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Abstract 

 

The dynamics and evolutionary underpinnings of zoonotic transmission and emergence 

By  

Sarah Guth 

Doctor of Philosophy in Integrative Biology 

University of California, Berkeley 

Dr. Mike Boots, Chair 

 
Emerging infectious diseases (EIDs) pose a significant threat to public health, with the 

frequency of emergence events increasing in recent decades. The vast majority of EIDs are 
zoonotic, meaning they transmit between animal and human hosts. We applied methods in 
genomics, epidemiology, and ecology in field, laboratory, and computational settings to study 
the dynamics and evolutionary underpinnings of zoonotic transmission and emergence in 
wildlife and human populations. Specifically, we used statistical modeling to analyze zoonotic 
risk, developed a DNA methylation assay for estimating chronological age in bats to support 
age-seroprevalence modeling of bat viruses, and mathematically analyzed pathogen-host 
coevolution in an adaptive dynamics framework.  

Prior to this doctoral dissertation research, my master’s thesis highlighted the growing 
risk that humans introduce zoonoses to new geographic areas where the imported pathogens can 
then ‘spill back’ to infect local wildlife. We reviewed ecological mechanisms underlying the 
emergence of novel enzootic cycles and made the case that modeling approaches can provide 
critical insights in the face of empirical limitations. This paper set the stage for my doctoral 
dissertation focus on the interdisciplinary study of zoonotic pathogens.  

The first dissertation chapter statistically analyzed zoonotic risk across mammalian, 
directly transmitted zoonotic viruses, delineating host and viral traits predictive of the severity of 
disease they engender in the human population (‘virulence’) and in their capacity for sustained 
human-to-human transmission post-emergence. We found that animal hosts most distantly 
related to humans—in particular, order Chiroptera (bats)—harbor the most virulent zoonoses 
with a lower capacity for endemic establishment in human populations.  

The second chapter built off this analysis, increasing our sample size to include avian and 
vector-borne viruses and additionally analyzing variation in the total number of human deaths 
caused by each virus (‘death burden’). We found that bats still harbored the most virulent 
viruses, but death burden did not correlate with any reservoir group and instead, was a function 
of viral traits. Nevertheless, these statistical analyses suggest that bats offer a study system that is 
both highly relevant to public health and valuable for understanding the evolutionary and 
transmission dynamics of zoonotic pathogens. 
 The third chapter presented a hybridization capture-based target enrichment strategy for 
estimating the chronological age of bats from DNA methylation (DNAm) profiles. Many 
mechanistic epidemiological and population models in wildlife rely on age data, traditionally 
estimated via mark-recapture surveys, body measurements, lethal sampling of bone density, or 
tooth analyses—methods that are often prohibitively resource-intensive, imprecise, or 
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impractical. Our DNAm assay offers a cutting-edge alternative, requiring just a single, non-
invasive DNA sample. This chapter is an important first step in increasing epidemiological and 
population modeling capacity in bat populations. 

The fourth and final chapter contributed a theoretical perspective to our understanding of 
the evolutionary dynamics of zoonotic transmission and emergence through an adaptive 
dynamics framework. Specifically, we analyzed how the interplay between parasite-host 
coevolution, population dynamics, and epidemiology influence the optimal parasite growth 
strategy and host investment in constitutive (always present and costly) as opposed to induced 
(activated and costly only upon infection) defense. Critically, we provide the first theoretical 
framework that considers both coevolutionary and population-level dynamics, examining trends 
across host competition and natural mortality rates when the parasite does not directly affect host 
fertility, as well as when the parasite is a castrator. We show that incorporating host-parasite 
coevolution into our model captures feedbacks between the host immune and parasite growth 
strategies that are missed when only the host is allowed to evolve. Furthermore, we find that 
whether the parasite affects host reproduction significantly impacts host-parasite coevolution; 
when the parasite is a castrator, selection on the host is often largely geared towards minimizing 
reproductive costs—either by investing in immunity to avoid infection or recover when parasite 
prevalence is high, or by reducing investment in reproductively costly constitutive defense when 
the parasite prevalence is low. 
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CHAPTER 1 
 

Host phylogenetic distance drives trends in virus virulence and transmissibility across the 
animal-human interface 

 
Abstract 
Historically, efforts to assess ‘zoonotic risk’ have focused mainly on quantifying the potential for 
cross-species emergence of viruses from animal hosts. However, viruses clearly differ in relative 
burden, both in terms of morbidity and mortality (virulence) incurred and the capacity for 
sustained human-to-human transmission. Extending previously published databases, we 
delineated host and viral traits predictive of human mortality associated with viral spillover, viral 
capacity to transmit between humans following spillover and the probability of a given virus 
being zoonotic. We demonstrate that increasing host phylogenetic distance from humans 
positively correlates with human mortality but negatively correlates with human transmissibility, 
suggesting that the virulence induced by viruses emerging from hosts at high phylogenetic 
distance may limit capacity for human transmission. Our key result is that hosts most closely 
related to humans harbour zoonoses of lower impact in terms of morbidity and mortality, while 
the most distantly related hosts—in particular, order Chiroptera (bats)—harbour highly virulent 
zoonoses with a lower capacity for endemic establishment in human hosts. As a whole, our 
results emphasize the importance of understanding how zoonoses manifest in the human 
population and also highlight potential risks associated with multi-host transmission chains in 
spillover. 
 
Introduction  
Emerging infectious diseases (EIDs) pose a significant threat to public health with the frequency 
of emergence events increasing in recent decades (1). The vast majority of EIDs are zoonotic, 
meaning they transmit from animal to human hosts (2). Several studies have conducted meta-
analyses to characterize trait profiles associated with zoonotic hosts and viruses (2–6). The 
majority of this work has focused on quantifying “zoonotic potential”—the probability that a 
pathogen, or a pathogen originating from an animal species or region of interest, could emerge 
into the human population. Such a binary categorization effectively treats all zoonoses as risks of 
equal magnitude, but it is clear that not all zoonoses are created equal. Emerging zoonoses vary 
both in the severity of disease they engender in the human population (‘virulence’) and in their 
capacity for sustained human-to-human transmission post-emergence. A more nuanced 
understanding of how zoonoses establish in their human hosts will be critical to any public health 
effort to combat EIDs—as diseases with different severities and transmissibilities will require 
uniquely targeted intervention and control strategies. 
 Recent meta-analyses have begun to explore the impact of zoonoses post-spillover, 
though, to date, only two studies have assessed variation in zoonotic severity. Geoghegan et al. 
(7) and Brierley et al. (8) demonstrated that zoonoses engendering higher case fatality rates 
(CFRs) are associated with limited ability for human-to-human transmission. Brierley et al. (8) 
identified viral traits predictive of virulence but categorized zoonotic severity only in binary 
terms—“severe” or “nonsevere”. A slightly larger body of work has identified viral traits 
predictive of a zoonotic pathogen’s capacity for between-human transmission post-spillover (7–
10). However, the majority of these studies use a binary classification scheme (i.e. can transmit 
between humans or cannot) in their analyses. In nature, there is considerable variation in a 



