driven synchrony. These findings align with previous

research demonstrating similarities between patterns observed in spontaneous and stimulus-driven

activity (Luczak et al., 2009). Moreover, the similarity between MGB and A1 cNEs indicates

that functional network units are not limited to cortical organization but likely exist as a common

modality across multiple stages of the sensory pathway.
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cNEs enhance stimulus encoding

Considering that cNEs were observed in both spontaneous and stimulus-driven activity, some argue

that they are merely a reflection of background activity and not involved in stimulus encoding

and even potentially impairing it (Zohary et al., 1994; Abbott and Dayan, 1999; Jermakowicz et

al., 2009). Contrary to this notion, our observations revealed that cNE spikes exhibit a higher

signal-to-noise ratio and convey more information per spike when compared to the entire spike

train (Figure 1.6B and C). This suggests that cNE events are more stimulus-selective than the

contributing neurons (See et al., 2021) and exhibit a more reliable response to the stimulus features

represented by the cNE STRF. The stable connectivity pattern revealed by spontaneous, intrinsic

activity likely reveals aspects that have been imprinted by extensive experience and the behavioral

relevance of the associated functional preferences.

Additionally, we observed an enhanced information encoding in cNE groups and cNE spikes when

compared to non-cNE groups or coincident spikes, with control of the total number of neurons in

the groups (Figure 1.6B and C). This observation suggests that the information increase relies on

the coordination among cNE member neurons, rather than being a simple result of independent

population coding (deCharms, 1998; Hatsopoulos et al., 1998).

Correlated spikes can enhance the transmission of salient auditory information by synchronously

converging onto their targets (Stevens and Zador, 1998; Zandvakili and Kohn, 2015).

Additionally, neurons exhibit a multiplexed nature of stimulus encoding, where spikes from the

same neuron can carry information related to distinct stimulus aspects (Walker et al., 2011;

Lankarany et al., 2019; See et al., 2021). The function of cNEs may involve selectively choosing

spikes from member neurons that are most relevant for a specific target information and

enhancing information propagation while excluding functionally irrelevant spikes of the same

neurons. This mechanism significantly improves both the robustness and capacity of information

encoded within a population of neurons (Walker et al., 2011; See et al., 2021). Thus, the presence

of cNEs and their coordination within a neuronal population can facilitate efficient information
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processing and transmission in the auditory system. Future studies involving simultaneous

recordings from two stations along the auditory pathway will be necessary to test this hypothesis.

cNE formation does not depend on strong slow oscillations

Slow oscillations are commonly observed in neural activity during anesthesia (Chauvette et al.,

2011; Dasilva et al., 2021) and have been shown to influence stimulus encoding (Pachitariu et al.,

2015). Concerns have been raised regarding whether cNEs are solely a result of

anesthesia-induced synchrony. However, our research findings refute this notion. We focused on a

distinct time scale of synchronization unrelated to anesthesia-induced slow oscillations and

successfully detected cNEs in recordings without strong slow oscillations. These cNEs exhibited

stable structures and enhanced information properties, indicating that they are not solely a

byproduct of anesthesia-induced synchrony. While we ruled out slow oscillations as the primary

force underlying cNE formation, it is important to consider their potential interaction with other

oscillatory activity, such as gamma rhythms (Oberto et al., 2022). Further research is needed to

explore the interplay between cNEs and different types of brain oscillations.
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1.4 Figures
Figure 1.1

Figure 1.1: In vivo recordings in rat MGB. (A) Left: Schematic of the recording setup in the
MGB using a linear 64-channel probe. (i) and (ii): two electrode penetrations with multi-unit (MU)
recordings from the MGB. Left: Stacked firing rate (color coded) of pure-tone frequency response
areas. Right: Characteristic frequencies (CF, the frequency at which the response threshold is the
lowest). The red dashed lines indicate the potential boundaries of the ventral MGB. (B) Example
STRFs of SUs from a recording in the MGB. Unit numbers 1 to 3 indicate the positions and STRFs
of pairs of neurons whose CCGs are plotted in (C). (C) Example CCGs from two pairs of neurons
(#1 - #3 and #2 - #3). The black bars represent the CCGs of stimulus-driven activity, while the
grey lines represent the CCGs of spontaneous activity. The baseline is estimated by averaging the
counts in 5ms windows at the shoulders of the CCGs and is indicated by dashed red lines.
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Figure 1.2

Figure 1.2: Groups of neurons with coordinated activities exist in MGB. (A) Procedures for
detecting cNEs in a thalamic penetration. (i) Correlation matrix of spike trains. (ii) Eigenvalues
of the correlation matrix shown in (i). The dashed red line represents the 99.5th percentile of the
Marčenko-Pastur distribution, which was used as the significance threshold for eigenvalues. The
top four eigenvalues are significant and represent the number of detected cNEs. (iii) IC weights
of neurons for each cNE. The green dots represent neurons that are members of a cNE. (iv) cNE
members (red stems) are neurons with IC weights exceeding the threshold (1/

√
N ) shown as grey

areas. (v) Example of cNE activation. Top: Activity trace of cNE #1. The red line shows the
threshold estimated using Monte Carlo methods. The peaks crossing the threshold indicate cNE
events when multiple cNE member neurons fire jointly. Bottom: Spike raster of neurons, with red
ticks indicating spikes that contribute to instances of cNE events, which were referred to as cNE
spikes. Shaded areas show member neurons. (B) Correlations (10ms bin) of neuron pairs that were
both members of the same cNE (members) or neuron pairs that were not members of the same cNE
(non-members) in MGB (p = 6.9e-235, Mann–Whitney U test). (C) Z-scored CCGs (1ms bin) of
member pairs (left) and non-member pairs (right) in MGB. Top: Stacked CCGs ordered by the
peak delay. Bottom: Average of the data above (mean ± SD; shaded area: p <0.01, permutation
test, shuffling the members/non-members labels).
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Figure 1.3

Figure 1.3: Variability of IC weights across different time bin sizes. (A) Example of two
MGB cNEs whose member neurons are either consistently identified across different bin sizes
(i) or only detected using smaller bin sizes (ii). (B) Proportion of significantly matched cNEs.
Using different bin sizes as reference bin sizes (row), we calculated the proportion of cNEs on
different bin sizes that have a significantly matched cNE on the reference bin size. The red square
highlights the proportion of 10ms cNEs that have significant matches with 160ms cNEs and is
further analyzed in (C). (C) Left: Correlation of IC weights of 10ms cNEs with the most correlated
IC weights of 160ms cNEs. Right: Proportion of shared membership between 10ms cNEs with
their most correlated 160ms cNEs. (D) Firing rate of member neurons in 10ms-only cNEs, 10ms
cNEs without a significant match with 160ms cNEs, and 160ms-only cNEs (p = 0.57, Kolmogorov-
Smirnov test). (E) Top: Schematic of membership of neurons for different bin sizes. Bottom: Mean
z-scored CCGs (1ms bin, mean ± SD) between (i) member neurons in both 10ms and 160ms cNEs,
(ii) member neurons only in the 160ms cNE and member neurons in both 10ms and 160ms cNEs
(shaded area: p <0.01, permutation test, shuffling neuron pair labels of i and ii), and (iii) member
neurons only in the 10ms cNE and member neurons in both 10ms and 160ms cNEs (no time bin
showed significant difference from i)
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Figure 1.4

Figure 1.4: cNEs identified in spontaneous activity are mostly preserved in stimulus-driven
activity. (A) Diagram illustrating the recording sequence and partitioning of spontaneous
(yellow/orange) and DMR-evoked (dark green/light green) activity. The four blocks allowed the
comparison of cNEs obtained within stimulus conditions and across stimulus conditions. (B)
Absolute correlation values of the IC weights calculated on adjacent blocks from an MGB
recording including the two examples (i and ii) shown in (C). (C) Example IC weights on adjacent
blocks with high (i) and moderate (ii) correlation values across stimulus conditions. The dashed
lines show the threshold to determine the membership of the neurons. (D) The two cNE examples
in (C) have significantly matched IC weights across stimulus conditions. See method for how the
null distribution was generated. The significance threshold for the correlation values was set at p
= 0.01 (red dashed line, 99.5th percentile of the null distribution). The brown (i) and blue (ii) solid
lines represent the two examples in (C). (E) Correlations of IC weights identified on adjacent
activity blocks for real (red) and circularly shifted data (pink). The hollow histograms show all
correlations of matched cNEs on adjacent blocks; the histograms show significant correlations
based on the test shown in (D). The inset numbers show the percentage of cNEs with significantly
matched IC weights on adjacent blocks. The triangles show the median of all IC weight
correlations (real data vs shuffled data: spon, p = 5.6e-36; dmr: p = 1.3e-28; cross, p = 2.0e-22,
Mann–Whitney U test with Bonferroni correction). (F) Number of cNEs detected using real and
circularly shifted activities on the four recording blocks (spon1, p = 4.7e-10; spon2, p = 4.7e-10;
dmr1, p = 4.7e-10; dmr2, p = 4.7e-10, Wilcoxon signed-rank test with Bonferroni correction).
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Figure 1.5

Figure 1.5: Properties of cNEs in MGB. (A) Number of cNEs detected in any given penetration
increases with the number of recorded neurons. (B) cNE size increases with the number of recorded
neurons. (C) The number of cNEs a neuron belongs to. (D) Spatial distribution of cNE members.
(i) Pairwise distance of neurons in the same cNE (colored bar) or neurons not in the same cNE
(black line). (ii) Spatial span of cNE members (colored bar) and random groups of neurons with the
same number of neurons as cNEs (black line). (E) Frequency tuning distribution of cNE members.
(i) Pairwise difference in the best frequencies (BF) of neurons. (ii) The largest difference in the BF
among cNE members or random groups of neurons. (Mann–Whitney U test).
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Figure 1.6

Figure 1.6: MGB cNEs can refine sound features encoded by member neurons. (A) Two
example STRFs of MGB neurons calculated with all spikes (left) and cNE spikes (right). All
spikes are subsampled to have an equal number as cNE spikes. (B) (i) STRF PTD for cNE spikes
or all spikes of neurons. (ii) STRF PTD for groups of cNE members or non-members. (iii) STRF
PTD for cNE spikes and coincident spikes of a neuron. The coincident spikes refer to instances
where a neuron’s firing occurs within a 10ms time frame of another neuron’s firing in a group of
non-member neurons. This group is designed to match the number of neurons present in the cNE.
(C) (i) MI between stimulus and cNE spikes or all spikes of neurons. (ii) STRF MI for groups of
cNE members or non-members. (iii) STRF MI for cNE spikes and coincident spikes of a neuron.
(Wilcoxon signed-rank test).
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Figure 1.7

