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Complex physiological and behavioral traits, including neurolog-
ical and psychiatric disorders, often associate with distributed
anatomical variation. This paper introduces a global metric, called
morphometricity, as a measure of the anatomical signature of
different traits. Morphometricity is defined as the proportion of
phenotypic variation that can be explained by macroscopic brain
morphology. We estimate morphometricity via a linear mixed-
effects model that uses an anatomical similarity matrix computed
based on measurements derived from structural brain MRI scans.
We examined over 3,800 unique MRI scans from nine large-scale
studies to estimate the morphometricity of a range of phenotypes,
including clinical diagnoses such as Alzheimer’s disease, and non-
clinical traits such as measures of cognition. Our results demon-
strate that morphometricity can provide novel insights about the
neuroanatomical correlates of a diverse set of traits, revealing
associations that might not be detectable through traditional
statistical techniques.

neuroimaging | brain morphology | statistical association

The structural, functional, and molecular properties of the
brain support numerous traits spanning the behavioral, cog-

nitive, and clinical spectra. Neuroanatomical features are in turn
influenced by factors such as age, sex, training, and genetics (1–4).
Neuroimaging allows us to characterize these bidirectional as-
sociations by revealing variation in brain structure and function
across individuals. Conventional methods that we use to probe
these associations aim to anatomically map effects, build pre-
diction models, or test hypotheses. However, we do not have a
standard technique to measure and compare the often spatially
distributed and complex patterns of neuroanatomical correlates
of different phenotypes. Here we present a metric called mor-
phometricity that offers this capability.
To date, structural neuroimaging studies have primarily re-

lied on three classes of analytic approaches. The first strategy is
hypothesis-driven and uses a regression model to examine asso-
ciations between behavioral traits or clinical conditions and a small
number of a priori image-derived measurements, such as those
restricted to an anatomical region of interest (ROI) (5). The
ROI-based approach provides useful insights about the un-
derlying biology and can be efficient in limited-sample-size sce-
narios but is restricted to the tested hypothesis. The second
approach is exploratory and aims to compute maps of associa-
tions by conducting brain-wide tests (6), as exemplified in voxel-
based morphometry (7) or vertex-wise cortical thickness analysis
(see, e.g., ref. 8). Such massive univariate analyses can offer a
comprehensive picture of the underlying anatomical associa-
tions, yet they can also be inefficient in revealing subtle, multi-
variate patterns of association, because each anatomical location
is typically examined in isolation and the burden of multiple
testing correction can constrain statistical power. The third class

includes multivariate techniques such as canonical correlation
analysis (9), partial least squares (10), Bayesian inference algorithms
(11), or other machine learning methods (12, 13). These studies are
focused on either discovering the multivariate patterns of associa-
tion or demonstrating individual-level prediction capabilities, but
the biological interpretation of trained multivariate models can be
challenging (14). Furthermore, these methods often suffer from
high computational demand and can be sensitive to implementation
details, such as the choice of learning rule, optimization algorithm,
and local optima in training.
We present morphometricity analysis as an approach to ex-

amine the global statistical association between brain morphol-
ogy and observable traits. Inspired by prior work on trait heritability
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Neuroimaging has largely focused on two goals: mapping as-
sociations between neuroanatomical features and phenotypes
and building individual-level prediction models. This paper
presents a complementary analytic strategy called morpho-
metricity that aims to measure the neuroanatomical signatures
of different phenotypes. Inspired by prior work on heritability,
we define morphometricity as the proportion of phenotypic
variation that can be explained by brain morphology (e.g., as
captured by structural brain MRI). In the dawning era of large-
scale datasets comprising traits across a broad phenotypic spec-
trum, morphometricity will be critical in prioritizing and charac-
terizing behavioral, cognitive, and clinical phenotypes based on
their neuroanatomical signatures. Furthermore, the proposed
framework will be significant in dissecting the functional, mor-
phological, and molecular underpinnings of different traits.
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in population and statistical genetics (15, 16), we define morpho-
metricity as the proportion of phenotypic variation that can be
explained by brain morphology (e.g., as captured by measure-
ments derived from structural brain MRI scans). Unlike ROI-
based or massive univariate association tests, morphometricity
analysis is not concerned with specific anatomical structures or
the precise anatomic localization of effects. In contrast to the
application of machine learning to population data, the primary
aim of morphometricity analysis is not to maximize individual-
level prediction accuracy but to examine and quantify statistical
associations. The proposed strategy thus affords a unique per-
spective on the biological underpinnings of different phenotypes
and allows us to compare and contrast imaging modalities, types
of anatomical measurements, and processing streams.
Morphometricity is grounded in linear mixed effects (LME)