 2 

pathogen’s capacity for human-to-human transmission, ranging from none (humans are dead end 
hosts) to stuttering chains to sustained transmission (11). Woolhouse et al. (12) and Lloyd-Smith 
et al. (13) classify this variation according to a zoonotic pathogen’s basic reproduction number 
(R0) among human hosts, delineating the number of cases engendered by a single primary case in 
the human population. In this classification scheme, both dead-end and stuttering chain zoonoses 
are described by subcritical (<1) R0 values, while zoonoses that sustain human-to-human 
transmission have R0 values >1. For example, human-to-human transmission has been reported 
for Andes virus, but transmission chains are rare and typically short-lived (R0 < 1) (14), while 
other viruses, such as Ebola, have the capacity for effective between-human transmission, 
resulting in long transmission chains and large epidemics (R0 > 1) (15). Additionally, some 
zoonotic pathogens, such as Hepatitis E, can establish endemic transmission in human 
populations (16). To our knowledge, Brierley et al. (8) is the only meta-analysis to date that 
begins to capture this nuance, using a 3-point ranking system to distinguish between zoonotic 
pathogens without human transmission, and those with limited and sustained transmission. 
 All previous meta-analyses investigating zoonotic severity and transmissibility have 
focused almost exclusively on identifying viral predictors of zoonotic impact post-spillover. 
Currently, no comparative studies of zoonotic virulence and transmissibility consider the role of 
the animal host, though both virulence and transmission are shaped by viruses’ interactions with 
their hosts (17–19). A virus must replicate to overcome host defenses and transmit to other 
individuals in the host population, but replication can also produce maladaptive virulence that 
damages the host, thus shortening the infectious period and jeopardizing opportunities for future 
transmission (20,21). According to this virulence-transmission tradeoff, viruses optimize 
virulence incurred in their hosts so as to effectively transmit to new hosts. This optimal balance 
depends on how hosts respond to the virus (‘host selective pressure’) (22). If increased viral 
replication is needed to overcome more robust host defenses, host immunity will select for 
higher virulence (23–25). Host population structure can also facilitate or hinder transmission, 
further influencing the evolution of virulence (26,27). 

In this study, we addressed the need for a more nuanced understanding of how emerging 
zoonoses manifest in the human population. Focusing on directly transmitted viruses with a 
recent history of spillover to humans, we extended databases published by Olival et al. (28), 
detailing the mortality (‘virulence’) induced by a given virus upon spillover to humans and 
quantifying each virus’s capacity for human-to-human transmission. We used generalized 
additive models to identify mammalian host and viral traits predictive of: (a) the human CFRs 
induced by viral zoonosis, (b) the extent of human-to-human transmission resulting from 
zoonotic spillover, and (c) the probability of a given virus being zoonotic.  

Our analysis of zoonotic risk extends beyond the simple probability of emergence and 
improves on previous analogous studies to investigate both host and viral trait predictors for non-
binary metrics of virulence and transmissibility. This is the first meta-analysis of its type to 
distinguish between viruses’ reservoir host species (i.e., primary selective environment), and 
secondary host species that have been infected, but do not maintain zoonotic transmission. We 
hypothesized an inverse relationship between CFR and human transmissibility and anticipated 
that both reservoir host and viral traits would significantly predict zoonotic risk. In particular, we 
investigated the hypothesis that host species distantly related to humans would host more 
virulent viruses with lower capacities for between-human transmission.  
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Methods 
Detailed methods and datasets are given in the SI Methods and SI Data and Results.  
Compiling the databases. We compiled a list of 420 associations between 67 directly-
transmitted zoonotic viruses and 278 mammalian hosts, drawing primarily from an extensive 
database of virus-mammal associations published by Olival et al. (28) (SI Data and Results, 
Table S1). For each virus-mammal association, we conducted literature searches to collect two 
metrics of zoonotic risk: CFR in the human population, following viral spillover (a proxy for 
virulence), and viral capacity for human-to-human transmission, which we ranked according to a 
four-point scale, ranging from “1” for viruses never recorded as transmitting between humans to 
“4” for viruses known to maintain endemic human transmission (8,11,13,29). 

In addition to collecting targeted metrics of virulence and transmissibility, we classified 
each virus-mammal association according to the mammal’s role in viral transmission. We used a 
binary code to distinguish between mammal species that maintain viruses endemically (reservoir 
hosts) and species that harbor the virus but are not implicated in zoonotic maintenance 
(secondary hosts, see Table 1.1 for definitions of all terms in this study). We assigned a second 
binary code to define each host’s role in zoonotic spillover (“spillover capacity”), distinguishing 
between mammal species that serve as human infection sources and species with no record of 
transmission to humans. Combining these two codes, we defined a third “spillover type” code to 
distinguish between “primary spillover” from reservoir host species and “secondary spillover” 
from secondary host species, or “bridge hosts”. 

In addition to the virus-mammal association database, we extracted a dataset of 345 
directly-transmitted mammalian viruses (both zoonotic and non-zoonotic) from Olival et al. (28) 
(SI Data and Results, Table S2). 
 Using previously published databases (7,9,28–33), we next collected a series of host and 
viral traits that we hypothesized might predict the observed variation in zoonotic virus dynamics 
in humans. For hosts, we focused on four life history traits, quantifiable across mammal species, 
that have been linked to host-pathogen coevolution: body mass, litter size, gestation duration, 
and lifespan. Host body mass has been linked with the rate of disease progression (34), reservoir 
competence (35), and pathogen replication rate (36,37); host reproductive effort trades off with 
immune investment and shapes susceptible host population demography (38,39); and protracted 
host lifespans are associated with heightened population-level transmission (40,41). Replicating 
Olival et al. (28), we additionally considered host phylogenetic order and distance from humans. 
Evolutionary distance between novel and previously documented host species has been identified 
as a predictor of disease-induced mortality post-spillover in domesticated animals (42). For viral 
traits, we focused on traits that Olival et al. (28) previously linked to zoonotic infectivity, 
collecting viruses’ host phylogenetic breadths as proxies for viral host ranges. We additionally 
included the position of a virus’ host breadth relative to humans by considering the maximum 
host phylogenetic distance from humans across a virus’ host range. All datasets with metadata 
and references are available in the SI Data and Results, Tables S1–4. Table 1.2 describes 
predictor and response variables used in our analysis. 
 
Statistical analysis. Because nonlinear relationships were anticipated, we used generalized 
additive models (GAMs) in the mgcv package in R (43) to assess host and viral predictors of 
zoonotic risk. GAMs are flexible generalized linear models that, rather than manually specifying 
higher order polynomial functions, use smooth functions to capture nonlinear relationships 
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between response and predictor variables. We fit two sets of GAMs, assessing host predictors of 
zoonotic risk in one group of models and viral predictors in the other.  

Our global models included all host and viral trait predictors outlined in Table 1.2. We 
used automated term selection by double penalty smoothing for variable selection. This method 
constructs an additional penalty for each GAM smooth function, effectively removing terms 
without predictive power and has been recognized as superior or comparable to alternative 
approaches (44). We set an effective degree of freedom cutoff of 0.001 to identify which terms 
had been penalized and effectively removed from the model (28). 