Figure 1.7: MGB and A1 cNEs have similar properties. (A) Left: schematic of the recording
setup in A1 using a 2-shank probe with 64 channels. Right: MU responses to pure tones as in
Figure 1.1A. (B) (i) PTD of STRFs calculated using all spikes or only cNE spikes from a neuron
in A1. (ii) Difference between cNE spike STRF PTD and all spike STRF PTD in MGB and A1 (p
= 0.72, Mann–Whitney U test). (C) (i) MI of STRFs calculated using all spikes or only cNE spikes
from a neuron in A1. (ii) Difference between cNE spike STRF MI and all spike STRF MI in MGB
and A1 (p = 0.92, Mann–Whitney U test). (D) Number of cNEs detected using real and circularly
shifted activities on the four recording blocks in A1, as shown in Figure 1.4F for MGB. (spon1:
p = 6.1e-5, spon2: p = 6.1e-5, dmr1: p = 6.1e-5, dmr2: p = 6.1e-5, n = 17 recordings, Wilcoxon
signed-rank test with Bonferroni correction). (E) Correlations of IC weights identified on adjacent
activity blocks for real (blue) and circularly shifted data (light blue) in A1. The hollow histograms
and histograms show the distribution of correlations and significant correlations as in Figure 1.4E.
The triangles show the median of IC weight correlations (spon: p = 1.4e-33, dmr: p = 4.6e-34,
cross: p = 4.8e-28, Mann–Whitney U test with Bonferroni correction).
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Figure 1.8

Figure 1.8 cNE events do not rely on slow oscillation in neural activity. (A) Silence density and
firing rate (FR) CV of population activity in response to DMR. Some recordings show strong slow
oscillation in population activity with pronounced silent period between highly active moments (i),
while others show little (ii) or moderate (iii) levels of slow MU firing rate oscillation. Recordings
with silence density <0.4 and MU firing rate coefficient of variance <0.8 (dashed lines) did not
show prominent slow oscillation in population activity and were included in (B). (B) STRF MI with
all spikes and cNE spikes in recordings without prominent slow oscillations (Wilcoxon signed-
rank test). (C) Correlation values of cNE IC weights on adjacent activity blocks from recordings
with no prominent slow oscillations in both spontaneous and stimulus-driven activities. The inset
numbers show the percentage of cNEs with significantly matched IC weights on adjacent blocks
in MGB (red) and A1 (blue). The hollow histograms and histograms show all correlation values
and significant correlation values with the same presentation scheme as in Figure 1.4E.
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Figure 1.9

Figure 1.9 MGB cNEs are not congruent with firing-rate based neuronal groups. (A)
Schematic of a recording in the MGB. (B) Left top: The waveform of pure tone stimuli that vary
in frequency and intensity over a 3s interval, Left bottom: Stimulus frequency sequence in the 3s
interval. The pure tones cover frequencies from 0.5 to 32 kHz in 0.29 octave steps and sound
levels from 0 to 70 dB in 10 dB steps (50ms, 5ms ramps). Each frequency-sound level
combination was presented 10 times in a pseudo-random order, with an inter-stimulus interval of
250ms. Right: Population response pattern to pure tones at 3.2 kHz. The response of each neuron
to a pure tone was measured by the number of spikes within 50ms after stimulus onset. The
response amplitude was normalized by the largest response in each neuron. Trials were ordered
by sound level from left to right, and neurons were ordered by depth from top to bottom. (C)
Population response patterns in an example recording to pure tones. The colored bars below
correspond to the neuron groups in (D), reflecting similar frequency response preferences. (D)
Location and BF of MGB neurons in the example recording. (i) Depth of neurons from the
surface of the cortex. The open circles indicate MGB neurons with significant responses to pure
tones; the dots indicate MGB neurons without significant responses. The significance was
determined by comparing the number of spikes fired in the 50ms window before and after
stimulus onset (Wilcoxon signed-rank test, p <0.01). (ii) Best frequencies of MGB neurons with
significant responses to pure tones. The best frequency was calculated by summing responses to
pure tones at the same frequency and different sound levels. The frequency with the largest
response followed is the best frequency of the neuron. The background color corresponds to
neurons that co-vary in their firing rate to the pure tones (see Panel E). (E) Correlation of
population activity in response to pure tones of different frequencies. Colored squares represent
the frequency range shared by a group of neurons as in (D). (F) MGB cNEs based on spontaneous
activities. Multiple cNEs consist of neurons without significant responses to pure tones, indicated
in gray, and neurons with different frequency preferences, indicated in different colors as in (D).
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Chapter 2: Auditory Thalamocortical Transmission Enhanced

by Ensemble Activity

2.1 Introduction

Neurons in the forebrain and other brain structures have been shown to be highly interconnected

(Braitenberg and Schutz, 1991; Anderson et al., 2007). As a consequence, the activity of

individual neurons can be strongly correlated with some of its neighbors, and this coordinated

activity is thought to underlie information processing throughout the brain by supporting various

processes, such as perception, memory formation, and decision making (Bathellier et al., 2012;

Gulati et al., 2014; Kiani et al., 2014; Jacobs et al., 2015; DeNardo et al., 2019). These neuronal

ensembles, defined as groups of neurons with reliable and precise synchrony, have been proposed

as a fundamental unit for information processing in the brain (Harris, 2005; Buzsáki, 2010; Yuste,

2015). In the auditory thalamus and cortex, the activity of cNEs has been shown to be stable

functional constructs (See et al., 2018, 2021). They are present in both spontaneous and evoked

activity and encode more information about an auditory stimulus than single neurons or random

groups of simultaneously recorded neurons (Averbeck et al., 2006; Montijn et al., 2016;

Lankarany et al., 2019; See et al., 2021).

For ensemble encoding of stimuli to serve as a neural code, however, it is necessary that the

encoded signal be effectively transmitted to downstream brain areas, enabled by connectional

convergence of the ensemble members on a target neuron. Previous studies have illuminated

some aspects of the relationship between sensory thalamic neurons and their target cells in cortex.

Examining the extent to which auditory cortical receptive fields are directly inherited from their

thalamic inputs showed that some cortical receptive field properties are faithfully propagated

whereas others are significantly transformed (Miller et al., 2001). Furthermore, thalamic spikes

that drive the auditory cortex are generally more selective for spectrotemporal stimulus features

than spikes from the same neuron that do not drive the cortex (Miller et al., 2001). This suggests
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that not every spike of a thalamic spike train in response to a time-variant stimulus encodes the

same information, or, alternatively, is ineffective and requires convergent, coinciding input to

drive the cortical activity. Thalamocortical synapses have generally low efficacy (Bruno and

Sakmann, 2006). It has been shown, however, that closely timed homosynaptic and

heterosynaptic thalamic inputs can be summed to strongly excite cortical cells (Alonso et al.,

1996; Roy and Alloway, 2001; Swadlow and Gusev, 2001; Bruno and Sakmann, 2006). This

suggests that synchronized, heterosynaptic ensemble input can provide a stronger drive to excite a

target neuron and, thus, provides more robust information transmission. However, due to the

difficulty in conducting simultaneous recordings across multiple brain areas, there is limited

experimental support for the effects of ensemble activity on the transmission of signals to

downstream neurons.

To investigate this, we identified pairs of functionally connected neurons in the MGB and A1

based on their spontaneous activities. Notably, spikes from MGB neurons in synchrony with other

members in the same cNE (“cNE spikes”) exhibited higher efficacy in driving A1 neuron firing,

compared to spikes unrelated to cNE activities (“non-cNE spikes”). The increased efficacy of cNE

spikes were only observed when the A1 target neuron was narrow-spiking but not when the A1

target neuron was broad-spiking. In addition, the increased efficacy of cNE spikes were specific

to particular A1 target neurons, rather than resulting in a general increase in the firing rate across

all tested A1 neurons. These findings support the notion of neuronal ensembles with coordinated

activity as functional units that enhances information encoding as well as transmission in the brain.

2.2 Results

Efficacy of Functional Connectivity from MGB to A1.

We performed 125 pairs of simultaneous recordings in the rat MGB and A1 (Figure 2.1A). STRFs

were assessed using DMR, a broadband noise with varying spectral and temporal modulation

rates over time. To identify a potential functional connection, we cross-correlated the spike trains

from all simultaneously recorded MGB and A1 neurons. Functionally connected thalamocortical
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neuronal pairs are characterized by a sharp peak with short latency (1-5ms) in their

cross-correlograms (CCGs) (Figure 2.1B-i) (Tanaka, 1983; Clay Reid and Alonso, 1995; Miller et

al., 2001). Typically, functionally connected MGB and A1 neuron pairs demonstrate some degree

of overlap in the frequency preference and a short delay of cortical versus thalamic responses

(Figure 2.1B-ii) (Miller et al., 2001). We identified 68 pairs of MGB and A1 neurons as

functionally connected based on their spontaneous activity, comprising 46 unique MGB neurons

and 31 unique A1 neurons, from 12 recordings in 7 animals.

To quantify the efficacy of spikes from an MGB neuron in driving an A1 neuron firing, we used

the ratio of “causal spikes”, i.e., those thalamic spikes that were closely followed by a cortical

spike, to the total number of thalamic spikes. The CCG expresses the number of A1 spikes in

their temporal relationship to thalamic spikes. From the CCG, we can identify the subset of A1

spikes potentially resulting from thalamic spikes, i.e., the causal MGB spikes. The count of causal

spikes was determined within the 4ms range around the CCG peak, excluding the baseline

estimated from the 4ms range immediately before and after the peak. On average, approximately

5% (median: 4.67%, mean: 5.97%, SD: 5.25%) of spikes from a given MGB neuron led to a

spike in a connected A1 neuron during spontaneous activity (Figure 2.1C). Among the 68

neuronal pairs, 15 pairs also exhibited a significant peak in their CCG during stimulus driven

activity. There was no significant difference in efficacy resulting from spontaneous and stimulus

driven CCGs (p = 0.80, Mann–Whitney U test. median: 3.97%, mean: 6.04%, SD: 5.91%).

However, in pairs with significant CCGs under both conditions, the spontaneous efficacy (median:

6.14%, mean: 9.22%, SD: 8.60%) was significantly higher than the stimulus-driven efficacy (p =

0.012, Wilcoxon signed-rank test). This difference may stem from a bias toward neurons with

higher spontaneous firing rates, as the significance of the CCG peak requires a substantial number

of events. Indeed, both MGB and A1 neurons in the identified functional connections exhibited

higher spontaneous firing rates than stimulus-driven firing rates (MGB: p = 0.002, A1: p = 0.022,

Wilcoxon signed-rank test) (Figure 2.1D).
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To verify that functionally connected thalamocortical neuronal pairs show similar response

preferences as reported in previous studies (Clay Reid and Alonso, 1995; Miller et al., 2001), we

compared the best frequencies of neurons with significant STRFs (Figure 2.1E). Among the 15

pairs of MGB and A1 neurons exhibiting significant CCGs in both spontaneous and

stimulus-driven activity, 11 pairs showed significant STRFs in both MGB and A1 neurons in

response to DMR. These pairs demonstrated an average absolute difference of 0.33 (±0.28)

octaves between the best frequencies of the MGB and A1 neurons. Among the remaining 53

pairs, 38 exhibited significant STRFs in both the MGB and A1 neurons despite lacking a

significant stimulus-driven CCG. These pairs of neurons displayed a comparable difference in

their best frequencies (0.53 ± 0.69 octaves, p = 0.83, Mann-Whitney U test). In general,

functionally connected MGB and A1 neurons had similar but rarely identical frequency

preferences confirming previous observations (Miller et al., 2001).