modeling, a classical statistical framework that was recently used
in population genetics to quantify the heritability of a trait using
genome-wide genetic variants (17–19). The model relates the
variation in brain morphology computed from brain-wide, MRI-
derived measurements to the variation in observable traits and
can be fitted using well-established, robust computational tools.
In our implementation, we use FreeSurfer (20), a freely avail-
able, widely used, and extensively validated brain MRI analysis
software package, to automatically process structural MRI scans
and obtain a vector of volumetric measurements across sub-
cortical structures and cortical thickness measurements across
the entire cortical mantle, which constitute a comprehensive
description of the structural neuroanatomy.
We applied the morphometricity analysis to over 3,800 unique

brain MRI scans from nine large-scale studies and computed the
morphometricity of clinical conditions including Alzheimer’s dis-
ease, attention-deficit hyperactivity disorder (ADHD), schizo-
phrenia, autism spectrum disorder, and Parkinson’s disease and
nonclinical traits including sex, age, intelligence, education level,
and an array of cognitive measures. Our results demonstrate that
morphometricity analysis promises to offer a unique perspective
on the relationship between brain anatomy and behavioral, cog-
nitive, and physiological traits.

Results
Overview of the Model. The proposed morphometricity analysis is
based on the following LME model:

y= Xβ+ a+ e, [1]

where y is an N-dimensional column vector of a quantitative
phenotype with N being the sample size (i.e., number of sub-
jects), X is the (design) matrix of confounding variables (some-
times called covariates or nuisance variables) such as age and
sex, β is the (fixed effect) coefficient vector, a∼Nð0,   σ2aKaÞ is an
N-dimensional random effect vector drawn from a zero-mean
multivariate Gaussian distribution with a covariance matrix that
is equal to the scaled anatomic similarity matrix (ASM) Ka, and
the elements of the noise vector e are assumed to be drawn from
independent and zero-mean Gaussian distributions with homo-
geneous variance σ2e. The ASM encodes global morphological
resemblance between pairs of individuals in the sample and in
principle can be any nonnegative definite matrix with its diagonal
elements constrained to be equal to 1 on average, and σ2a can thus
be interpreted as the total variance captured by the ASM. In this
paper, we considered two types of intuitive and widely used
metrics that quantify the similarity of volumetric and cortical
thickness measurements extracted from structural brain MRI
scans between pairs of individuals: (i) a linear similarity metric
(i.e., inner product between normalized imaging measurements)
and (ii) a nonlinear Gaussian-type similarity metric (Methods).
Using a model selection approach, we found that the Gaussian
similarity metric provided consistently better description of

the data across the traits we studied (Methods and Table S1).
Therefore, all reported morphometricity estimates were based
on the Gaussian metric.
Formally, we define morphometricity based on the LME

model of Eq. 1 as

m2 ≐
σ2a

σ2a + σ2e
=
σ2a
σ2y
, [2]

where σ2y is the phenotypic variance. Morphometricity is thus the
proportion of phenotypic variation that can be explained by brain
morphology, the variation of which is captured by the ASM.
Estimates of morphometricity can be computed by plugging the
restricted maximum likelihood (ReML) estimates (21, 22) of
the variance components, σ2a and σ2e, into Eq. 2.
We extend this definition to the case-control design, that is,

binary disease traits (affected vs. unaffected), using the classical
liability-threshold model, which is widely used in population and
statistical genetic studies (23, 24). The model assumes that the
underlying disease liability (which is a quantitative variable) fol-
lows a Gaussian distribution and individuals are cases (affected) if
their liability exceeds a threshold. The morphometricity estimate
m2 for a disease trait on the observed scale, obtained by fitting the
model of Eq. 1 to the binary phenotype data, can be easily
transformed to the liability scale (24, 25):

m2
l =m2 Kð1−KÞ

φðtÞ2
Kð1−KÞ
Pð1−PÞ , [3]

where m2
l is the morphometricity on the liability scale, K is the

prevalence of the disease in the general population (i.e., the
proportion of the population having the disease), P is the prev-
alence of the disease in the study sample, t=Φ−1ð1−KÞ is the
liability threshold, Φ is the standard Gaussian cumulative distri-
bution function, and φ is the standard Gaussian density function.
In real disease studies, cases are often considerably oversampled
relative to their population prevalence (known as nonrandom
ascertainment), in which case P is larger than K. Transforming
morphometricity estimates from the observed scale to the liabil-
ity scale makes them independent of population and sample
prevalence and thus comparable across different diseases.

Overview of the Data.We analyzed brain MRI scans and trait data
from over 3,800 unique individuals spanning nine large-scale
studies: the Harvard/Massachusetts General Hospital Brain Ge-
nomic Superstruct Project (GSP) (26), the Human Connectome
Project (HCP) (27), the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) (28), the Attention-Deficit Hyperactivity Disorder
(ADHD 200) sample (29), the Open Access Series of Imaging
Studies (OASIS) cross-sectional sample (30), the Center for Bio-
medical Research Excellence (COBRE) schizophrenia sample
(31), the MIND Clinical Imaging Consortium (MCIC) schizo-
phrenia sample (32), the Autism Brain Imaging Data Exchange
(ABIDE) (33), and the Parkinson Progression Marker Initiative
(PPMI) (34). See Methods for further details on the datasets. The
traits of interest were grouped into three categories: clinical di-
agnoses, general nonclinical traits, and measures of cognition.