 
Host models 
We restricted our analysis of host predictors of zoonotic risk to known reservoir host species 
with demonstrated evidence of animal-to-human spillover, thus only considering species 
implicated as both the primary selective environment and source of human infection for a given 
virus. Because the specific host species responsible for a spillover event is not always identified, 
we were frequently unable to collect human CFR and transmissibility data that varied depending 
on the specific spillover host. Thus, to avoid pseudoreplication, we further restricted our analysis 
to include only unique entries for each host order per virus in a simplified dataset, summarizing 
information across hosts encapsulated in each unique entry by taking the maximum value for 
each host trait metric. 

Using this simplified dataset, we first asked what host traits best predict CFRs in human 
hosts following spillover? Specifically, we used a GAM to query the predictive capacity of the 
host-specific traits outlined in Table 1.2 on the response variable of mean CFR in a human host. 

We next asked, what host variables best predict the extent of human-to-human 
transmission of a given virus following spillover? In this case, we used a GAM to query the 
predictive capacity of the same host traits outlined in Table 1.2 on the response variable of 
human transmissibility. 
 While our previous GAMs only included reservoir host species, we next investigated 
both reservoir and secondary hosts with evidence of spillover to humans (bridge hosts). Fitting a 
separate GAM for each response variable, we explored the relationship between host 
phylogenetic distance from humans and both CFR and transmissibility as a function of ‘spillover 
type’ (“primary spillover” from reservoir hosts vs. “secondary spillover” from bridge hosts). In 
each case, we queried the response variable against the predictor variable of host phylogenetic 
distance, modeled as two distinct smoothers separated by spillover type (43). 
 
Virus models 
For our analysis of viral predictors of zoonotic risk, we first asked what viral traits best predict 
the probability that a virus is zoonotic? We constructed a binomial GAM, testing the predictive 
capacity of viral traits outlined in Table 1.2 against the response variable of zoonotic status (0-1, 
is versus is not). 

Our analysis of viral predictors of CFR and human transmissibility largely mirrored that 
of our host analysis. To avoid pseudoreplication, we again only considered unique entries, 
grouping trait information by discrete CFR and transmissibility values per virus.  

As with host models, we then applied GAMs to this simplified viral dataset to ask, what 
viral traits best predict case mortality rates in human hosts following spillover? and what viral 
traits best predict the extent of human-to-human transmission of a given virus following 
spillover?  
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Results 
Host predictors of human CFRs and capacity for human-to-human transmission.  
The selected model to predict human CFR explained 51.4% of the total deviance and included 
maximum host body mass, gestation period, lifespan, and phylogenetic distance from humans as 
significant predictors, as well as a term for host phylogenetic order (SI Data and Results, Table 
S5a). We observed a correlation between increasing CFR and increasing mammalian host 
phylogenetic distance from humans (Figure 1.1a): hosts most distantly related to humans harbor 
the most virulent viruses. The model additionally indicated that CFR decreases with increasing 
host body mass and decreasing host gestation period, though host life history traits are inherently 
correlated with each other and with host phylogenetic distance from humans (SI Data and 
Results, Table S6). 

The selected host model for human transmissibility, which explained 26.5% of the 
deviance, included maximum host lifespan, litter size, and phylogenetic distance from humans as 
significant predictors, as well as a term for maximum host body mass (SI Data and Results, 
Table S5b). In contrast to CFR, capacity for human-to-human transmission decreases as host 
phylogenetic distance increases (Figure 1.1b).  
 
Effect of phylogenetic distance on CFR and transmissibility as a function of spillover type. 
While our first analysis focused on primary spillover events, in which viruses spill over to 
humans directly from reservoir hosts, we added important nuance to our analysis by running 
additional GAMs that considered all virus-mammal associations, including cases of secondary 
spillover. We explored whether zoonotic risk changes with the position of the immediate 
spillover source in the transmission chain from reservoir host to human. 

The selected model to predict human CFR with interaction terms for host phylogenetic 
distance and spillover type explained 66.8% of the deviance and included host maximum 
lifespan, gestation period, and phylogenetic order as significant terms (SI Data and Results, 
Table S5c). Spillover type affects the relationship between host phylogenetic distance from 
humans and human CFR (Figure 1.2). For primary spillovers from reservoir hosts, CFR increases 
with host phylogenetic distance from humans (Figure 1.2a), consistent with results in Figure 
1.1a. In contrast, spillovers from secondary (bridge) hosts are associated with elevated CFR 
across all secondary host species, irrespective of phylogenetic distance from humans. The largest 
positive effect sizes are recovered from host species both closely and distantly related to humans 
(Figure 1.2b). Heightened CFR in secondary hosts at high phylogenetic distances is consistent 
with the trends observed for reservoir hosts—host species most distantly related to humans 
harbor the most virulent viruses. However, elevated virulence in secondary hosts at low 
phylogenetic distances conflicts with our prior observation for reservoir hosts that species most 
closely related to humans harbor zoonoses of lower impact in terms of morbidity and mortality. 

The selected model for human transmissibility with interaction terms for host 
phylogenetic distance and spillover type explained 34.5% of the deviance and included host 
order and maximum body mass as significant terms (SI Data and Results, Table S5d). With 
primary spillover, transmissibility decreases with increasing host phylogenetic distance from 
humans, consistent with the virulence-transmission relationship outlined in Figure 1.1. However, 
variable selection effectively omitted the secondary spillover predictor from this model, 
suggesting that gaps in data—particularly our limited ability to trace viral outcomes in humans to 
specific spillover hosts—or a more muddled evolutionary tradeoff among viruses that have a less 
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extensive shared evolutionary history with their secondary host species may limit our inference 
capacity. 
 
Examining bats as ‘special’ viral reservoirs. Broadly, we observed that viruses within a given 
viral family preferentially infect a discrete subset of host orders (i.e. some viral families are 
predominantly primate or rodent or bat viruses, etc.) and that distinct mammalian host orders 
cluster at distinct phylogenetic distances from humans (Figure 1.3). Of the five major animal 
source orders for zoonotic viruses (Figure 1.3a: Primates, Cetartiodactyla, Carnivora, Rodentia, 
and Chiroptera), order Chiroptera (‘bats’) is, on average, the most phylogenetically distant from 
humans (Figure 1.3b). As such, bats could underpin the heightened virulence of viruses harbored 
by hosts at high phylogenetic distance (Figure 1.1a). Here, we examine bats as a possible 
‘special’ host order in our database. Bat-derived zoonoses cluster in the upper the right-hand 
corner of the plane of phylogenetic distance and human CFR (Figure 1.4); our GAM for host 
traits predictive of virulence demonstrated that order Chiroptera has the strongest positive effect 
on CFR (SI Data and Results, Table S7). 
 