MGB neurons with synchronous activities are more likely to connect to the same A1 neuron.

The functionally connected neuronal pairs, along with other neurons within the same recordings,

presented an opportunity to investigate the relationship between activity correlation in the MGB

and their connectivity to A1 neurons. To mitigate confounding factors arising from

stimulus-driven synchrony, our analysis focused solely on spontaneous activities. It has long been

proposed that cortical neurons primarily operate as coincidence detectors, sensitive to the

simultaneous arrival of spikes from multiple inputs within a brief temporal window (König et al.,

1996; Salinas and Sejnowski, 2001; Roy and Alloway, 2001; Bruno and Sakmann, 2006; Kumar

et al., 2010). This implies a necessity for high correlated firing among input neurons to drive a

common target firing. Consider three example neurons in our recordings (Figure 2.2A-i), where

neuron #1 and neuron #2 share a common A1 target, while neuron #1 and neuron #3, despite

similar frequency tuning (Figure 2.2A-ii), do not. We observed synchronized firing between #1

and neuron #2, in contrast to only a small correlation between neuron #1 and neuron #3 (Figure

2.2A-i). Further analysis of pairwise correlation among MGB neurons at a 10ms resolution,

chosen to align with the synaptic integration window of most cortical neurons (Léger et al., 2005;
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D’amour and Froemke, 2015), revealed a significantly higher correlation among MGB neurons

sharing a common A1 target compared to those without a common A1 target (Figure 2.2A-iii). To

reduce the chance of falsely categorizing a neuronal pair as not sharing an A1 target due to

limited extracellular recording sampling, only MGB neurons with identified A1 neuron targets

were included in this analysis. Moreover, only recordings with at least one pair of neurons sharing

an A1 target were considered (9 out of 12). The observation of high correlation among neurons

connected to the same target supports the notion that correlation among input neurons plays a

crucial role in enhancing transmission robustness and directing information flow to downstream

neurons.

To identify groups of neurons with correlated firing in the MGB, we employed a dimensionality

reduction technique (Lopes-dos Santos et al., 2011; See et al., 2018), resulting in the detection of

cNEs (See et al., 2018). Consider again three neurons in an MGB recording (Figure 2.2B-i and

ii): two neurons within the same cNE (“within cNE”), neuron #1 and #2, display synchronized

firing, whereas two neurons belonging to the same cNE (“outside cNE”), #2 and #3, exhibit little

correlation in their activity. To validate that cNEs accurately capture groups of neurons with

correlated firing in the MGB, we compared the pairwise correlation of MGB neurons based on

whether they were within or outside cNEs (Figure 2.2B-iii). The analysis revealed a significantly

higher correlation among MGB neurons within the same cNE compared to those located outside

cNEs. This result affirms that cNEs effectively describe groups of neurons with synchronous

activities in the MGB.

Given that MGB neurons sharing an A1 target exhibit higher correlation and that cNEs delineate

groups of MGB neurons with correlated firing, the question arises whether two neurons identified

as members in the same cNE, displaying correlated firing, are more likely to connect to the same

A1 neuron compared to MGB neurons not in the same cNE (Figure 2.2C). To address this, we

compared the probability of pairs of randomly drawn MGB neurons connecting to the same A1

neuron, conditioned on whether the two neurons are members of the same cNE or not (Figure
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2.2C-i). The result shows that MGB neurons in the same cNE are indeed more likely to connect

to the same A1 neuron (Figure 2.2C-ii). The observation that cNE members tend to converge onto

the same A1 target lends support to the structural foundation for cNEs to function as information

transmission units.

cNE spikes are more efficacious than non-cNE spikes at driving A1 neuron firing.

Prior research has identified cNEs as a potential information encoding substrate (See et al., 2018,

2021), yet the extent to which the cNE-encoded information effectively reaches downstream

neurons remains uncertain. If neurons are responsive to cNE activities, they can extract

information carried by cNE events, which have been shown to be more informative than the

spikes from individual neurons. Expanding on the understanding that cNE events are more

informative, we investigated whether spikes related to cNE events are more likely to induce firing

in downstream neurons. Take the example of an MGB cNE (Figure 2.3A-i), where two member

neurons are connected to the same A1 neuron, and the A1 neuron receives input from both MGB

cNE members located in layer 4/5 of the primary auditory cortex (Figure 2.3A-ii). We

constructed CCGs between the cNE spikes of the cNE member neurons and the A1 neuron spike

train and compared them to the CCGs of non-cNE spikes of the same neurons (Figure 2.3A-iii).

We observed that both cNE members connected to the A1 neuron exhibited higher efficacy with

their cNE spikes than with non-cNE spikes. This pattern holds true at a population level as well

(Figure 2.3B-i), providing support for the role of cNEs in facilitating information transmission.

To further validate the finding that cNE spikes, compared to non-cNE spikes of the same neurons,

are more effective at driving A1 neuron firing, we conducted rigorous control analyses. First, we

down-sampled the cNE spikes and non-cNE spikes to the same number, and the result remained

consistent (Figure 3.3B-ii). This ensures that the observed higher efficacy of cNE spikes is not

simply a consequence of the different numbers of spikes involved in generating the two CCGs.

Second, to mitigate the impact of intracellular spike interactions, e.g., due to bursting (Usrey et

al., 2000; Swadlow and Gusev, 2001), we excluded double-spikes (inter-spike interval <20ms)
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from our analysis (Figure 2.3B-iii). Even after considering only single spikes fired by MGB

neurons, cNE spikes exhibited higher efficacy than non-cNE spikes. Lastly, to address the

concern that the heightened efficacy of cNE spikes might reflect a population effect of

synchronized activities in the MGB, we compared the efficacy of cNE spikes and spikes from the

same neuron that are coincident with neurons outside the cNE (Figure 2.3B-iv). The results

consistently demonstrated that cNE spikes have significantly higher efficacy compared to

coincident but non-cNE spikes. These findings underscore the effectiveness of cNEs as

information transmission units, emphasizing their potential role in orchestrating synchronized

activities in the MGB for enhanced downstream neural processing.

The transmission efficacy of MGB cNE spikes is dependent on the target cell types.

There exists a diversity of cell types in the neocortex (Noback, 1985; Markram et al., 2004).

Using trough-to-peak duration (TPD) of the spike waveform as a measure, A1 neurons can be

categorized as NS, putative GABAergic inhibitory interneurons, or BS, putative glutamatergic

excitatory pyramidal neurons (McCormick et al., 1985; Connors and Gutnick, 1990; Nowak et al.,

2003; Barthó et al., 2004) (Figure 2.4A). Given that pyramidal neurons and interneurons exhibit

markedly different electrophysiological properties (Geiger et al., 1995; Hu et al., 2014), local

circuit organizations (Dantzker and Callaway, 2000; Markram et al., 2004; Feldmeyer et al.,

2018), and functions (Johnston et al., 2009; Atencio et al., 2008; Tsunada et al., 2012), we sought

to determine if the enhanced efficacy of cNE spikes over non-cNE spikes depends on the cell type

of the A1 target neuron.

Our results reveal that when an A1 neuron is NS, cNE spikes exhibit significantly higher efficacy

than non-cNE spikes (Figure 2.4B). In addition, cNE spikes show higher efficacy than coincident

but non-cNE spikes for NS A1 target neuron, as shown in Figure 2.3B-iv (p = 0.003, Wilcoxon

signed-rank test). This effect, however, is not observed when the target is a BS A1 neuron.

Given that NS neurons tend to fire in bursts, it follows that MGB cNE spikes might trigger more

bursts in A1 neurons. This occurrence is less probable in BS neurons, explaining why MGB
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cNE spikes only exhibit higher efficacy towards NS A1 neurons but not BS neurons. To explore

this possibility, we further investigated whether the increased efficacy of cNE spikes for NS A1

neurons results from a higher probability of MGB cNE spike in triggering A1 neuron firing, or

a higher number of A1 spikes triggered by each MGB cNE spike compared to non-cNE spikes

(Figure 2.4). Comparing the proportion of MGB cNE and non-cNE spikes followed by A1 neuron

firing within the 1-5ms causal response window, the results showed that significantly more cNE

spikes are followed by A1 neuron firing compared to non-cNE spikes in NS neurons but not when

the A1 target is BS (Figure 2.4C-i). Furthermore, both cNE spikes and non-cNE spikes exhibit

higher efficacy when the target neuron is NS compared to when it is BS.

We next compared the number of A1 spikes following an MGB spike when there is at least one

A1 spike (Figure 2.4C-ii) to test if MGB cNE spikes, compared to non-cNE spikes, are followed

by more than one A1 spike. We found, however, no significant effect of cNE and non-cNE spikes

on the number of A1 spikes following an MGB spike, although more A1 spikes follow each MGB

spike when the target neuron is NS compared to BS. These results show that MGB cNE spikes are

more likely to trigger firing in A1 neurons, although each cNE spike does not result in more A1

spikes compared to non-cNE spikes. Thus, the tendency of NS neurons to burst does not provide an

adequate explanation for the different effect of MGB cNE spikes on different types of A1 neurons.

As NS neurons typically have a higher firing rate than BS neurons (Connors and Gutnick, 1990),

we explored whether the observed higher efficacy of cNE spikes for NS targets is simply a result

of differences in the firing rates of the two neuron types. Regression analysis revealed no clear

relationship between the difference in cNE and non-cNE spikes and the firing rate of the target

neuron (Figure 2.4D). Another possibility considered was that NS neurons might integrate inputs

from more MGB neurons than BS neurons, thereby requiring synchrony among MGB neurons to

effectively drive activities in NS A1 neurons. To explore this, we measured the strength of MGB

and A1 neuron connectivity by the contribution, calculated as the ratio of the number of causal

MGB spikes to the total number of spikes in the A1 neuron. We found, however, no significant
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difference in the individual MGB neuron’s contribution to A1 neurons based on whether the A1

neuron is BS or NS (Figure 2.4E).

Studies have shown that preceding activities in the cortex affect the ability of thalamic inputs to

drive cortical responses (Briggs and Usrey, 2007). To test whether cortical activities preceding

spikes from the MGB can account for the cell-type-specific effects of MGB cNE spikes on A1

neuron firing, we compared the number of A1 spikes around MGB spikes based on A1 cell type

(Figure 2.4F-i). Our analysis revealed that NS A1 neurons indeed demonstrated elevated activity

both before (-150 to -50 ms, peak at -70ms) and after (50 to 90 ms, peak at 60ms) MGB spikes,

exceeding two standard deviations of the baseline level. In contrast, BS A1 neurons did not exhibit

similar deviations from the baseline activity level before or after MGB spikes. Comparing NS and

BS neurons, we observed that the normalized activity level in NS neurons exceeded that in BS

neurons 130 to 50 ms before MGB spikes. This distinction is further validated by the observation

that the firing rates of NS A1 neurons within 200ms before MGB spikes were significantly higher

than their average firing rate, whereas there was no significant difference in the firing rate of BS

A1 neurons before MGB spikes compared to the average firing rate during the entire spontaneous

activity. Additionally, we observed that while NS A1 neurons exhibited elevated activity around

both cNE (-140 to -40 ms, peak at -70ms; 50 to 140 ms, peak at 70ms) and non-cNE (-150 to -50

ms, peak at -70ms; 50 to 90 ms, peak at 60ms) MGB spikes, the A1 activity level was elevated

around cNE spikes than non-cNE spikes, 120 to 50 ms before and 60 to 80 ms after MGB spikes.