Morphometricity of Clinical Diagnoses. The clinical traits we ex-
amined included Alzheimer’s disease, ADHD, schizophrenia,
autism spectrum disorder, and Parkinson’s disease. Table 1 lists
the characteristics of the corresponding samples, along with
morphometricity estimates (on the liability scale) and assumed
population prevalence values (35–41). Fig. 1 shows the esti-
mated morphometricity values on the liability scale. Our analyses
revealed that Alzheimer’s disease is substantially morphometric
(with a 95% confidence interval of [0.94–1.00]), suggesting that

E5750 | www.pnas.org/cgi/doi/10.1073/pnas.1604378113 Sabuncu et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604378113/-/DCSupplemental/pnas.201604378SI.pdf?targetid=nameddest=ST1
www.pnas.org/cgi/doi/10.1073/pnas.1604378113


this clinical condition is associated with a substantial anatomical
signature. However, ADHD, schizophrenia, and autism showed
moderate morphometricity values, all greater than 0.35. Finally,
we found that Parkinson’s disease was modestly morphometric,
with an estimated liability-scale value of 0.20. All examined clinical
conditions were statistically significantly associated with whole-
brain macroscopic morphology, that is, the estimated morpho-
metricity values were significantly larger than zero (all P < 0.005).
Table S2 lists point estimates of morphometricity and their SEs
computed via jackknife resampling (42). These results are in strong
agreement with the parametric estimates in Table 1.
We had access to two independent samples that allowed us to

replicate our morphometricity estimates of Alzheimer’s disease
(OASIS) and schizophrenia (COBRE). We observed that there
was strong agreement between the estimates from independent
samples (Fig. 1). Table S3 provides further data about these
replication analyses.

Morphometricity of General, Nonclinical Traits. The nonclinical
traits we examined were age, general intelligence (IQ), sex, and
education level. Table 2 lists the characteristics of the samples
used in the primary analyses, along with the estimates of mor-
phometricity. These results revealed that all of the examined
general traits are significantly and substantially morphometric
(Fig. 2); all morphometricity point estimates were greater than
0.8, and all P values were <1e-8. Table S2 lists morphometricity
estimates and their SEs computed via jackknife resampling.
These results and the parametric estimates in Table 2 are
virtually identical.
We had access to independent replication samples for all of

the general nonclinical traits we examined. It can be seen in Fig.
2 that the replication analyses revealed remarkably consistent
morphometricity estimates. Table S4 provides further data about
these replication analyses.

Contrasting with ROI-Based Association Analyses. The most com-
mon analytic strategy in today’s neuroimaging studies involves
examining associations between traits and measurements from
ROIs. Our goal in this analysis was to contrast the proposed
whole-brain morphometricity analysis with such ROI-based tech-
niques. We restricted our analysis to the six phenotypes (age, IQ,
sex, education, Alzheimer’s disease, and schizophrenia), for
which we had two independent datasets. We then used one of the
samples (the replication sample in the analyses above) for the
discovery of the most significantly associated ROI with the trait
and the other sample (the primary sample in the analyses above)
to quantify the strength and magnitude of association. Table S5
lists the structures that exhibited the strongest association with
the traits in the discovery analysis.
Fig. 3 visualizes the magnitude of association between the ROI-

based measurements and phenotypic variation, assessed using the
same LME modeling framework of whole-brain morphometricity.
Here, we replaced the global ASM with one computed based on
ROI measurements (see Methods for further details). It can be
seen that the proportion of variance explained by ROI-based
measurements was consistently lower than whole-brain mor-
phometricity estimates (with general intelligence exhibiting the
smallest discrepancy). Most notably, for education and schizo-
phrenia, ROI-based associations were much weaker (both in
magnitude and statistical significance) than whole-brain associ-
ations (Fig. 3 and Table S5). In fact, education and schizophrenia
did not exhibit a statistically significant correlation with indi-
vidual ROI-based measurements, whereas whole-brain mor-
phometricity analyses revealed significant associations.

Morphometricity Analysis of Cognitive Measures. We used the most
recent release of the HCP data (downloaded on December 15,
2015) to compute morphometricity estimates for an array of
cognitive measures. Our primary analysis relied on 190 nontwin
subjects of non-Hispanic European ancestry (28.9 ± 3.8 y of age,
47.3% female) drawn from separate families (i.e., there were no
siblings in this sample). Fig. 4 shows the morphometricity esti-
mates computed for variables that measure sustained attention,
nonverbal and verbal episodic memory, working memory, exec-
utive function, delay discounting, language (vocabulary compre-
hension and reading decoding), spatial orientation, processing
speed, fluid intelligence, and self-regulation (impulsivity). We
conducted a secondary (replication) analysis on 208 non-Hispanic
white twins (29.4 ± 3.2 y of age, 61.4% female), with one twin
drawn from each family, and thus there were no siblings in this
replication sample. Fig. 4 shows the results obtained from this
secondary analysis as well.
Our results demonstrated that all examined variables, except

for the measure of self-regulation, are statistically significantly
morphometric. We note further that there was an important amount
of variability in the degree of morphometricity across cognitive
measures. This variation was remarkably consistent between the
primary and secondary analyses. Measures of attention, cognitive
flexibility, working memory, verbal episodic memory, and inhibition
were substantially morphometric (with estimates greater than 0.80