Viral predictors of virus zoonotic potential, human CFRs, and capacity for human-to-
human transmission. Because particular viral families associate non-randomly with particular 
host orders, variation in zoonoses derived from these orders could be equally attributed both to 
traits of the hosts themselves or traits of the viruses that infect those hosts. Incorporation of viral 
predictors into our GAM framework demonstrated significant predictive power for several viral 
traits on three metrics of zoonotic risk. In our probability analysis of a virus’s zoonotic potential, 
the selected model, which explained 32.5% of variation in the data, included significant 
predictors for cytoplasmic replication capacity, viral genome composition, maximum host 
phylogenetic distance from humans, and maximum host phylogenetic breadth (SI Data and 
Results, Table S5e). Our results mirror previous findings which indicate that viruses with 
cytoplasmic replication and broader host phylogenetic breadths are more likely to be zoonotic 
(Figure 1.5b) (6,28). We further observed that viruses derived from hosts at the closest 
phylogenetic distances to humans had the highest zoonotic potential (Figure 1.5a), consistent 
with Olival et al.’s (28) finding that hosts closely related to humans harbored the most zoonoses. 
Both host breadth and the phylogenetic position of that breadth relative to humans significantly 
predict whether a virus is zoonotic.  
 Using the zoonotic subset of our virus database, we next considered the effect of viral 
traits on the response variables of human CFR and capacity for sustained human-to-human 
transmission. Our selected viral trait model for human CFR explained 53.8% of observed 
variation in the data and included terms for genome composition, disease-related citations, the 
presence/absence of a viral envelope, and the maximum phylogenetic distance from humans of 
all hosts observed for a given virus (SI Data and Results, Table S5f). The absence of viral 
envelope was associated with lower virulence upon spillover to humans. Consistent with trends 
reported in Figure 1.1a, host phylogenetic distance was positively correlated with higher human 
CFRs post-spillover (Figure 1.5c; though note that viral host phylogenetic distance was 
calculated differently than the host distances used in Figure 1.1 analyses, see SI Methods). 
Notably, max host phylogenetic breadth per virus was not a significant predictor in our final CFR 
model (Figure 1.5d). 
 Finally, the selected viral model for human transmissibility described 55.1% of variation 
in the data and included terms for genome and DNA/RNA composition, the presence/absence of 
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a viral envelope, the maximum host phylogenetic distance from humans, and the maximum host 
phylogenetic breadth observed for each viral species (SI Data and Results, Table S5g) (Figure 
1.5e, 1.5f). Consistent with Geoghegan et al. (7), the absence of viral envelope was positively 
associated with increased capacity for human-to-human transmission. Consistent with our host 
model in Figure 1.1b, we observed that capacity for human-to-human transmission decreased 
with increasing host phylogenetic distance from humans. The relationship between host 
phylogenetic breadth and human transmissibility was more complicated: human-to-human 
transmissibility increased with heightened host phylogenetic breadth up to a point (.85), then 
declined sharply at extremely high breadths. This trend is likely driven by only a few viruses – 
most notably, rabies, for which zoonotic infection and transmission dynamics are complex (45). 
Human-to-human transmission may be limited for rabies due to effective control strategies and a 
bite-dependent transmission route rather than lack of innate viral capacity; rabies virus is known 
to be present in human tissues relevant for transmission, and, indeed, between-human 
transmission has been suspected but not confirmed for a few infections (46,47). 
 
Discussion 
Our work introduces a novel multidimensional framework for assessing and predicting zoonotic 
risk. Building off previous analyses (SI Data and Results, Table S8), we extended databases 
published by Olival et al. (28) to delineate host and viral traits predictive of (a) the mortality 
burden associated with viral spillover into the human population, (b) the extent of sustained 
human-to-human transmission following zoonosis, and (c) the probability that a virus is 
zoonotic. For each metric of zoonotic risk, we identified a unique set of host and viral predictor 
variables, which highlight the critical role of host phylogenetic distance and virus-host 
evolutionary history in driving zoonotic outcomes.  

Our work uncovers a positive correlation between host phylogenetic distance and the 
mortality incurred by viruses derived from these hosts upon spillover to human populations; 
zoonoses emerging from more distantly related hosts are more virulent. This result is consistent 
with empirical work that has demonstrated an association between host phylogeny and disease-
induced mortality in a novel host following a pathogen host shift (48,49). Nonetheless, while 
distantly related hosts may harbor more virulent viruses, our results suggest that these viruses are 
less likely to engender zoonoses capable of establishing sustained human-to-human transmission. 
Virulence appears to constrain transmission, limiting zoonotic spread within the human 
population. Host phylogenetic distance from humans appears to modulate this relationship, 
predicting virus-induced mortality in a human host and the transmission “cost” associated with 
that virulence.  

The correlation between increasing phylogenetic distance, elevated virulence, and 
diminishing capacity for transmission is additionally modulated based on the pathway of 
zoonotic emergence. This study represents the first meta-analysis of its type to distinguish 
between primary spillover from reservoir hosts—the primary selective environment of viruses—
and secondary spillover from bridge host species that have been infected, but do not maintain 
zoonotic transmission. Primary spillover from reservoir hosts to humans follows the general 
observed trends, with the highest transmission cost incurred at high phylogenetic distance and 
high virulence. Intriguingly, secondary spillover hosts, including those closely related to humans, 
produce elevated CFRs across phylogenetic distances. Because our analysis did not identify 
secondary spillover as a significant predictor of human transmissibility—potentially due to a 
limited sample size or more muddled evolutionary relationships between viruses and their 
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secondary hosts—we cannot infer whether spillover from secondary hosts is constrained by the 
same virulence-transmission tradeoff observed in reservoir hosts. However, increased CFRs in 
secondary host species closely related to humans suggest that these hosts could function as 
“gateways” for virulent viruses originally derived from more distant reservoirs. The virulence-
inducing viral traits driving CFR upon spillover from secondary hosts may largely reflect virus’s 
long-term evolutionary history in more phylogenetically distant reservoirs. By contrast, short-
term history within more closely related secondary hosts could facilitate pre-adaptation to human 
transmission. Thus, secondary spillover—by which virulent viruses from distant phylogenetic 
backgrounds spill over to humans through more closely-related, secondary hosts—may pose the 
greatest zoonotic threat. 

Across mammalian host orders, host species most closely related to humans harbor 
zoonoses of lower impact in terms of morbidity and mortality but with an elevated propensity for 
human-to-human transmission. More distantly related hosts—in particular, order Chiroptera—
harbor highly virulent zoonoses that nonetheless have a lower capacity for between-human 
transmissibility. Chiroptera, previously posited to represent a ‘special’ order of mammalian hosts 
for zoonotic viruses (50), does appear to uniquely shift zoonoses into otherwise uncharted 
territory on the virulence axis. Though occupying the same general region of the host 
phylogenetic distance axis as order Rodentia, bat zoonoses yield CFRs more than double those 
resulting from rodents. 