Furthermore, both A1 and MGB neurons showed higher firing rate before cNE spikes compared

to non-cNE spikes. These findings indicate that elevated network activity in the thalamocortical

circuit prior MGB cNE events may contribute to increased excitability of NS A1 neurons, rendering

them more susceptible to MGB inputs than BS neurons.

In summary, these results emphasized for the main thalamocortical pathway the intricate interplay

between neuronal coordination of source neurons and its impact on distinct cell types of target

neurons. Furthermore, they provide additional evidence that the higher efficacy of cNE spikes is
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not merely a consequence of a generalized population effect.

The Divergence of MGB cNE information towards distinct A1 targets.

It has been established that an individual neuron can represent different aspects of a stimulus

stream through multiplexing of information content and/or information codes (McCLURKIN and

Optican, 1996; Chase and Young, 2008; Zuo et al., 2015; Madar et al., 2019; Cariani and Baker,

2022). One hypothesis regarding the enhanced information content of cNEs is that they respond

only to selected portions of a multiplexed information content of its member neurons in response

to an ongoing stimulus stream (See et al., 2021). This can be accomplished by tagging a relevant

information portion from spike trains via coincidence with other cNE neurons and, consequently,

directing them toward distinct downstream targets (See et al., 2021). If this hypothesis holds

true, we anticipate that cNE spikes from a given MGB neuron would be more effective at driving

firing in one particular A1 target neuron but not in another A1 neuron that is also targeted by this

neuron but not by other members of this cNE. Additionally, an MGB neuron can be associated

with more than one cNE, i.e., its spikes can be synchronized with one or the other cNE but not

simultaneously with both. As a consequence, this neuron should carry diverse information to

the different A1 target neurons of its two cNEs. With our experimental methodology, it was not

feasible to obtain a sufficient sample of cNE members in the MGB that target more than one

cortical neuron. Consequently, a statistically appropriate test of this hypothesis was not possible.

A few individual examples, however, shall illustrate support for these hypotheses (Figure 2.5 and

2.6).

In one recording, we observed activities from an MGB cNE where multiple cNE members were

connected to the same A1 neuron. Notably, one of these cNE members also targeted a second

A1 neuron (Figure 2.5A-D). The A1 target neuron receiving input from multiple cNE members

is likely the most efficacious receiver of the MGB cNE information, and we term this A1 neuron

the “cNE-target” (Figure 2.5E). We hypothesized that cNE spikes should exhibit higher efficacy

than non-cNE spikes at driving firing in the “cNE-target”. Indeed, in the example MGB cNE,
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where both neuron #11 and #14 are connected to the ”cNE-targeted”, their cNE spikes showed

higher efficacy than non-cNE spikes. Additionally, however, neuron #11 was also connected to

another A1 neuron, while no other cNE members displayed functional connectivity to this A1

neuron (Figure 2.5F). We consider this A1 neuron to be a ”non-cNE-target”. If the increased

efficacy of cNE spikes were simply an effect of enhanced population activities, we would expect

all A1 neurons to respond more actively to cNE spikes than non-cNE spikes. However, if cNEs

function as low noise information encoding and transmission channels, we would expect that the

”non-cNE-targeted” A1 neuron should not receive the information conveyed by the cNE, and thus,

cNE spikes should not exhibit higher efficacy at driving firing in that A1 neuron. The result aligns

with the notion that cNEs function as information encoding and transmission channels, as cNE

spikes from neuron #11 did not show higher efficacy at driving firing in the ”non-cNE-target” A1

neuron.

In another recording, we captured activities of an MGB neuron that was a member of two distinct

MGB cNEs. Additionally, we identified an A1 neuron that was functionally connected to that

MGB neuron (Figure 2.6A). For one of the two cNEs, multiple members were connected to the

target A1 neuron, thus, serving to convey the information carried by that cNE. This cNE is referred

to as the ”A1-targeting” cNE (Figure 2.6B). cNE spikes from the “A1-targeting” cNE exhibited

higher efficacy than non-cNE spikes at driving the activity of the A1 target. On the other hand,

one member of the ”A1-targeting” cNE also participated in a second cNE in the MGB, whose

other members, however, did not converge on this A1 target neuron. This cNE is referred to as

the ”non-A1-targeting” cNE (Figure 2.6C). The cNE spikes of the ”non-A1-targeting” cNE did not

show higher efficacy at driving the A1 neuron firing. Thus, although originating from the same

neuron, only spikes associated with the ”A1-targeting” cNE, but not spikes that were related to

the ”non-A1-targeting” cNE, exhibit higher efficacy at driving the A1 target neuron. Combined,

this exemplified that a given MGB neuron can robustly deliver distinct aspects of its multiplexed

information content to different target neurons.
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Overall, these results provide further evidence supporting the hypothesis that cNEs serve as

information encoding and transmission units. Synchronization between spikes of cNE member

neurons enhances the signal-to-noise ratio and, additionally, provides a more robust transmission

to specific downstream targets. This is especially the case for narrow-spiking cortical targets. The

observed higher efficacy of cNE spikes compared to non-cNE spikes in driving firing in

“cNE-target” A1 neurons, coupled with the absence of such increased efficacy in

”non-cNE-target” A1 neurons, suggests a role for cNEs in selective information transmission.

These findings underscore the potential significance of cNEs, as opposed to individual neurons, as

conduits for enhanced encoding and more reliable transmission of information within neural

circuits.

2.3 Discussion

This study aimed to investigate whether cNEs in the MGB can transmit spikes to A1 more

efficaciously than individual neurons. Our results confirm that cNE spikes from MGB neurons

demonstrate higher efficacy in driving A1 neuron firing in a target-specific manner. This

enhanced efficacy of cNE spikes, compared to non-cNE spikes in MGB, cannot be attributed to

intra-neuronal spike interactions or coincident activities from random groups of neurons.

Furthermore, our findings highlight that the enhanced efficacy of cNE spikes was observed

specifically when the target A1 neuron is NS. These findings provide additional experimental

support for an ensemble neural code paradigm for information curation and transmission in the

central sensory system.

MGB cNEs enhanced propagation of information from MGB to A1 in a target specific way.

Ensemble activities are prevalent in various brain regions, playing pivotal roles in stimulus

encoding, learning, memory, and animal behavior (Laubach et al., 2000; Baeg et al., 2003; Bizley

et al., 2010; Bathellier et al., 2012; Oberto et al., 2022; Boucly et al., 2022; Domanski et al.,

2023). While these studies offer compelling evidence for neuronal ensembles as fundamental

units of brain activity, the effectiveness of information transmission from these ensembles to
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downstream neurons remains elusive. Despite evidence indicating increased activities in the

receiving region in response to ensemble activities in the input region (Boucly et al., 2022), the

absence of identified functionally connected neurons poses a challenge in discerning whether

elevated activity reflects global population changes or exhibits target specificity in ensemble

activity reception.

Here we demonstrate that cNE spikes from MGB neurons, in comparison to non-cNE spikes,

exhibit greater efficacy in driving activities in functionally connected A1 target neurons (Figure

2.3). The enhanced efficacy of cNE spikes cannot be ascribed to coincident spikes from random

neuron groups (Figure 2.3B-iv). Moreover, there is specificity in the relationship between MGB

cNEs and A1 neurons, with cNE spikes from a particular MGB cNE proving more efficacious

when targeting specific A1 neurons (Figure 2.6). Similarly, an A1 neuron demonstrates greater

responsiveness to cNE spikes from specific MGB cNEs, but not all MGB cNEs (Figure 2.7).

These findings underscore the targeted efficacy of cNE spikes in driving downstream neuronal

activities, providing experimental support for an ensemble neural code paradigm for information

transmission in the central sensory system.

Cell type specific response to cNE activities.

An intriguing finding emerged as we observed that not all A1 neurons responded similarly to MGB

cNE spikes. While cNE spikes from the MGB proved more efficacious than non-cNE spikes when

the target A1 neuron was narrow-spiking, this enhanced efficacy was not observed in broad-spiking

target A1 neurons (Figure 2.7A).

Inspired by prior studies highlighting the impact of post-synaptic activity patterns on

thalamocortical communication (Briggs and Usrey, 2007), we investigated the activity of both BS

and NS A1 neurons around MGB inputs (Figure 2.4F). We noted that NS neurons, in contrast to

BS neurons, exhibited an elevated activity level 150 to 50 ms prior to MGB spikes. Furthermore,

both NS A1 neurons and MGB neurons displayed higher activity levels before cNE spikes

compared to non-cNE spikes. This heightened MGB and A1 NS activity preceding cNE events
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suggests a potential role of thalamocortical circuit activities in the formation of MGB cNEs and

the responsiveness of A1 NS neurons to cNE inputs.

Previous studies showed that cNE activities can be phase-locked to delta (4Hz) and theta (8Hz)

oscillations (Oberto et al., 2022). Notably, interneurons consistently exhibited phase-locking to

these oscillations, while principal neurons did not. We speculate that that brain oscillations play a

pivotal role in the sensitivity of NS A1 neurons to MGB cNE spikes. However, the precise

mechanism through which brain oscillations impact thalamocortical communication—whether

through pre- or post-synaptic mechanisms, or a combination of both—remains undetermined. It is

plausible that brain oscillations induce changes in the response threshold of A1 neurons, such as

alterations in UP/DOWN states (Hay et al., 2021). Alternatively, the phase-locking of MGB cNE

activities to brain oscillations may enhance A1 neuron firing, as A1 neurons integrate

synchronized spikes from MGB cNE.

While categorizing A1 neurons based on spike waveforms provided insights into the effect of

cNEs on different cell types, it’s worth noting that principal neurons and interneurons may have

overlapping waveform properties (Sukman and Stark, 2022). Future experiments employing opto-

tagging could offer clarity on how different cell types might respond to ensemble activities in

distinct ways.