Table 1. Sample characteristics and morphometricity estimates for analyzed disease traits

Disease Case N
Case age

(mean ± SE) Case females, % Control N
Control age
(mean ± SE)

Control
females, % Study name

Assumed
prevalence, %

Morphometricity
(liability scale) SE

Alzheimer’s 154 74.6 ± 7.6 46.8 219 75.9 ± 5 48.4 ADNI 13 1.00*** 0.03
ADHD 122 11.6 ± 3.2 75.4 384 11.8 ± 2.9 62.2 ADHD 1 0.55** 0.16
Schizophrenia 92 33 ± 11.2 75.0 85 32.8 ± 11.7 67.1 MCIC 1 0.50*** 0.03
Autism 209 17.6 ± 7.9 14.4 305 17.3 ± 7.2 18.4 ABIDE 1 0.38*** 0.06
Parkinson’s 376 61.4 ± 9.7 35.1 152 60.4 ± 11.4 47.8 PPMI 0.2 0.20* 0.06

*P < 5e-3, **P < 5e-4, ***P < 5e-5.

Fig. 1. Morphometricity estimates of various diseases (on the liability scale)
computed using the Gaussian ASM of Eq. 5. Each bar is annotated with study
names used to compute these estimates. For Alzheimer’s disease and
schizophrenia, we had independent samples used to compute replication
estimates (purple bars). Error bars indicate SE of the estimates.
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in both primary and secondary analyses). Measures of language,
nonverbal episodic memory, spatial orientation, processing speed,
and fluid intelligence were moderately morphometric (with point
estimates greater than 0.50).

Discussion
Morphometricity: A Metric to Quantify Whole-Brain Associations with
a Trait. In this paper, we introduced a technique for analyzing the
neuroanatomical underpinnings of various clinical, physiological,
and behavioral traits using large-scale neuroimaging data. In
contrast with association testing techniques widely used in to-
day’s neuroimaging studies, our approach does not focus on a
priori ROIs or conduct independent (massive univariate) inter-
rogations at each candidate region or voxel. Instead, morpho-
metricity is a global quantification of the whole-brain anatomical
signature of a trait.
Although the proposed approach is intimately related to

image-based multivariate prediction performance, there are two
characteristics of morphometricity that make it different from
the application of machine learning. First, the metric does not
require cross-validation, which is often the technique used in
machine learning to gauge prediction accuracy. Cross-validation
is usually computationally demanding and relies on the unbiased
setting of model parameters (which might be achieved via a
nested cross-validation strategy) and repeated and balanced
partitioning of data into train and test sets. In contrast, the pro-
posed LME-based approach exploits the entire dataset to fit the
model and estimate the unknown variance component parame-
ters, and in turn morphometricity, in an unbiased fashion. Second,
morphometricity is a classical statistical measure of explained
variance and is therefore familiar to interpret.
Morphometricity has many parallels to heritability in genetics

(15, 16). Both concepts, statistical in nature, are about pheno-
typic variation and the proportion of variance explained. Thus,

the interpretation has to be carried out within a probabilistic
framework, is limited by the studied population, depends on the
technique used to quantify the trait, and can be confounded by
unmeasured variables acting through unknown mechanisms. The
biases due to confounds such as (cryptic) relatedness between
subjects or population admixture are well-studied in heritability
analysis. As we elaborate below, morphometricity alone cannot
be used to infer causal relationships but has to be followed up
with further studies that will home in on potential mechanisms.
The core difference between morphometricity and heritability
is the direction of association. In heritability, this direction is
known and fixed, because there is no known biological mecha-
nism that would allow the phenotype to alter the genotype. In
morphometricity, however, the directionality can go either way
and has to be dissected with further biological studies.

Traits Can Be Morphometric to Different Degrees. Virtually all traits
we examined in this study were significantly morphometric. However,
our analyses also revealed interesting variation in the whole-brain
anatomical signature of different traits. Certain phenotypes, such as
Alzheimer’s disease, age, and (maybe surprisingly) general intelligence
(IQ), were substantially morphometric (with estimates exceeding
0.90), whereas other measures, such as nonverbal episodic memory,
spatial orientation, processing speed, and fluid intelligence exhibited
moderate morphometricity. Furthermore, the psychiatric disorders we
examined (schizophrenia, ADHD, and autism) were all moderately
morphometric, unequivocally pointing to a neuroanatomical substrate
for these clinical conditions. The proposed morphometricity analysis is
the first coherent framework that enables us to directly quantify and
compare the morphological signatures of such diverse sets of traits.
The traits we presented in this study have been examined ex-