Results from the viral trait models support previous findings that multi-host pathogens 
are more likely to emerge and transmit in human populations (2,10,28,51,52). Consistent with 
findings from Olival et al. (28), we identify maximum phylogenetic host breadth, a marker of 
viral generalism, as a powerful predictor of zoonotic behavior for the directly-transmitted 
mammalian viruses queried in our dataset. However, our results indicate that, in addition to the 
breadth of a virus’s host range, the positioning of that range, with respect to phylogenetic 
distance from humans, has important predictive capacity. Thus, predictions of zoonotic risk will 
differ for a generalist virus that evolved in a reservoir environment that is phylogenetically close 
to humans (i.e. primates) versus one that is distant (i.e. bats). This distinction is important, since 
our work further emphasizes that distinct viral families tend to preferentially infect distinct host 
orders. Furthermore, in keeping with host model results, we observed that viral traits predicting 
zoonotic behaviour following emergence demonstrate opposite impacts on virulence and 
transmissibility in human hosts—indicating trade-offs between these two traits. Host 
phylogenetic distance, corresponding to the evolutionary host environment in which a virus 
evolved, is positively correlated with mortality incurred by emerging virus in human hosts, but 
negatively correlated with viral capacity for human-to-human transmission.  

The multidimensional definition of zoonotic risk considered in this analysis highlights 
limitations in our understanding of emerging zoonoses to date. Historically, most work in this 
field has been restricted to descriptions and predictions of viral, host, and geographic ‘hotspots’ 
for zoonosis, with little consideration of variation in the impact of a given spillover event post-
emergence. Our work emphasizes the power of a more nuanced approach to assessing zoonotic 
risk, but also uncovers gross gaps in data and reporting which will present challenges for future 
research extensions. To facilitate tracking of directionality in transmission chains, we restricted 
our database to mammal host-virus associations previously confirmed via PCR or viral isolation, 
excluding unconfirmed or serologically identified mammalian hosts. For example, compelling 
serological evidence suggests that bats likely function as the natural reservoir host for Middle 
Eastern respiratory syndrome (MERS-CoV), a coronavirus similar to bat-derived SARs-CoV 
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(53), but evidence is insufficient to support inclusion of this association in our study. Indeed, 
many animal hosts for emerging zoonoses remain unidentified or unconfirmed, and for the 
majority of known hosts, we lack data regarding transmission and infection dynamics. These 
gaps in reporting limit our capacity for inference.  

The extent to which human mortality and transmissibility may differ depending on the 
reservoir or spillover host in question has yet to be documented for the vast majority of 
zoonoses—indeed, we identified distinct measures of CFR and transmissibility that could be 
traced to specific spillover hosts only for two viruses: Nipah and Marburg. As both of these 
examples support our finding that changes in a spillover transmission chain are associated with 
shifts in virulence and transmissibility, collection of data from additional systems demonstrating 
both secondary and primary zoonotic sources is thus a major research priority. Ebola virus 
outbreaks, for example, have varied extensively in both virulence and transmissibility across the 
past four decades of emergence (15,54). The extent to which these variations may be attributable 
to phylogenetic differences in the source host or transmission chain remains, to our knowledge, 
unexplored. A more nuanced framework for understanding variation in severity and 
transmissibility across all potential zoonotic hosts will nonetheless be central to any future effort 
to develop targeted and effective public health strategies for intervention and control. 

 
CHAPTER 2 

 
Bats host the most virulent—but not the most dangerous—zoonotic viruses 

 
Abstract 
Identifying virus characteristics associated with the largest public health impacts on human 
populations is critical to informing zoonotic risk assessments and surveillance strategies. Efforts 
to assess “zoonotic risk” often use trait-based analyses to identify which viral and reservoir host 
groups are most likely to source zoonoses but have not fully addressed how and why the impacts 
of zoonotic viruses vary in terms of disease severity (‘virulence’), capacity to spread within 
human populations (‘transmissibility’), or total human mortality (‘death burden’). We analyzed 
trends in human case fatality rates, transmission capacities, and total death burdens across a 
comprehensive dataset of mammalian and avian zoonotic viruses. Bats harbor the most virulent 
zoonotic viruses even when compared to birds, which alongside bats, have been hypothesized to 
be “special” zoonotic reservoirs due to molecular adaptations that support the physiology of 
flight. Reservoir host groups more closely related to humans—in particular, Primates—harbor 
less virulent, but more highly transmissible viruses. Importantly, disproportionately high human 
death burden, arguably the most important metric of zoonotic risk, is not associated with any 
animal reservoir, including bats. Our data demonstrate that mechanisms driving death burdens 
are diverse and often contradict trait-based predictions. Ultimately, total human mortality is 
dependent on context-specific epidemiological dynamics, which are shaped by a combination of 
viral traits and conditions in the animal host population and across and beyond the human-animal 
interface. Understanding the conditions that predict high zoonotic burden in humans will require 
longitudinal studies of epidemiological dynamics in wildlife and human populations. 
 
Significance statement:  
The clear need to mitigate zoonotic risk has fueled increased viral discovery in specific reservoir 
host taxa. We show that a combination of viral and reservoir traits can predict zoonotic virus 
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virulence and transmissibility in humans, supporting the hypothesis that bats harbor 
exceptionally virulent zoonoses. However, pandemic prevention requires thinking beyond 
zoonotic capacity, virulence, and transmissibility to consider collective ‘burden’ on human 
health. For this, viral discovery targeting specific reservoirs may be inefficient as death burden 
correlates with viral, not reservoir, traits, and depends on context-specific epidemiological 
dynamics across and beyond the human-animal interface. These findings suggest that 
longitudinal studies of viral dynamics in reservoir and spillover host populations may offer the 
most effective strategy for mitigating zoonotic risk. 
 
Introduction 
The vast majority of human pathogens are derived from animal populations (2). In response to 
increasingly frequent zoonotic spillovers and their substantial public health risks (1), there has 
been a movement to identify the ecological systems and taxonomic groups of animals and 
pathogens that are most likely to source the next emerging zoonosis in the human population 
(10,28,55–59). However, most of this work has centered on a binary definition of zoonotic risk—
whether particular pathogens are capable of infecting humans—without considering how 
pathogens vary with respect to their impacts on humans after spillover. The ongoing SARS-CoV-
2 pandemic has re-emphasized the reality that not all zoonoses pose risks of equal magnitude—
some are exceptionally more dangerous than others due to the severity of disease they cause 
(‘virulence’) or their capacity to spread within human populations (‘transmissibility’), which 
combined, influence the total number of human deaths (‘death burden’) (60). Given the 
extraordinary diversity of both animal hosts and the viruses they harbor, understanding which 
animal and virus groups are more likely to source dangerous zoonoses is an important public 
health aim. Many high-profile zoonotic viruses—including Nipah and Hendra henipaviruses; 
Ebola filovirus; SARS, MERS, and SARS-CoV-2 coronaviruses; pandemic avian influenzas; 
West Nile virus; and Eastern Equine encephalitis virus—have emerged from Chiropteran (bat) or 
avian reservoirs (61). The high number of zoonotic viruses found in bats and birds has been 
attributed to their large gregarious populations, mobility, ability to colonize anthropogenic 
environments, and sheer species diversity (57,61). Nonetheless, the question remains: are bat- 
and/or bird-borne viruses disproportionately dangerous?  