Ensemble model for information convergence and divergence

The auditory thalamus and cortex are functionally highly interconnected (Miller et al., 2002;

Bartlett and Wang, 2007). One thalamic neuron can extend its axon to cover a large area of the

sensory cortex (de Venecia and McMullen, 1994). In addition, one cortical locus can receive input

from multiple thalamic regions (Brandner and Redies, 1990; Huang and Winer, 2000). The

complexity of this network prompts inquiries into the mechanisms governing information

conversion and transmission. Previous research has demonstrated that cortical receptive fields can

undergo direct inheritance from the thalamus, be constructed from smaller inputs, and be

assembled through the cooperative activity of neuronal ensembles (Miller et al., 2001). Here, we
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propose an ensemble model to describe the functional convergence and divergence of sensory

information in the auditory thalamocortical system (Figure 2.7B). Unlike conventional

approaches that focus on individual neurons, our model considers neuronal ensembles as the

primary carriers of sensory information. Within this framework, each neuron functions as a

multiplexed entity, capable of encoding multiple sensory features (See et al., 2021). Neurons that

share encoding patterns collectively form an ensemble, firing synchronously when a common

feature is detected in the stimulus. The information pertaining to such a sound feature is then

propagated to cortical neurons connected to multiple members of the cNE. Importantly, a single

neuron can participate in multiple ensembles, thereby is able to channel different aspects of its

multiplexed sound information to diverse downstream targets. Consequently, while a single

thalamic neuron may be connected to multiple cortical neurons, the response of each cortical

neuron is subject to variation due to the influence of other ensemble members. Our ensemble

model offers a comprehensive understanding of the intricate processes involved in the processing

and transmission of sensory information within the auditory thalamocortical system.
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2.4 Figures
Figure 2.1

Figure 2.1 Identifying functional connectivity from MGB to A1. (A) Schematics of the
recording setup in the MGB and A1. MGB: linear 64-channel probe; A1: either a two-shank
64-channel probe (left) or a linear 64-channel probe (right). (B) An example pair of functionally
connected neurons in the MGB and A1. (i) Cross-correlograms (CCGs) of the spike trains of a
neuronal pair for spontaneous activity (top) and stimulus-driven activity (bottom; DMR). CCGs
with a peak crossing the threshold within 1-5 ms after MGB spikes were considered significant.
The number of A1 spikes caused by MGB spikes was determined by the spikes within the 4ms
window centered at the CCG peak, minus the spikes within each of the two 2ms windows
flanking the 4ms central window. The synaptic transmission efficacy from the MGB neuron to the
functionally connected A1 neuron was determined by the ratio of causal spikes and the total
number of MGB spikes fired (in %). (ii) STRFs and spike waveforms of the MGB and A1
neurons in (i). (C) Efficacies derived from all pairs with significant CCGs for spontaneous (spon)
and driven (stim) activity. Triangles: median (filled) and mean (open) of the distributions. (D) FR
of functionally connected MGB and A1 neuron pairs under both spontaneous and stimulus-driven
conditions. (MGB, p = 0.002; A1, p = 0.022; Wilcoxon signed-rank test). (E) The difference in
best frequency (BF) between functionally connected MGB and A1 neurons. Only neuronal pairs
with significant STRFs were included.
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Figure 2.2

Figure 2.2 Groups of neurons with correlated spontaneous activities are identified as cNEs
and are more likely to connect to the same A1 neuron. (A) Relationship between the correlation
among MGB neurons and their connectivity to A1 neurons. (i) CCGs of spontaneous activities
between MGB neurons #1 to #3. Top: Neurons #1 and #2 share a common A1 target; bottom:
Neurons #1 and #3 do not share an A1 target. (ii) STRFs of the three example neurons in (i). (iii)
The mean correlation among MGB neurons in each recording, considering whether they have a
common A1 target (black dots) or not (gray dots). The size of the dots represents the number of
MGB neuron pairs in each condition. Error bars show the S.D. of pairwise correlations in each
recording. (F = 75.54, p = 7.0e-18, Nested ANOVA). (B) Correlation among MGB neurons based
on their membership in a cNE. (i) Example CCGs. Neurons #1 and #2 belong to the same cNE
(top), while neurons #1 and #3 are not members of the same cNE. (ii) STRFs of the three example
neurons in (i). (iii) Mean correlation among MGB neurons residing within the same cNE (black
dots) or not (gray dots) (F = 1377.75, p = 1.3e-240, Nested ANOVA). (C) Probability of MGB
neurons sharing a target A1 neuron. (i) Schematics for calculating the connectivity probability.
Neurons within the same cNE are dark blue; neurons outside the cNE are light blue. (ii) The
probability of MGB neurons sharing a common A1 target, given whether they are in the same
cNE (black dots) or not (gray dots) (p = 0.016, Wilcoxon signed-rank test). The size of the dots
represents the number of unique combinations of MGB neuron pairs under each condition.
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Figure 2.3

Figure 2.3 cNE spikes show higher efficacy at driving A1 neuron firing. (A) An example
MGB cNE with several members connected to the same A1 neuron. (i) IC weights of neurons
in a recording. The dashed line represents the threshold for cNE membership; cNE members are
labeled in blue. (ii) Depth and spike waveform of recorded neurons on the probes in the MGB
(left) and A1 (right). Blue indicates the MGB cNE members shown in (i), while orange indicates
the A1 neuron connected to two of the MGB cNE members. (iii) Left column: MGB-A1 CCGs
for those MGB spikes that did not contribute to the cNE activity (non-cNE spikes). Causal spikes
in significant CCGs are marked in red, and the corresponding efficacy is shown in the inset text.
Right column: MGB-A1 CCGs for those MGB spikes that did contribute to the cNE activity
(cNE spikes) (B) Efficacy of cNE spikes and non-cNE spikes from cNE member neurons based on
spontaneous activities. (i) Efficacy calculated using raw spiking activities. (ii) Efficacy calculated
after downsampling cNE spikes and non-cNE spikes to the same number. (iii) Efficacy calculated
using only single spikes from the MGB neurons to eliminate effects from double spiking within
±20ms. (iv) Efficacy of cNE spikes versus coincident spikes, i.e., spikes where an MGB cNE
neuron fired coincidentally with a random group of neurons matching the neuron count of the cNE
(see Method for details). (Wilcoxon signed-rank test).
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Figure 2.4

Figure 2.4 cNE spikes from MGB neurons exhibit higher efficacy for narrow-spiking A1
target neurons. (A) Classification of A1 neuron waveforms based on TPD, with the threshold
distinguishing NS from BS neurons at 0.45 ms. (B) Efficacy of cNE spikes and non-cNE spikes
from cNE member neurons when the A1 target neuron is NS (blue) or BS (red) (Wilcoxon signed-
rank test). The inset shows the efficacy difference between cNE spikes and non-cNE spikes (p =
7.5e-4, Mann–Whitney U test). (C) Effect of MGB cNE spikes on A1 neuron firing. (i) Proportion
of cNE and non-cNE spikes leading to spiking in the functionally connected A1 neuron within
the causal window of 1-5ms for NS and BS A1 neurons (interaction, F(1, 102) = 8.4, p = 0.005;
NS vs BS, p = 1.7e-8; cNE vs non-cNE, p = 0.002, two-way ANOVA; cNE vs non-cNE, NS: p =
1.0e-7, BS: p = 1.0, Wilcoxon signed-rank test; NS vs BS, cNE: p = 6.6e-7, non-cNE: p = 0.013,
Mann–Whitney U test; with Bonferroni correction). (ii) Average number of A1 spikes following
MGB spikes when at least one A1 spike was fired within the causal window. (interaction, F(1,
102) = 0.98, p = 0.32; NS vs BS, p = 1.3e-4; cNE vs non-cNE, p = 0.075, two-way ANOVA; NS
vs BS, cNE: p = 0.010, non-cNE: 0.004, Mann–Whitney U test with Bonferroni correction). (D)
Relationship between the efficacy change of cNE spikes relative to non-cNE spikes and the FR of
the A1 target neuron. (E) Contribution of MGB spikes to A1 activity of NS or BS neurons (p =
0.052, Mann–Whitney U test). (F) Average A1 spike occurrence around MGB spikes, binned at
10ms. We normalized the A1 spike counts for each MGB-A1 neuronal pair to the mean level of
baseline activity. The baseline activity levels were estimated using two 200 ms windows positioned
300ms away from MGB spikes. (i) NS (blue) and BS (red) A1 neuron activities around MGB
spikes. Dashed lines indicate two standard deviations above the baseline activity. The red and
blue lines indicate where the A1 neuron activity level is higher than the baseline level for BS and
NS A1 neurons, respectively. The black lines indicate time ranges where the normalized number
of spikes from NS A1 neurons is significantly higher than that from BS A1 neurons (p <0.05,
Mann-Whitney U test, with Bonferroni correction). Inset: firing rate of NS and BS A1 neurons
within 200ms prior MGB spikes (dark) and during the entire recording (light) (NS, p = 3.0e-9; BS,
p = 0.08, Wilcoxon signed-rank test). (ii) NS A1 neuron activities around cNE (dark blue) and
non-cNE (light blue) MGB spikes. (Figure caption continued on the next page.)
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(Figure caption continued from the previous page.) The dark blue and light blue lines indicate
where NS A1 neuron activity level is higher than the baseline level around cNE and non-cNE MGB
spikes, respectively. The black lines indicate time bins where the number of A1 spikes around cNE
spikes are significantly higher than that around non-cNE spikes (p <0.01, Mann-Whitney U test,
with Bonferroni correction). Inset: when the A1 target neuron is NS, the firing rate of A1 (orange)
and MGB (blue) neurons within 200ms prior MGB cNE spikes (dark) and non-cNE spikes (light)
(A1, p = 2.9e-7; MGB, p = 1.9e-4, Wilcoxon signed-rank test).
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Figure 2.5

Figure 2.5 cNE spikes can have higher efficacy than non-cNE spikes at driving a cNE-targeted
A1 neuron firing, although not a non-cNE-targeted A1 neuron. (A) Schematic depicting types
of neurons in simultaneous recordings in the MGB and A1. “cNE-targeted A1 neuron” refers to
A1 neurons that receive multiple inputs from an MGB cNE, while “non-cNE-targeted A1 neuron”
refers to A1 neurons that receive input from only one member of the MGB cNE under examination.
(B) Schematics illustrating the relationship of cNE/non-cNE spikes from an MGB neuron and the
firing of cNE-targeted/non-cNE-targeted A1 neurons. (C) IC weights of MGB neurons in the
example cNE. (D) Depth and spike waveform of recorded neurons in MGB (left) and A1 (right).
Blue indicates cNE members, while orange and pink indicate cNE-targeted and non-cNE-targeted
A1 neurons, respectively. (E) Efficacy of cNE and non-cNE spikes from members of an MGB cNE
in driving the firing of a cNE-targeted A1 neuron. (i) Schematics illustrating the hypothesis that
cNE spikes from an MGB neuron are more effective in driving firing of a cNE-targeted A1 neuron
compared to non-cNE spikes. (ii) CCGs displaying the relationship between cNE/non-cNE spikes
from cNE member neurons and a cNE-targeted A1 neuron. The inset numbers show the efficacy
of cNE spikes and non-cNE spikes. (F) Efficacy of cNE and non-cNE spikes from members of
the example MGB cNE shown in (E) in driving the firing of a non-cNE-targeted A1 neuron that
nevertheless is connected to one of the cNE members, neuron #11. (i) Schematics illustrating
the hypothesis that cNE spikes from an MGB neuron are not more effective in driving firing in a
non-cNE-targeted A1 neuron compared to non-cNE spikes. (ii) CCGs displaying the relationship
between cNE/non-cNE spikes from cNE member neurons and a non-cNE-targeted A1 neuron.
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Figure 2.6