tensively in prior structural neuroimaging studies to reveal mor-
phological correlates. Whereas many of these studies relied on
regional or voxel-level association tests that are conducted at each
location independently, there is growing evidence that multiple
brain regions are implicated in complex, multivariate relationships
with many common phenotypes. For example, patterns of atrophy
in neurodegenerative conditions such as Alzheimer’s disease have
been shown to spread through large-scale, distributed brain net-
works that can be circumscribed based on resting-state activity (43).
Furthermore, developmental mechanisms such as neuronal migra-
tion, synapse formation, myelination, and synaptic pruning follow
predictable and robust spatiotemporal patterns that are likely as-
sociated with behavioral traits such as intelligence and disrupted in
psychiatric disorders such as schizophrenia (44, 45). Our data from
ROI-based analyses support the premise of analyzing brain-wide
patterns, rather than isolated regions, for associations between
neuroanatomical features and behavioral or clinical phenotypes.

Morphometricity Estimates Are Consistent Across Independent
Samples. For most of the traits we examined in this study we rep-
licated our analyses on independent data. All point estimates fell
within 95% confidence intervals of the estimates computed on the
corresponding independent data. These results suggested that the
presented morphometricity estimates are consistent across different
samples. We present these results with a cautionary note, however.

Table 2. Sample characteristics and morphometricity estimates for the analyzed general nonclinical traits

Trait name Sample size
Age (mean ± SE)

(minimum–maximum) Females, % Study name
Trait (mean ± SE)

(minimum–maximum)
Morhopmetricity

estimate SE

Age 1,073 22 ± 5.8 (18–81) 56 GSP N/A 1.00 0.01
IQ 155 11.3 ± 2.8 (7.2–17.7) 60 ADHD 110.9 ± 14.4 (73–144) 0.95 0.05
Sex 1,074 25.3 ± 13.7 (18–84) 50 GSP N/A 0.93 0.02
Education 152 60.4 ± 11.4 (30–82) 34.8 PPMI 16.1 ± 2.8 (9–24) 0.81 0.08

N/A, not applicable.

Fig. 2. Morphometricity estimates of general nonclinical traits computed
using the Gaussian ASM of Eq. 5. IQ denotes general intelligence. Each bar is
annotated with study names used to compute these estimates. Blue bars
correspond to results from the primary analyses, whereas purple bars cor-
respond to independent replication analyses. Error bars indicate SE of the
estimates.
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As we emphasized above, morphometricity is a statistical metric
that depends on the studied population and the measurement of the
trait. Thus, variations in the patient composition, for example, or
changes in diagnostic criteria will inevitably lead to different esti-
mates of morphometricity. In our replication analyses, these factors
seemed to play only a minor role.

Whole-Brain Morphometricity Analyses Can Be More Powerful Than
ROI-Based Analyses. We present morphometricity analysis as an
alternative to the classical region-based interrogation conducted
in neuroimaging, which is often focused on discovering or char-
acterizing biomarkers and mapping biological effects. The cen-
tral challenge in region-based approaches is that we need to
either confine our analyses to a priori ROIs or exhaust statistical
power by probing a large number of candidate regions. In our
experiments, we conducted a direct comparison between whole-
brain morphometricity analysis and an ROI-based approach.
To identify trait-specific ROIs, a discovery analysis was run on
independent samples of each trait. The associations between the
identified ROIs and traits were then tested in nonoverlapping
samples. Identifying the most associated ROI and estimating the

magnitude of association in independent samples avoided the issue
of circular analysis (46, 47) and produced unbiased morphometricity
estimates for individual ROIs. Our results demonstrated that whole-
brain morphology consistently explained more of the phenotypic
variation than single ROIs. Furthermore, morphometricity analysis
could reveal associations that were not detectable when focused on
isolated regions. For example, education and schizophrenia were
found to be not significantly associated with volumetric/thickness
measurements of any of the individual ROIs, yet both traits were
moderately and significantly morphometric in whole-brain analyses,
which indicates that they may have spatially distributed neuroana-
tomical signatures that cannot be captured by individual ROIs. In
addition, whole-brain morphometricity analysis offers the capa-
bility of capturing interactions between brain regions and thus
can be more powerful than analyzing each ROI independently.