A recent analysis (60) found that mammalian reservoir hosts most closely related to 
humans harbor zoonoses of lower impact in terms of mortality relative to more phylogenetically 
distant hosts. These results were consistent with phylogenetic trends in virulence that have been 
reported in cross-species pathogen emergences in other systems (48,62), and likely reflect 
mismatches in host biology, physiology, and ecology. Notably, order Chiroptera (bats)—one of 
the more distantly related host orders—had the highest positive effect size on case fatality rate in 
humans. Nevertheless, this analysis considered only directly transmitted viruses and viruses 
derived from mammalian hosts, despite the existence of several high-profile vector-borne and 
avian zoonoses (61). In particular, birds occupy a separate taxonomic class from humans—a 
phylogenetic distance that might correlate with heightened virulence in humans.   

In vitro work has suggested that molecular adaptations that support the physiology of 
flight, a trait unique to bats among mammals, may allow bats to tolerate rapidly-replicating 
viruses that express heightened virulence upon emergence in less tolerant hosts such as humans 
(63)—thus offering a possible explanation for bat virus virulence. Bats and birds share a suite of 
convergent flight adaptations—both taxa are remarkably long-lived for their body size and 
appear to circumvent metabolic constraints on longevity through cellular pathways evolved to 
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mitigate oxidative stress induced by flight (61). These metabolic adaptations are hypothesized to 
be linked to the evolution of virulent viruses in bats, but only typically discussed with respect to 
their effect on lifespan in birds (64). A few papers have reviewed birds’ role as special zoonotic 
reservoirs (61,65), but the virulence of avian zoonoses remains largely unexplored. Nonetheless, 
though the most virulent zoonotic viruses may garner the most publicity, these pathogens are not 
necessarily the most ‘dangerous’ to human health. Rather, human health is most impacted by 
viruses that cause large volumes of cases and deaths (‘burden’). While some viruses such as 
Ebola and rabies are associated with both high case fatality rates and burden in the human 
population, pandemic viruses are often characterized by relatively low case fatality rates but high 
human transmissibility. The 2009 H1N1 influenza pandemic was estimated to have caused 60.8 
million cases and more than 12,000 deaths in the United States alone with a case fatality rate of 
less than 1% (66), and as of July 9th, 2021, SARS-CoV-2 has caused over 185 million cases and 
4 million deaths worldwide with a case fatality rate of just 2.2% (67). To prevent the next 
zoonotic pandemic, it is important to think beyond the individual measures of zoonotic capacity, 
virulence, and transmissibility to consider collective ‘burden’ on public health.  

We applied generalized additive models (GAMs) to a dataset of mammalian and avian 
zoonotic viruses to identify reservoir host and viral traits predictive of the (a) case fatality rate 
(CFR), (b) capacity for forward transmission, and (c) death burden induced by infections in the 
human population—with the goal of characterizing sources of zoonotic viruses that pose the 
greatest danger to global health. Our work builds on a small body of analyses that have begun to 
explore variation in the virulence and between-human transmissibility of zoonotic viruses 
(7,9,10,68). We provide the first analysis of burden and the largest sample size—with trends 
examined across the majority of known zoonotic viruses. We hypothesized that birds—given 
their capacity for flight and phylogenetic distance from humans—might rival bats for the 
association with the most virulent zoonotic viruses. However, we did not expect bats or birds to 
be responsible for the greatest burden on global health, instead anticipating high burden to be 
largely a function of viral traits and associated with reservoir orders that harbor less virulent, 
more transmissible viruses. 
 
Materials and Methods 
Constructing the database (Figure S1 in SI Appendix). We curated a comprehensive dataset of 
mammalian and avian zoonotic viruses—and the taxonomic orders of the reservoir hosts from 
which they were derived—from published databases (57,60,69). Reservoirs were defined as the 
primary host species that is responsible for maintaining zoonotic transmission. Using the 
information provided in these databases and supplementing with literature searches, we extracted 
viruses that met a strict definition of zoonotic, requiring at least one published human infection 
in which the virus species was confirmed by PCR, sequencing, or isolation as well as evidence of 
animal-to-human directionality in transmission (SI Appendix, Exclusion criteria). With this strict 
inclusion criteria, we compiled 89 unique virus species (Table S1 in SI Data and Results).  
For each virus-reservoir association, we collected both human case fatality rate (CFR) as a proxy 
for virulence, and the cumulative global death count as a proxy for burden on the human 
population. For CFR, we collected two estimates. First, we recorded existing estimates of global 
CFRs from the literature, calculating averages when ranges were reported. Second, for each virus 
species, we calculated country-specific CFRs from death and case counts in countries that have 
reported the largest outbreaks of that virus—to assess and account for potentially confounding 
effects of regional differences in health care and overall infrastructure (SI Appendix, 
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Supplementary analyses). For our death burden response variable, we collected the total number 
of deaths recorded across the world since 1950. In many cases, our death count began after 1950, 
either because a zoonosis first emerged in humans after 1950 or reliable death records were only 
available for a subset of the timeline. To standardize, we added a variable for the number of 
years over which death counts were recorded to use as an offset in our models. Death and case 
counts were derived, when available, from the Global Infectious Diseases and Epidemiology 
Network (GIDEON) (70)—which contains outbreak data from case reports, government 
agencies, and published literature records—and supplemented with literature searches. We 
additionally ranked each zoonosis’ capacity for transmission within human populations—a 
correlate of R0—on a four-point scale (60). All variable descriptions are provided in Table S4 in 
SI Data and Results. 
 Drawing from previously published databases (57,60), we collected seven variables (SI 
Data and Results, Table S7) that we hypothesized might predict observed variation in human 
CFR, capacity for transmission within human populations, and death burden. Given published 
correlations between phylogenetic distance and virulence in cross-species spillovers 
(48,49,60,62,71), we included the reservoir host group cophenetic distance from Primates. We 
considered both reservoir host and virus taxonomy, recording host order and virus family. 
However, only ten avian zoonoses were distributed across several avian reservoir host orders. To 
test our hypotheses regarding avian zoonoses, we addressed this small sample size by 
aggregating avian reservoir orders into a single “Aves” group, while maintaining separate host 
orders for the mammalian reservoirs. Given that the number of zoonoses harbored by a reservoir 
group appears to correlate with species diversity within that group (57), we hypothesized that 
species diversity might influence reservoir effect size on CFR in humans; thus, we included 
reservoir species richness, which we derived from the Catalogue of Life using version 0.9.6 of 
the taxize library in R (57,72), taking the sum of values across bird orders for the Aves reservoir 
group. We defined a “spillover type” variable to account for the zoonotic transmission chain of 
each virus, distinguishing between zoonoses that jump into humans directly from the reservoir 
population and those that spillover to humans from bridge hosts (60). While the majority of 
zoonoses were linked to single zoonotic transmission chains, there were a few exceptions with 
both “direct” and “bridged” spillover. For example, zoonotic Influenza A virus and Nipah virus 
(73,74) have spilled over into the human population directly from their avian and bat reservoirs, 
respectively, as well as from domestic pig bridge host populations. In such cases, each spillover 
type (i.e., transmission chain) was entered separately in the database. We included an additional 
binary variable that identified whether viruses were vector-borne, as both theory (20) and 
previous analyses (7,68) have suggested a relationship between vector-borne transmission and 
virulence. Finally, as has been done in other similar analyses, we included virus species 
publication count to account for any potential publication bias (28,60,71). 