Figure 2.6 cNE spikes related to an A1-targeting cNE, but not a non-A1-targeting cNE, can
show higher efficacy than non-cNE spikes. (A) Schematics of types of neurons in simultaneous
recordings in the MGB that project to the same A1 neuron. “A1-targeting cNE” refers to MGB
cNEs with multiple members connected to the A1 neuron (blue dots), while “non-A1-targeting
cNE” refers to MGB cNEs with only one member connected to the A1 neuron (purple dots). We
hypothesize that when an MGB neuron is a member of multiple cNEs (purple+blue dot), only cNE
spikes related to the A1-targeting cNE (blue) will have higher efficacy in driving the A1 neuron
firing, but not cNE spikes related to the non-A1-targeting cNE (purple). (B) cNE spikes from
members of an A1-targeting cNE are more efficacious in driving the A1 neuron firing than non-
cNE spikes. (i) CCGs displaying the relationship between cNE/non-cNE spikes from A1-targeting
cNE members and the A1 neuron. The inset numbers show the efficacy of cNE spikes and non-
cNE spikes. (ii) IC weights of MGB neurons in the example cNE. (iii) Depth and spike waveform
of recorded neurons in MGB and A1. Blue indicates cNE members of the A1-targeting cNE and
orange indicates the A1 neuron. (C) cNE spikes from members of a non-A1-targeting cNE are
not more efficacious at driving the A1 neuron firing than non-cNE spikes. (i) IC weights of MGB
neurons in the example cNE. (ii) Purple indicates cNE members of the non-A1-targeting cNE.
(iii) CCGs displaying the relationship between cNE/non-cNE spikes from non-A1-targeting cNE
members and the A1 neuron. One of the member neurons, neuron #11, is also a member of the
cNE shown in (B).
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Figure 2.7

Figure 2.7 Summary of the specificity of cNE spikes from MGB neurons for A1 target
neurons. (A) Comparison of the efficacy between cNE and non-cNE spikes when the A1 target
neuron is BS or NS. When an MGB cNE member neuron is connected to a NS A1 neuron, the
cNE spikes of the MGB neuron demonstrate higher efficacy than non-cNE spikes in driving the
A1 neuron firing. Conversely, when an MGB cNE member neuron is connected to a BS A1
neuron, the cNE spikes of the MGB neuron do not exhibit higher efficacy than non cNE spikes.
(B) cNE spikes associated with distinct cNEs from a shared MGB neuron exhibit varying efficacy
in driving different A1 neuron firing. When an MGB neuron is member of two cNEs, cNE1 and
cNE2, the cNE1 spikes from the neuron are more efficacious at driving firing in the cNE1-targeted
A1 neuron compared to non-cNE1 spikes. However, the same cNE1 spikes, treated as non-cNE2
spikes, exhibit lower efficacy in driving firing in the cNE2-targeted A1 neuron.
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Conclusions

Understanding of neural coordination requires knowledge in how coordinated activity is

constructed from spike trains of individual neurons, what information is encoded, and how the

information can be transmitted. In this study, we tackled these three aspects by simultaneously

recording neural activities from the auditory thalamus and cortex and analyzing cNE activities in

these regions.

Building upon prior research in the lab (See et al., 2018), we successfully identified cNEs in the

auditory thalamus—an area that has received less attention in the investigation of coordinated

neuronal activities. Similar to cNEs observed in the cortex, those identified in the thalamus also

exhibited an enhanced capacity for coding stimulus information. Furthermore, cNEs in both

regions displayed stability across both spontaneous and stimulus-driven activities, suggesting a

structural foundation for cNE formation that is largely independent of specific stimuli. The

discovery of cNEs in the auditory thalamus also provides evidence for cNEs as a ubiquitous

organizational principle along the sensory pathway rather than being specific to cortical columns.

With simultaneous recordings in the MGB and A1, we successfully identified functionally

connected neuronal pairs. Our findings confirm that cNEs enhance the efficacy of thalamocortical

information transmission, as evidenced by the greater efficacy of MGB cNE spikes compared to

non-cNE spikes in driving A1 neuron firing. Addressing these questions is crucial for unraveling

the functional significance of cNEs in the auditory forebrain. While our work has provided

answers to some initial inquiries, it has also paved the way for further investigation into the role

of different types of neurons in cNE formation and function. Additionally, there are significant

questions surrounding the modulation of cNE activity by behavioral states that warrant future

exploration.
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Methods

Animals All experimental procedures were approved by the Institutional Animal Care and Use

Committee at the University of California, San Francisco (UCSF), and followed the guidelines of

the National Institute of Health for the care and use of laboratory animals. Thirty-three female

Sprague-Dawley rats (wild type, 250-350g, 2-4 months; RRID: MGI: 5651135), sourced from

Charles River, were used in this study.

Surgery The detailed procedures were as described in previous studies (See et al., 2018; Homma

et al., 2020). Briefly, anesthesia was induced with a combination of ketamine (100 mg/kg,

Ketathesia, HenrySchein) and xylazine (3.33 mg/kg, AnaSed, Akorn), along with atropine (0.54

mg/kg, AtroJectSA, HenrySchein), dexamethasone (4 mg/kg, Dexium-SP, Bimeda), and

meloxicam (2 mg/kg, Eloxiject, HenrySchein). Additional doses of ketamine (10-50 mg/kg) and

xylazine (0-20 mg/kg) were given as needed to maintain anesthesia. Local anesthesia was

provided using lidocaine (Lidoject, 2%, HenrySchein) prior to making incisions. The respiratory

rate, heart rate, and depth of anesthesia were continuously monitored, and anesthesia was adjusted

as needed. The body temperature was monitored and maintained at 37°C using a homeothermic

blanket system (Harvard Apparatus 55-7020). Lubricant ophthalmic ointment (Artificial Tears,

HenrySchein) was applied to protect the eyes. A tracheotomy was performed to ensure stable

breathing during recording. To access the brain, the skin, muscle, skull, and dura over the right

temporal lobe were removed, and silicone oil (Sigma-Alderich) was applied to cover the cortex.

A bone rongeur was used to widen the craniotomy window and provide dorsal access to the

MGB. A cisternal drain was performed to prevent brain swelling.

Electrophysiology The frequency organization of auditory cortex was first mapped using

Tungsten electrodes. A1 was identified as the area with a high to low frequency preference

gradient on the rostral-causal axis and short latency response to pure tones (Polley et al., 2007).

Subsequently, we conducted electrophysiological recordings in two areas simultaneously (Figure
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1A): the MGB by using a linear silicon probe with 64 channels (H3, 20µm channel spacing,

Cambridge NeuroTech), and A1 by using either a 2-shank probe with 64 channels (H2, 25µm

channel spacing, Cambridge NeuroTech) or a linear silicon probe with 64 channels (H3). The

ventral division of the MGB is characterized by a low to high frequency gradient on the

dorsal-ventral axis (Morel et al., 1987; Anderson and Linden, 2011). The probes were inserted

using microdrives (David Kopf Instruments) at a rate of 25 µm/s to a depth of 4500 to 6000 µm

from the surface of the cortex to reach MGB (Figure 1.1A) and 900 to 1300 µm in A1 along the

columnar structure (Figure 1.7A), respectively. Extracellular voltage traces were recorded at a

sampling rate of 20 kHz with an Intan RHD2132 Amplifier system (Intan Technologies). MU

activities (Figure 1.1A and 1.7A) were defined as negative peaks crossing 4 standard deviations

from the mean in the extracellular voltage trace filtered between 300 and 6000 Hz. Single unit

activities were obtained by spike sorting using Kilosort 2.5 (Steinmetz et al., 2021; Pachitariu et

al., 2023), followed by manual curation using Phy (https://github.com/cortex-lab/phy). In the

manual curation process, we visually evaluated individual clusters by examining

auto-correlograms, spike waveforms, the stability of spike amplitude over time, the persistence of

activity over time, the cluster’s separation from noise in the feature space, and other visual aids

provided by phy2 for distinguishing single-unit clusters from multi-unit or noise clusters.

Subsequently, the identified units underwent filtering based on specific criteria: inter-spike

interval (ISI) violation within 2ms <1.5%. The majority of single units exhibited an ISI violation

lower than 0.25%; peak signal-to-noise ratio (SNR) of the waveform >1.5 (median peak SNR:

MGB: 4.52, A1: 3.77); and firing rates >0.1 Hz to eliminate potential multi-units. To assess the

reliability of activity of the single units across the entire recording duration we obtained the

presence ratio. This is the ratio of the number of blocks where the unit showed activity and the

total number of blocks in a recording session. To calculate the presence ratio, the entire recording

was divided into 100 equal time blocks. The majority of the obtained single units were active in

more than 95% of the time blocks. This sorting resulted in single units that exhibit low ISI

violations, high peak SNR, firing rates with a log-normal distribution, and a more consistent
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presence during recording when compared to all clusters generated by Kilosort. To identify

oscillatory response in MGB or A1, single units on the same electrode were combined to form

multi-units (Figure 1.8).

Stimuli To measure frequency tuning, we presented pure tones with frequencies ranging from 0.5

to 32 kHz in 0.13 octave steps and sound levels from 0 to 70 dB in 5 dB steps (50ms, 5ms ramps).

Each frequency-sound level combination was presented once in a pseudo-random order, with an

inter-stimulus interval of 250ms. To assess STRFs, we used a 15-minute dynamic moving ripple

(DMR) (Escabı́ and Schreiner, 2002). The DMR consisted of 40 sinusoidal carrier frequencies

per octave in the range of 0.5 to 40 kHz, each with a random phase. The carriers were slowly

modulated (maximum rate of change ≤ 3Hz) by a spectrotemporal envelope with a maximum

spectral modulation rate of 4 cycles/octave, a maximum temporal modulation rate of 40 cycles/s,

and a maximum modulation depth of 40 dB. The mean intensity of the DMR was set at 70 dB sound

pressure level. We selected DMR as the stimulus for analyzing cNEs’ response to sound stimuli,

as overt onset response effects for the 15-minute continuous stimulus is negligible. Additionally,

DMR has been observed to reduce oscillatory states in the neural population (Miller and Schreiner,

2000). All auditory stimuli were generated using MATLAB (MathWorks) and calibrated using a

1/2-inch pressure field microphone (Type 4192, Bruel and Kjær). The stimuli were delivered

contralaterally from the recording site using a closed-field electrostatic speaker (EC1, TuckerDavis

Technologies) at a sampling rate of 96 kHz.