Potential Limitations and Drawbacks of Morphometricity. Morpho-
metricity is a statistical metric and assumes a particular, linear
model of the relationship between variables. One critical com-
ponent of the model is the ASM, which captures the covariance
structure of the random effect that accounts for the morpho-
logical variation in the sample. In this work, we considered a linear
metric and a nonlinear Gaussian-type metric to quantify the sim-
ilarity of volumetric/thickness measurements between pairs of
subjects and used a model selection technique to find the metric
that better describes the data. Our analyses suggest that the
Gaussian metric is consistently better than the linear metric across
the traits we studied and captures a significant portion of relevant
intersubject variation under different conditions. However, we
have not attempted to exhaustively explore other types of similarity
metrics, which may emphasize different aspects of the data and
produce different results. Alternatively, the ASM can be built us-
ing a bottom-up approach and expressed as a combination of el-
ementary matrices, and the parameters of this combination can be
treated as unknown variables. By increasing the unknowns in the
model, however, this approach will likely reduce statistical power.
Another important point to consider is that ASM should reflect

brain-wide global morphology and cannot be optimized for a spe-
cific trait. This latter observation is critical to be able to objectively
compare morphometricity estimates across different traits. Our
global definition of ASM and morphometricity, however, constrains
the interpretation of the results. Certain traits with very dramatic

Fig. 3. ROI-based morphometricity estimates of general nonclinical traits
(age, intelligence, sex, and education), Alzheimer’s disease (AD), and
schizophrenia (SCZ). For AD and SCZ, morphometricity estimates have been
transformed to the liability scale. Red circles denote whole-brain morpho-
metricity estimates for each trait. Error bars indicate SE of the estimates.

Fig. 4. Morphometricity estimates of various measures of cognition computed on data from the HCP and using the Gaussian ASM. Blue and purple bars
correspond to primary and secondary analyses, respectively. Error bars indicate SE of the estimates.
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yet focal effects might not yield large morphometricity estimates,
because the proposed model is insensitive to localized effects.
Finally, as in any association testing framework, the interpreta-

tion of morphometricity analysis results should be done very care-
fully and consider confounding mechanisms. This is well understood
in the context of heritability, where nongenetic (e.g., dietary, cul-
tural, and socioeconomic) influences that vary across racial groups
or families can confound genetic analyses. Similar drawbacks apply
to morphometricity. For example, siblings might have similar brain
morphologies and phenotypic expressions, yet there might not be
any causal link between brain morphology and the phenotype.
Therefore, we recommend running morphometricity analyses on a
set of unrelated subjects. Furthermore, we advise constraining the
analysis (if possible) to a homogeneous sample of uniform ancestry
and explicitly controlling for other potential confounding factors,
such as age, sex, and scan site.

Potential Uses and Extensions of Morphometricity.Morphometricity
analysis can be used to prioritize imaging modalities, acquisition
parameters, and processing pipelines. For example, there are a
growing number of software packages that allow us to automati-
cally extract numerous structural measurements from brain images.
Different constructions of feature vectors and different metrics that
quantify the similarity of imaging features between individuals will
result in distinct ASMs, which can be compared with the model
selection framework used in this study. Therefore, morphometricity
analysis offers a way to quantitatively and objectively identify the
imaging features and intersubject similarity metric that best de-
scribe the trait-relevant aspects of whole-brain morphology.
Alternatively, one can imagine estimating the functional, struc-

tural, connectomic, and molecular signatures of a trait within a
single statistical model, where each of these components is rep-
resented with a random effect and the corresponding similarity
matrix computed from a relevant modality. Similarly, one can
partition the phenotypic variation into contributions from, for
instance, cortical and subcortical features, or different large-
scale brain networks. This strategy might offer novel insights
about the neural correlates of certain phenotypes by integrating
multiple modalities and/or modeling spatial heterogeneity in a
unified analytic framework. This novel perspective might also
allow us to quantify the complementary information contained
in different imaging modalities and spatial locations.
As longitudinal imaging studies continue to grow, it will be

interesting to extend morphometricity to examine the relation-
ships between temporal dynamics in brain morphology (e.g.,
global atrophy rates) and clinical or behavioral traits. We envi-
sion using the LME strategy to model longitudinal data (48, 49),
and we will define the morphometricity of longitudinal changes
in phenotypes within this framework.
Finally, the proposed framework can also offer a novel per-

spective on examining relationships between different phenotypes.
We plan to extend morphometricity, which is essentially the degree
of association between global brain morphology and a phenotype,
to quantify the “morphological correlation” between phenotypes.
This will be analogous to genetic correlation analysis (50), which
quantifies the genetic overlap between traits. We believe that
morphological correlation will be an invaluable tool to examine the
complex biological relationships between the various dimensions
of human behavior and will inform basic and translational research
into exploring and redefining the landscape of brain diseases.

Methods
The Imaging Measurements. In this study we used the extensively studied
FreeSurfer-derived measurements to describe the whole-brain morphology.
The imaging measurements included volumes of noncortical structures (51)
(left and right cerebral white matter, lateral ventricle, inferior lateral ven-
tricle, cerebellum white matter, cerebellum cortex, thalamus proper, cau-
date, putamen, pallidum, hippocampus, amygdala, and the third and fourth

ventricles) and thickness measurements of cortical regions (52) (left and right
superior frontal, rostral middle frontal, caudal middle frontal, pars oper-
cularis, pars triangularis, pars orbitalis, lateral orbitofrontal, medial orbito-
frontal, precentral, paracentral, frontal pole, superior parietal, inferior
parietal, supra marginal, post central, precuneus, superior temporal, middle
temporal, inferior temporal, banks of the superior temporal sulcus, fusiform,
transverse temporal, entorhinal, temporal pole, parahippocampal, lateral
occipital, lingual, cuneus, pericalcarine, rostral anterior frontal, caudal an-
terior frontal, posterior parietal, isthmus parietal, and insula).