To pair with our country-specific CFR data, we collected an eighth predictor variable—
gross domestic product (GDP) per capita—as a proxy for geographical differences in the quality 
of health care and epidemiological control measures. 

We additionally collected, for each virus species, the transmission route that contributes 
the majority of human infections, extending data published by Brierley et al. (68). We then 
assessed trends in death burden across transmission types, hypothesizing that density-dependent 
transmission, as characteristic of transmission via respiratory droplets, would be associated with 
the highest death burdens in human populations.   
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Statistical analysis. Given the non-normal distribution of our data, expected nonlinear 
relationships, and nested data structures within our predictor variables (75), we applied 
generalized additive models (GAMs) in the mgcv package in R (76) to assess predictors of CFR, 
transmissibility, and death burden in human populations. Rather than manually specifying higher 
order polynomial functions, GAMs permit the use of smooth functions to capture nonlinear 
relationships between response and predictor variables (75,76). We fit continuous variables (i.e., 
reservoir group species richness and phylogenetic distance from Primates, and virus species 
publication count) as smoothed effects, and all binary (i.e., vector-borne status and spillover 
type) and categorical (i.e., reservoir order and virus family) variables as random effects, as has 
been done in previous analyses (10,28,57,60). For variable selection, we ran all possible model 
combinations, ranked by AIC, and selected the models with the lowest AIC values. We 
confirmed our results by rerunning variable selection with automated term selection by double 
penalty smoothing. This method bypasses AIC-maximization procedures by constructing an 
additional penalty for each GAM smooth function, effectively removing terms without predictive 
power, and has been recognized as superior or comparable to alternative approaches (44). We set 
an effective degree of freedom cutoff of 0.001 to identify which terms had been penalized and 
effectively removed from the model (28). The validity of all models was checked using standard 
methods implemented in the mgcv library (76). 

We first asked, which reservoir host and virus types are associated with elevated CFRs in 
human populations following spillover? We constructed GAMs in the beta regression family to 
query the predictive capacity of our predictor variables (SI Data and Results, Table S7) on CFR 
in humans. We compressed our CFR range to the beta distribution interval (0,1) by applying the 
recommended data transformation 𝑦"	 = 	 [𝑦′(𝑁 − 1) 	+ 	1/2]𝑁, where 𝑁 is the sample size 
(77,78). For all CFR analyses, we modeled unique zoonotic transmission chains—which we 
defined as unique reservoir orders and spillover type combinations per virus. As a result, 
zoonoses with a single reservoir host order and spillover type were modeled as a single CFR 
entry, while those with multiple reservoir orders and/or spillover types (e.g., Influenza A and 
Nipah viruses) were modeled as multiple CFR entries. We excluded five viruses for which only 
one human case has been recorded (Table S1 in SI Data and Results), deciding that we could not 
accurately represent a single observation as a CFR. Our final GAM analysis of global CFR 
estimates included 82 unique virus species with a total of 86 unique zoonotic transmission chains 
(Table S5a in SI Data and Results). 

We next asked, which reservoir host and virus types are associated with elevated 
capacity for transmission within human populations? We constructed a GAM in the ‘ocat’ 
(‘ordered categorical data’) family to query the predictive capacity of our predictor variables on 
transmissibility, defining the vector of categorical cut points, q, to match our four-point ranking 
scale (q = 1,2,3,4). We again excluded the five viruses for which only one human case has been 
recorded (Table S1 in SI Data and Results), deciding that we could not accurately determine 
between-human transmissibility based on a single observation. Thus, like our CFR analysis, our 
transmissibility analysis included 82 unique virus species with a total of 86 unique zoonotic 
transmission chains (Table S5b in SI Data and Results).  
Lastly, we asked, which reservoir host and virus types are associated with high death burdens in 
human populations? The death count data demonstrated strong overdispersion (Figure S11 in SI 
Appendix). Thus, we constructed a negative binomial GAM with the scaled observation period 
(i.e., number of years over which the death count was recorded) as an offset. We considered 
simpler Poisson GAMs, as well as zero-inflated models, but enhanced residual quantile-quantile 
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(QQ) plots (79) suggested that these distributions fit poorly. Unlike our CFR analysis, we did not 
exclude viruses for which only one human case has been recorded. However, we did exclude a 
single virus species—Rotavirus A—for which we were unable to distinguish between deaths 
caused by zoonotic strains versus deaths caused by endemic human strains. Thus, our death 
burden models included 86 zoonotic viruses with a total of 90 transmission chains (Table S5c 
and S6f in SI Data and Results). 
 
Results 
Drawing from existing databases (57,60,69), we compiled a dataset of all mammalian and avian 
zoonotic virus species that met a strict definition of zoonotic—requiring a post-1950 record of 
natural human infection confirmed by PCR or sequencing and animal-to-human directionality in 
transmission (Materials and Methods, Constructing the database). Virus species linked to 
multiple independent reservoir groups (e.g., canine and bat rabies) or those which spillover to 
humans both directly from their reservoir and through bridge hosts (e.g., Nipah virus) were 
subdivided into separate entries for each unique transmission chain ending in spillover, creating a 
final dataset of 89 viruses with a total of 93 transmission chains (SI Data and Results, Table S1). 
We then applied generalized additive models (GAMs) to assess predictors (SI Data and Results, 
Table S7) of three metrics of zoonotic risk: global estimates of case fatality rates (CFRs) in 
humans (proxy for virulence), capacity for forward transmission within the human population 
ranked on a four-point scale (human transmissibility), and post-1950 cumulative death counts 
(death burden) (Figure S1 in SI Appendix). We used both AIC-maximization model selection 
(results reported in the main manuscript) and automated term selection by double penalty 
smoothing (SI Data and Results, Table S8), and found that all key results were consistent across 
the two variable selection techniques.  
Predictors of human CFRs. In our virulence analysis, we observed a left-skewed distribution of 
CFRs, with 33.7% of virus species linked to no fatalities (0% CFR) and more than half (57.8%) 
linked to a CFR of less than 10% (Figure S2 in SI Appendix). Bat reservoirs contributed more 
than two thirds (68.8%) of the identified viruses with CFRs higher than 50%. The top selected 
GAM to predict global estimates of CFR in humans—across the 87 unique zoonotic transmission 
chains for which at least two human cases have been recorded—explained 75.3% of the deviance 
and included reservoir host group, virus family, bridged spillover, and vector-borne transmission 
(Figure 2.1, Table S5a in SI Data and Results). Consistent with previous work (60) and the 
hypothesis that bats are “special” zoonotic reservoirs, order Chiroptera had the largest positive 
effect size on CFR in humans (Figure 2.1b). The top selected model predicted a CFR of 65.6% 
for zoonotic viruses derived from order Chiroptera, representing a more than 50% increase from 
the next highest predicted CFR (Figure S3). Nevertheless, overlapping confidence intervals for 
both CFR predictions (Figure S3) and effect sizes (Figure 2.1b) indicated that without larger 
sample sizes, we cannot eliminate all uncertainty regarding the virulence of bat viruses relative 
to viruses from reservoir groups with very few known zoonotic viruses. Contrary to our flight 
hypothesis, avian reservoirs were not similarly associated with disproportionately virulent 
zoonoses; order Aves had a neutral effect size on human CFR that was not significant. Order 
Cetartiodactyla—which in our dataset, included on domesticated animal species (i.e., cattle, pigs, 
and camels)—had the largest negative effect size on CFR.  