Detecting cNEs To identify groups of neurons that exhibit synchronized co-activation, referred to

as “cNEs”, we used a method combining PCA and ICA (Lopes-dos Santos et al., 2013; See et al.,

2018). We selected a bin size of 10ms as a standard synchronization span because it represents

the most appropriate time window to capture the synaptic integration window of most cortical

neurons (Léger et al., 2005; D’amour and Froemke, 2015). First, the individual spike trains of

simultaneously recorded neurons were binned and z-scored. Next, the z-scored spike matrix

underwent PCA to obtain the eigenvalues of the spike train correlation matrix. To determine the
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number of cNEs, we took eigenvalues to be significant if their value exceeded the 99.5th

percentile of the Marchenko-Pastur distribution, which describes the probability density function

of eigenvalues of large rectangular random matrices (Marčenko and Pastur, 1967; See et al.,

2018) (Figure 1.2A-ii). We then performed ICA (FastICA) on the subspace spanned by the

eigenvectors corresponding to the significant eigenvalues. The resulting ICs represent groups of

neurons with shared spiking events. The weight of each neuron on an IC indicates the neuron’s

contributions to the cNE (Figure 1.2A-iii). As the signs of IC weights were arbitrary, for each IC,

the direction with the largest absolute weight was rendered positive. The length of each IC was

normalized to one, making an IC with equal contribution from all neurons have weights of

1/
√
N , where N was the number of neurons in the recording. Neurons with weights over 1/

√
N

were referred to as “cNE members” (Oberto et al., 2022) (Figure 1.2A-iv).

The strength of the cNE activation at each time point was measured by the similarity between the

activity of cNE members as well as the cNE pattern, i.e., which neurons in a penetration were

cNE members. The similarity can be measured as the square of the weighted sum of the z-scored

spike counts, s = zTwwT z = zTPz, where z is the z-scored spike counts of cNE members at

each time point, w is the IC weights of cNE members, and the projection matrix P is the outer

product of w. To consider only co-activation of multiple cNE members, we set the diagonal of the

projection matrix to zero and obtained the modified projection matrix P ∗. cNE activity strength

was calculated as s = zTP ∗z. A null distribution of cNE activity was obtained by projecting a

circularly shifted spike matrix, where the temporal relationship of neurons was disrupted, to the

template matrix (See et al., 2018). This process was iterated 50 times, and the threshold of cNE

activation was defined as the 99.5th percentile of the null distribution (Figure 1.2A-v). The spikes

of cNE members within the selected time bin where the cNE was active were referred to as “cNE

spikes”.

Matching cNEs across different bin sizes We used the correlation between IC weights of all

neurons in a penetration to assess the similarity of cNE patterns across different synchronization
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windows (i.e., time bin width: 2, 5, 10, 20, 40, 80 and 160ms). To visualize the similarity of

cNEs identified using 10ms bins to those identified using other bin sizes, we calculated the cNEs

for the same recording using other bin sizes. We displayed the cNEs whose IC weights were best

correlated with the 10ms cNE (Figure 1.3A). To measure the variability of cNE identities across

bin sizes (Figure 1.3B and C), we matched each cNE to the most similar cNE calculated using

reference bins (i.e., when using 10ms as the reference bin size, to the 10ms cNE which had the

best-correlated IC weights). The proportion of shared members with a reference cNE was then

calculated by dividing the number of members in a cNE that were also identified as members in its

matching reference cNE by the total number of unique members in both cNEs combined.

The significance of the match was determined based on the null distribution of IC weight

correlations between matched cNEs. For example, to determine the significance of the correlation

between the IC weights of a 10ms cNE with its most correlated 160ms cNE, we first generated a

null distribution of IC weight correlations. We circularly shifted spike trains and then applied

PCA/ICA to identify sham cNEs using the shuffled spike matrices binned at 160ms, maintaining

the same number of cNEs as the original 160ms cNEs. Then we identified the most correlated

sham 160ms cNE for the 10ms cNE. This process was repeated 1000 times to generate the null

distribution of correlation values. The significance threshold was set at p <0.01.

Assessing stability of cNEs To assess the stability of cNEs during and across spontaneous and

stimulus-driven activity, we compared the cNEs from adjacent recording segments (Figure 1.4A).

To match the IC weights of cNEs identified from the different recording segments, we used an

iterative process that involved selecting cNE pairs from the two segments with the highest

correlations (Spearman’s r) Oberto et al. (2022). First, we computed the correlations between all

possible pairs of cNEs that were generated from the two segments. Then, the pair with the highest

correlation was set aside, and the same process was repeated with the remaining cNEs until all

cNEs were paired. If there were any remaining cNEs that did not have a match due to a difference

in the number of cNEs between the two segments, they were left unmatched.
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To generate a null distribution of IC weight correlations between matched cNEs from two

recording segments (Figure 1.4D), we circularly shifted spike trains within each activity block.

We then applied PCA/ICA to identify sham cNEs using the resulting shuffled spike matrices. As

the shuffling disrupted correlations between neurons, very few eigenvalues exceeded the upper

bounds of the Marchenko-Pastur distribution. To address this, we maintained the number of sham

cNEs in the shuffled data equivalent to the number of significant eigenvalues obtained from the

original spike matrix. The sham cNEs from adjacent activity blocks were then matched following

the procedure described above. This iterative process was repeated 1000 times to establish a null

distribution of IC weight correlations for the matched cNEs. The 99.5th percentile of each null

distribution was set as the significance threshold.

False positive detection of cNEs To assess the potential for false positive cNE detection, we

applied the cNE detection algorithm to shuffled data, using the same criteria as those applied to

the real dataset. This process was repeated 10 times, resulting in an average count of false positive

cNEs across the circularly shifted data (Figure 1.4F). Despite conducting 10 iterations, false

positive cNEs were not consistently identified in neighboring blocks. In cases where a false

positive cNE was detected (for example, when an eigenvalue computed from shuffled data

exceeded the Marchenko-Pastur distribution), we evaluated its stability by measuring the highest

correlation of its IC weights with those of real cNEs in the adjacent block (Figure 1.4E). The

significance of false positive cNE IC weight correlations was determined using the same

threshold established for real cNEs.

STRF analysis For analysis, we down-sampled DMR to a resolution of 0.1 octaves in frequency

and 5ms in time. We used the reverse correlation method to obtain the STRFs of the units

(Theunissen et al., 2000; Escabı́ and Schreiner, 2002). To derive the STRFs, we averaged the

spectrotemporal envelopes of the stimulus over a period of 100ms preceding spikes (Figure 1.1B

and 1.6A). Positive (red) values on a STRF indicate that the sound energy at that frequency and

time tends to increase the firing rate of the unit, while negative (blue) values indicate where the
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stimulus tends to decrease the firing rate of the unit. The BF and response latency of the unit were

determined by the frequency and latency associated with the highest absolute value in the STRF

(Miller et al., 2002). We also determined the PTD as a measure of STRF strength.

A STRF was considered significant if it reliably described a neuron’s response to DMR sound. To

assess the reliability of a STRF, we divided a neuron’s spikes into two equal halves and generated

two corresponding STRFs (STRF A and B) using each half (Qiu et al., 2003). The similarity

between STRF A and B was computed using Pearson’s correlation. This process was reiterated

1000 times, and the average STRF similarity across these iterations was used as the measure of

reliability. To determine the statistical significance of a STRF’s reliability, we constructed a null

distribution by reversing the neuron’s spike train, thus disrupting the temporal correlation of neural

responses to the stimulus. We considered STRFs with a reliability surpassing a z-score of 2.58 to

be significant.

We used MI as the metric to quantify the amount of information we can obtain about the stimulus

by observing spikes of neurons or cNEs (Atencio et al., 2008; See et al., 2018). The stimulus

segments preceding each spike was projected onto the STRF via the inner product

z = s ∗ STRF .The projection values were then binned to get the probability distribution

P (z|spike). The a priori distribution of stimulus projection values, P (z), was calculated by

projecting all stimulus segments of DMR onto the STRF, regardless of spike occurrence. Both

distributions P (z) and P (z|spike) were normalized relative to the mean µ and standard deviation

σ of P (z), by x = ((z − µ))/σ, resulting in P (x) and P (x|spike). The MI between STRF

projection values and single spikes was computed according to I =
∫
dxP (x|spike)log2 P (x|spike)

P (x)
.

STRF comparisons between cNEs and non-cNE groups of neurons To control for the potential

influence of population synchrony on a cNE due to independent neuron activity, we compared

STRFs derived from cNEs and non-cNE groups of neurons. If less than half of members had

significant STRFs, the cNE was excluded from analysis.
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First, we compared the group STRFs of cNEs and non-cNE groups of neurons (Figure 1.6B-ii and

C-ii) (See et al., 2018). The group STRF was calculated using all spikes from neurons within a

group. To generate non-cNE groups of neurons relative to a cNE, we first selected one neuron

from the cNE and then sampled from the remaining neurons with significant STRFs within a

penetration, forming a group with the same number of neurons as the cNE for comparison. This

process excluded other member neurons of the cNE. This procedure was repeated for all members

of the cNE, generating all possible combinations of neurons, each including exactly one member

neuron from the cNE under examination. Combinations of neurons that included more than one

neuron from any other cNEs in the same recording were then also excluded. For each cNE/non-

cNE group comparison, we subsampled the spikes in the cNE and the non-cNE groups to the same

number. Subsequently, STRF PTD and MI of the cNE group were compared to the median values

of the non-cNE groups.

We also compared the STRFs of cNE spikes with those of coincident spikes from a single neuron

(Figure 1.6B-iii and C-iii) to assess the influence of random coincidence on stimulus preference.

To obtain coincident spikes from a specific neuron, we first sampled neurons from the recorded

population that do not share membership with the neuron under examination in any cNE to create

a non-cNE group. We kept the number of neurons in the non-cNE group the same as the cNE to

which the neuron being examined belongs. This sampling process was restricted to neurons

exhibiting significant STRFs. The coincident spikes of the cNE member refer to spikes within

10ms of spikes from other neurons within the non-cNE group. We repeated this procedure to

generate all possible combinations of non-cNE groups, each containing the cNE member and

excluding any neuron that shares membership with the neuron under scrutiny. Coincident spike

trains with less than 100 events were discarded. For each cNE spike/non-cNE spike comparison,

we subsampled the cNE spikes and spikes from the non-cNE groups to the same number.

Subsequently, the cNE spike STRF PTD and MI were compared to the median values of the

random spike STRF PTD and MI from the non-cNE groups.

62



Quantifying slow oscillations in neural activity To determine whether the neural activity in a

recording showed a prominent pattern of slow oscillations, we measured silence density and the

CV of MU firing rate. Silence density was defined as the fraction of 20ms time bins with no

population activity (zero spikes) (Mochol et al., 2015). The CV of MU firing rate was calculated

as CV = σ/µ , where µ is the mean firing rate and σ is the standard deviation of the firing rate

binned at 20ms time bins.