The Anatomical Similarity Matrix. The ASM plays a central role in the proposed
morphometricity analysis. The ASM is an N×N symmetric matrix, where N is
the number of subjects in the analyzed sample. Entries in the ASM quantify
the pairwise global similarity between the brain morphologies of two indi-
viduals. In principle, the ASM can be any nonnegative definite matrix with its
diagonal elements constrained to be equal to 1 on average. In this study, we
considered two widely used similarity metrics (linear and Gaussian) to con-
struct the ASM.

Assume that vik denotes the k-th imaging measurements from subject i, M
is the total number of measurements, and sk is the sample SD of the k-th
measurement. The first ASM we considered uses a linear kernel. Thus, the
similarity is measured as the linear correlation between pairs of imaging
vectors and the ði, jÞ-th entry is computed as

1
M

X
k

vikvjk
s2k

. [4]

This is equivalent to modeling the random effect a in Eq. 1 as a linear
combination of the imaging features: a= Zu, where Z is an N×M matrix
comprising the standardized imaging measurements [i.e., the ði, kÞ-th entry
of Z is vik=sk], and u is anM× 1 random vector distributed as u∼N

�
0,   ðσ2a=MÞI

�
(i.e., each imaging measurement is associated with an independent and nor-
mally distributed effect size). The covariance of a can then be computed as
σ2a ·ZZ

T =M, that is, ZZT=M is the ASM with its entries explicitly stated in Eq. 4.
The second ASM we considered was computed using a Gaussian kernel on

standardized imaging features, with the ði, jÞ-th entry defined as

exp
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Note that each ASM definition corresponds to different models of trait-
relevant variation. For example, the Gaussian kernel can capture nonlinear
and multivariate associations between brain morphology and traits. One can
further decide to weigh different features differently, based on, for example,
some a priori information about trait relevance. Each of these ASM choices
will correspond to a particular semiparametric regression model, where the
morphological association is captured with a function that belongs to a
specific space of functions induced by the used kernel (53). Below, we de-
scribe an empirical strategy to choose the most appropriate ASM model
from a selection of candidates.

In the presented study, for a given similarity metric, we computed an ASM
for the cortical thickness measurements and an ASM for the head-size-nor-
malized volumes of noncortical structures (i.e., divided by total intracranial
volume estimates). The global ASMwas then computed as the average of the
cortical and noncortical ASMs.

Model Selection. To select the ASM that can best describe the data, we used a
model selection technique derived for LME models and proposed in ref. 53.
Specifically, for a given ASM Ka, if we denote V̂ = σ̂2aKa + σ̂2eI as the ReML
estimate of the covariance of y, P̂ = V̂−1 − V̂−1XðXT V̂−1XÞ−1XT V̂−1, and de-
fine S= I − σ̂2eP̂, it can be shown that trðSÞ, that is, the trace of the matrix S, is
a measure of model complexity. Liu et al. (53) thus proposed the following
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
in the LME modeling framework:

AIC=NlogðRSSÞ+2trðSÞ,     BIC=NlogðRSSÞ+ logðNÞ · trðSÞ, [6]

where RSS= ðy − ŷÞT ðy − ŷÞ= σ̂2eðN− trðSÞÞ is the residual sum of squares of
the LME model. Both AIC and BIC reward the goodness of fit (the first term)
of the model and penalize complex models (the second term) to avoid
overfitting. BIC has a larger penalty term than AIC for large N and thus fa-
vors simpler models. We selected the ASM that gave smaller AIC/BIC values.

The Analysis Pipeline. We first ran FreeSurfer on all structural brain MRI scans
available in each of the analyzed studies and dropped the subjects that
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FreeSurfer failed to complete successfully. Next, we conducted automatic
quality control on the measurements computed by FreeSurfer by identifying
outliers; if >25% of the used morphometric variables exhibited values that
were more than two SDs away from the population mean, we deemed that
subject an outlier and discarded it. For the remaining subjects, we computed
pairwise similarity measures based on the linear or Gaussian kernel de-
scribed above. If there were two subjects that exhibited a cortical and
noncortical similarity measure greater than 0.95, we dropped one of those
subjects, accounting for the possibility that this was a duplicate case or a
closely related individual. Finally, we included sex and age as covariates in all
our analyses (unless sex or age was the trait of interest, in which case that
variable was not included). We further introduced dummy variables that
indicated site IDs when analyzing multisite data [except for ADNI, where
there were a large number of sites, yet the imaging parameters were
carefully calibrated across sites (28)].

Given individual-level data and the ASM, we fit the model of Eq. 1 to
estimate the variance component parameters via the ReML algorithm (21,
22). In MATLAB, we implemented an efficient Fisher scoring method to it-
eratively maximize the restricted likelihood of the model. The SE of the
variance component estimates can be derived using the inverse of the Fisher
information matrix when the algorithm converges. Empirically we confirmed
the parametric estimates using jackknife resampling (Table S2). Significance
of the morphometricity estimate was obtained via a likelihood ratio test,
comparing LME models with and without the random effects. Because the
null hypothesis (σ2a = 0) lies on the boundary of the parameter space, the
likelihood ratio test statistic follows a half–half mixture of χ20 (a χ2 distribu-
tion with all probability mass at zero) and χ21 (a χ2 distribution with one
degree of freedom) (54). Implementations of the developed morphome-
tricity tools are available at people.csail.mit.edu/msabuncu/morphometricity.

ROI-Based Morphometricity Analysis. To compare the proposed whole-brain
morphometricity analysis to more conventional ROI-based analyses, we
implemented an ROI-based adaptation of Eq. 1. Here, instead of computing
the ASM using an array of variables that span the brain, we computed ROI-
based ASMs only using a single ROI biomarker: the variable that had the
strongest association with the trait of interest. To identify the ROI biomarker
of each trait, we conducted an independent discovery analysis on a non-
overlapping sample, examining the association between each of the candi-
date imaging variables and the trait in a regression analysis while
appropriately controlling for age, sex, and site. The imaging variable that
exhibited the smallest P value was then identified as the ROI biomarker for
the trait of interest and used in the morphometricity analysis. We note that
for the ROI-discovery analyses we used the replication (secondary) samples
of the whole-brain morphometricity analyses. This way, we computed the
ROI-based morphometricity results using the primary samples.

The Data. All of the data analyzed in this study have been made publicly
available and are described in detail in prior publications (28–34, 55). As
explained in these references, the data collection efforts have been approved
by pertinent institutional committees and all subjects have received appro-
priate informed consent. We obtained access to these data following the
relevant procedures outlined in corresponding data dissemination websites.

We used baseline brain MRI scans (T1-weighted acquired on 1.5T ma-
chines), clinical diagnosis, and demographic variables from phase 1 of the
ADNI (28). In the ADHD 200 sample (29), cases were defined as those with
evidence of nontypical development and an ADHD-Combined diagnosis, as
per the published phenotypic key (fcon_1000.projects.nitrc.org/indi/adhd200/
general/ADHD-200_PhenotypicKey.pdf). In the cross-sectional OASIS sample
(30), subjects (of 60 y or older) with a clinical dementia rating (CDR) greater
than 0 were classified as having dementia. Elderly subjects with a 0 CDR were
classified as healthy controls. For the 20 control subjects with repeat scans,

we only used the data from the first imaging session. In the COBRE sample
(31), schizophrenia subjects were identified according to the phenotype file
(fcon_1000.projects.nitrc.org/indi/retro/cobre.html). The MCIC data were com-
piled from a shared repository of multisite brain imaging data collected for the
clinical investigation of schizophrenia (32). The ABIDE analyses (33) were
conducted on subjects who were older than 10 y, and cases were defined as
those having a nonzero diagnostic group entry in the phenotype table
(fcon_1000.projects.nitrc.org/indi/abide/). In the PPMI analyses (34), cases were
determined to be those diagnosed with Parkinson’s disease at baseline and
controls were those who were clinically healthy and not prodromal, again at
baseline (www.ppmi-info.org/access-data-specimens/download-data/).

All general trait analyses were conducted on healthy control samples (see
criteria of relevant study). Both theOASIS andGSP samples cover a substantial
portion of the adult life span and thus were used to estimate the morpho-
metricity of age.All GSP analyseswere constrained to unrelated, healthy controls
of non-Hispanic European ancestry, with high-quality structural brain MRI scans
acquired on a 12-channel coil (26). In the general intelligence (IQ) analyses, we
used the Wechsler Abbreviated Scale of Intelligence as the phenotype (both in
the ADHD 200 and ABIDE samples). For the morphometricity analysis of sex, we
created subsamples that were gender-balanced (50% female) and age-matched
between sexes. In the PPMI data, education was measured in years (minimum 9
and maximum 24), whereas in the OASIS sample, education levels were encoded
as 1: less than high school graduate, 2: high school graduate, 3: some
college, 4: college graduate, and 5: beyond college.

In the cognitive measure analyses, we used the demographic and behavioral
measures reported in the “open access” and “restricted” subject information
spreadsheets available from the HCP database website (www.humanconnectome.
org/data). The HCP collected a range of well-validated and reliable behavioral
measures, including those from the NIH Toolbox Assessment of Neurological
and Behavioral Function, and several additional measures to assess domains not
covered by the NIH Toolbox. For more information on the rationale behind the
development of the behavioral batteries used in HCP, see ref. 55.

All MRI scans from ADNI, OASIS, ADHD 200, MCIC, COBRE, PPMI, and HCP
were processed with FreeSurfer version 5.3. The GSP MRI scans were pro-
cessed with FreeSurfer version 4.5.
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