Detecting Functional Connectivity The precise temporal correlations between spike trains can

provide insights into the functional connectivity between neurons (Perkel et al., 1967; Senzai et

al., 2019). Putative excitatory connections can be identified by deviations from the baseline in the

CCG at short time-lags (1-5ms) (Figure 2.1B-i). To estimate the baseline firing rate, CCGs binned

at 0.5ms windows were convolved with a Gaussian window (sigma=7ms). The statistical

threshold for detecting a significant deviation from the baseline at each time bin was set at the

99.9th percentile of a Poisson distribution based on the baseline rate. We considered a putative

connection to be significant when at least two consecutive time bins in the CCG crossed the

threshold within the causal window of 1-5ms after MGB spikes. To avoid the confound of

stimulus-induced correlated firing, only spontaneous activities were used to determine the

functional connectivity between neurons. The efficacy of a thalamic neuron or cNE in driving the

response of a connected cortical neuron was measured as the number of MGB spikes causal to

cortical spikes divided by the total number of thalamic spikes (Alonso et al., 1996). The

contribution of the MGB to cortical response was measured as the number of causal MGB spikes

divided by the total number of spikes in the A1 neuron.

Estimating the probability of two MGB neurons sharing an A1 target To investigate the

relationship between the cNE membership of MGB neurons and their connectivity to A1 neurons,

we estimated the probability of two MGB neurons sharing a common A1 target in each recording,

depending on whether the two neurons were part of the same cNE (Figure 2.2C). This analysis

only considered MGB neurons with identified A1 targets. We included recordings that had a
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minimum of 5 such MGB neurons and at least one pair of MGB neurons sharing an A1 target (7

out of 12 recordings). For any randomly drawn pair of MGB neurons, four potential outcomes

were possible, depending on whether the two neurons were members of the same cNE and if they

were connected to the same A1 neuron. The probability of two MGB neurons of the same cNE

sharing an A1 target was calculated as the number of pairs in the same cNE and sharing an A1

target divided by the total number of pairs in the same cNE. Similarly, the probability of a pair of

neurons sharing an A1 target when they are not members of the same cNE was calculated as the

number of pairs not in the same cNE and sharing an A1 target divided by the total number of pairs

not in the same cNE.

Comparing the efficacy of cNE spikes and coincident spikes To control for the potential

influence of population effect arising from independent neural activity, we compared the efficacy

of cNE spikes from a given neuron with that of coincident spikes from a group of neurons that are

not members of the cNE, termed a non-cNE group. To construct non-cNE groups for an MGB

neuron, we sampled neurons from the recorded population that did not share membership of any

cNE. The number of neurons in the non-cNE group matched the size of the cNE to which the

examined neuron belonged. Coincident spikes of the cNE member referred to spikes within 10ms

of spikes from other neurons within the non-cNE group. This process was repeated to generate all

possible combinations of non-cNE groups, with coincident spike trains containing fewer than 100

events discarded. Subsequently, both the cNE spike train and all coincident spike trains were

subsampled to the same number of events. We then compared the average efficacy of cNE spikes

and coincident spikes based on calculations from 10 different subsamplings.

Permutation test We used permutation tests to determine the statistical significance of differences

in CCGs among neurons based on their membership (Figure 1.2C and 1.3D), as well as to assess

differences in the proportion of stable cNEs between different stimulus conditions (Figure 1.4E

and 1.7E). For example, to assess the difference in CCGs between member pairs and non-member

pairs (Figure 1.2C), we shuffled the membership labels of the CCGs and calculated the difference
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between the average CCGs of member and non-member pairs. We repeated this process 10,000

times to generate null distributions of the CCG difference for each data point. The 0.5th and

99.5th percentiles of the null distribution were taken as the cutoffs for significance. We considered

consecutive time bins around 0ms-lag with p <0.01 to be significant. To assess the difference

in the proportion of stable cNEs, we shuffled the stimulus condition label (spontaneous [‘spon’],

DMR [‘dmr’], or cross condition comparison [‘cross’]) and repeated this process 10,000 times

to generate a null distribution of the difference in proportion. The significance level was then

determined based on the null distribution.

Statistics Statistical analyses were performed in Python. To compare two unpaired groups (e.g.,

Figure 1.2B), we used Mann–Whitney U tests. To compare two paired groups (e.g., Figure 1.4F),

we used Wilcoxon signed-rank tests. To compare two groups while accounting for variability

within subgroups (e.g., Figure 2.2A-iii), we used Nested ANOVA. To determine the effect of two

variables (e.g., Figure 2.4E), we used two-way ANOVA with post hoc rank tests and Bonferroni

correction. Permutation tests (e.g., Figure 1.2C), and Monte Carlo methods (e.g., Figure 1.4D)

were used as described above. To determine if two samples are drawn from the same distribution,

we used Kolmogorov-Smirnov test (Figure 1.3D). The specific applications of these tests are

explained in the results section and figure legends. Significance levels are noted as n.s. (p ≥

0.05), * (p <0.05), ** (p <0.01) and *** (p <0.001).
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Marčenko VA, Pastur LA (1967) Distribution of Eigenvalues for Some Sets of Random Matrices.

Mathematics of the USSR-Sbornik 1:457–483. 58

Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of

the neocortical inhibitory system. Nature reviews neuroscience 5:793–807. 37

McCLURKIN JW, Optican LM (1996) Primate striate and prestriate cortical neurons during

discrimination. i. simultaneous temporal encoding of information about color and pattern.

Journal of Neurophysiology 75:481–495. 40

McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology

of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of

neurophysiology 54:782–806. 37

Merzenich MM, Knight PL, Roth GL (1975) Representation of cochlea within primary auditory

cortex in the cat. Journal of Neurophysiology 38:231–249 PMID: 1092814. 13

Metherate R, Ashe JH (1993) Nucleus basalis stimulation facilitates thalamocortical synaptic

transmission in the rat auditory cortex. Synapse 14:132–143. 15

Miller JeK, Ayzenshtat I, Carrillo-Reid L, Yuste R (2014) Visual stimuli recruit

intrinsically generated cortical ensembles. Proceedings of the National Academy of

Sciences 111:E4053–E4061. 18

73



Miller LM, Escabı MA, Read HL, Schreiner CE (2001) Functional convergence of response

properties in the auditory thalamocortical system. Neuron 32:151–160. 17, 31, 33, 34, 44

Miller LM, Escabı́ MA, Read HL, Schreiner CE (2002) Spectrotemporal receptive fields in the

lemniscal auditory thalamus and cortex. Journal of Neurophysiology 87:516–527. 5, 17, 44, 61

Miller LM, Recanzone GH (2009) Populations of auditory cortical neurons can accurately

encode acoustic space across stimulus intensity. Proceedings of the National Academy of

Sciences 106:5931–5935. 5

Miller LM, Schreiner CE (2000) Stimulus-based state control in the thalamocortical system.

Journal of Neuroscience 20:7011–7016. 57

Mochol G, Hermoso-Mendizabal A, Sakata S, Harris KD, De La Rocha J (2015) Stochastic

transitions into silence cause noise correlations in cortical circuits. Proceedings of the National

Academy of Sciences of the United States of America 112:3529–3534. 63

Mogensen H, Norrlid J, Enander JM, Wahlbom A, Jörntell H (2019) Absence of repetitive

correlation patterns between pairs of adjacent neocortical neurons in vivo. Frontiers in Neural

Circuits 13:1–11. 6

Montijn JS, Meijer GT, Lansink CS, Pennartz CM (2016) Population-level neural codes

are robust to single-neuron variability from a multidimensional coding perspective. Cell

reports 16:2486–2498. 31

Morel A, Rouiller E, de Ribaupierre Y, de Ribaupierre F (1987) Tonotopic organization

in the medial geniculate body (MGB) of lightly anesthetized cats. Experimental Brain

Research 69:24–42. 56

Mountcastle VB (1997) The columnar organization of the neocortex. Brain: a journal of

neurology 120:701–722. 17

74



Neske GT (2016) The slow oscillation in cortical and thalamic networks: mechanisms and

functions. Frontiers in neural circuits 9:88. 14

Niessing J, Friedrich RW (2010) Olfactory pattern classification by discrete neuronal network

states. Nature 465:47–52. 16

Noback CR (1985) Cerebral cortex. volume 1: Cellular components of the cerebral cortex. 37

Nowak LG, Azouz R, Sanchez-Vives MV, Gray CM, McCormick DA (2003) Electrophysiological

classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses.

Journal of neurophysiology 89:1541–1566. 37

Oberto VJ, Boucly CJ, Gao H, Todorova R, Zugaro MB, Wiener SI (2022) Distributed cell

assemblies spanning prefrontal cortex and striatum. Current Biology pp. 1–13. 4, 21, 42, 44, 58,

59

O’Connor DH, Peron SP, Huber D, Svoboda K (2010) Neural activity in barrel cortex underlying

vibrissa-based object localization in mice. Neuron 67:1048–1061. 19

Pachitariu M, Lyamzin DR, Sahani M, Lesica NA (2015) State-dependent population coding in

primary auditory cortex. Journal of Neuroscience 35:2058–2073. 21

Pachitariu M, Sridhar S, Stringer C (2023) Solving the spike sorting problem with Kilosort.

bioRxiv p. 2023.01.07.523036. 56

Paninski L, Shoham S, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Superlinear

population encoding of dynamic hand trajectory in primary motor cortex. Journal of

Neuroscience 24:8551–8561. 7

Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes:

Ii. simultaneous spike trains. Biophysical journal 7:419–440. 63

75



Peyrache A, Benchenane K, Khamassi M, Wiener SI, Battaglia FP (2010) Principal component

analysis of ensemble recordings reveals cell assemblies at high temporal resolution. Journal of

Computational Neuroscience 29:309–325. 7

Polley DB, Read HL, Storace DA, Merzenich MM (2007) Multiparametric auditory

receptive field organization across five cortical fields in the albino rat. Journal of

Neurophysiology 97:3621–3638. 55

Qiu A, Schreiner CE, Escabı́ MA (2003) Gabor analysis of auditory midbrain receptive fields:

spectro-temporal and binaural composition. Journal of neurophysiology 90:456–476. 61

Read HL, Nauen DW, Escabı́ MA, Miller LM, Schreiner CE, Winer JA (2011) Distinct

core thalamocortical pathways to central and dorsal primary auditory cortex. Hearing

research 274:95–104. 17

Rosen S (1992) Temporal information in speech: acoustic, auditory and linguistic

aspects. Philosophical Transactions of the Royal Society of London. Series B: Biological

Sciences 336:367–373. 18

Roy SA, Alloway KD (2001) Coincidence detection or temporal integration? what the neurons in

somatosensory cortex are doing. Journal of Neuroscience 21:2462–2473. 32, 34

Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information.

Nature reviews neuroscience 2:539–550. 34

Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic

recurrent activity in neocortex. Nature neuroscience 3:1027–1034. 14, 15

See JZ, Atencio CA, Sohal VS, Schreiner CE (2018) Coordinated neuronal ensembles in primary

auditory cortical columns. eLife 7:1–33. 1, 4, 5, 6, 7, 10, 12, 13, 17, 31, 35, 36, 54, 55, 57, 58,

61, 62

76



See JZ, Homma NY, Atencio CA, Sohal VS, Schreiner CE (2021) Information diversity in

individual auditory cortical neurons is associated with functionally distinct coordinated neuronal

ensembles. Scientific Reports 11:4064. 4, 5, 12, 13, 20, 31, 36, 40, 45
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