Past analyses have observed that particular viral families associate non-randomly with 
particular host groups (60,80), suggesting that virus taxonomy may underlie trends in virulence 
across reservoir orders. For example, the high number of virulent bat-borne zoonoses (Figure S2 
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in SI Appendix) may be entirely a result of the virus groups that preferentially infect bats, rather 
than the bats themselves. However, here, reservoir host group and virus family significantly 
predicted CFR within the same models (Figure 2.1a), indicating that both reservoir and virus taxa 
contributed to the observed variation in virulence. Chiroptera had the highest positive effect size 
on CFR despite being associated with virus families that ranged from the most (Rhabdoviridae) 
to least (Coronaviridae) virulent (Figure 2.1c). Removing the 100% fatal lyssaviruses (n=5) from 
the dataset resulted in large reductions in the CFR predicted for bat-borne zoonoses (Figure S5), 
though order Chiroptera still had the highest and most significant positive effect size on CFR—
indicating that observed patterns were not driven by rabies alone (Figure S4 in SI Appendix, 
Table S6a in SI Data and Results). 

Previous work has demonstrated a positive correlation between reservoir host 
phylogenetic distance from humans and the case fatality rates of zoonoses derived from those 
reservoirs (60); in our analysis, however, reservoir host group phylogenetic distance from 
Primates was not correlated with CFR, dropping entirely from the top ranked model and not 
ranking significantly in any of the top 15 selected models (Figure 2.1a). The combined effect of 
reservoir host group and virus family as predictor variables in the same model likely 
overwhelmed any correlation between host phylogeny and CFR, particularly given the lack of 
granularity in our phylogenetic distance variable, based on a time-scaled phylogeny, which 
produced only six unique distance values across nine host groups, with Chiroptera and four of 
the other mammalian orders clustering at a single distance level (Materials and Methods). 
Nevertheless, trends in effect size on CFR (Figure 2.1b) and predicted CFR (Figure S3) across 
reservoir host groups suggest that, in general, virulence increases with phylogenetic distance, but 
this positive correlation may collapse at “extreme” distances.   

To test whether these results held across a larger sample size, we ran a CFR analysis that 
included viruses that met a more lenient definition of zoonotic—specifically, viruses with only 
serological evidence of infection in humans, viruses that have only caused human infections in 
laboratory settings, and viruses for which only one human case has been recorded—increasing 
our dataset to 121 virus species with a total of 126 unique zoonotic transmission chains (Figure 
S6 in SI Appendix, Table S6b in SI Data and Results). This supplementary analysis echoed the 
results from our first analysis of global CFR estimates (Figure S6a in SI Appendix)—both 
reservoir and virus taxonomy contributed to the observed variation in CFR; and Chiroptera had 
the highest positive effect size on CFR, whereas Aves had a neutral nonsignificant effect (Figure 
S6b in SI Appendix). 

To assess whether CFR trends might be biased by viruses’ geographic ranges (e.g., 
differences in health care infrastructure and case ascertainment), we tested whether Gross 
Domestic Product per capita (GDP per-capita) significantly predicted country-specific CFR 
estimates—calculated from death and case counts in countries that have reported the largest 
outbreaks of each given virus species, with up to three country estimates for each species for a 
total of 119 estimates across the 87 unique zoonotic transmission chains. First, we modeled all 
119 country-specific CFR estimates separately to test whether GDP per-capita predicts country-
level variation in CFR (Figure S7 in SI Appendix, Table S6c in SI Data and Results). We then 
modeled GDP per-capita and country CFR estimates aggregated at the level of the 87 unique 
zoonotic transmission chains (Figure S8 in SI Appendix, Table S6d in SI Data and Results). In 
both analyses, GDP per-capita was not significant in any of the top models, often dropping 
entirely during model selection (Figure S7a and S8a in SI Appendix), suggesting that viruses’ 
geographic ranges most likely do not bias Figure 2.1 trends. Nevertheless, as with the 
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supplementary analyses presented in Figure S4 and Figure S6, both analyses of the country CFR 
estimates echoed all key results presented in Figure 2.1.  
Predictors of transmissibility within human populations. We found that most zoonotic 
viruses (71.3%) have not been reported to transmit within the human population following 
spillover (i.e., transmissibility rank = 1, or R0 = 0) (Figure S9). Only 14.9% of virus species had 
demonstrated capacity for endemic transmission among humans, of which the majority (61.5%) 
were sourced from Primates. The top selected GAM to predict the ordinal rank of 
transmissibility within human populations—across the 87 unique zoonotic transmission chains 
for which at least two human cases have been recorded—explained 56.6% of the deviance and 
included virus family, the phylogenetic distance between each viruses’ reservoir host group and 
Primates, vector-borne transmission, and the virus species publication count (Figure 2.2, Table 
S5b in SI Data and Results). Transmissibility declined with phylogenetic distance from Primates, 
but the estimated trend was highly uncertain (Figure 2.2c). We therefore reran the analysis with 
reservoir host group as the only host taxonomic predictor (excluding the phylogenetic distance 
variable). This model explained 55.9% of the deviance and identified Primates as the only host 
order significantly associated with heightened transmissibility in humans, suggesting that this 
group is the primary driver of the phylogenetic trend observed in the top selected model (Figure 
S10a in SI Appendix, Table S6e in SI Data and Results).   
Predictors of post-1950 death burden in the human population. For our death burden 
analysis, we modeled the total number of deaths resulting from a given zoonosis recorded 
worldwide since 1950 (and up until March 7th, 2021). In cases where our death count could only 
begin after 1950, either because a zoonosis first emerged in humans after 1950 or because 
reliable death records were only available for a subset of the timeline, we standardized analyses 
by including an offset for the number of years over which the death counts were recorded. The 
raw death count distribution was highly left-skewed, with 39.8% of virus species linked to zero 
deaths and more than half (62.5%) linked to fewer than 50 deaths (Figure S12 in SI Appendix). 
We observed significant overdispersion in death counts, even when standardized by the number 
of years over which the deaths were recorded, with deaths per year ranging from zero to almost 2 
million for SARS-CoV-2. Just two viral predictors—virus family and species publication 
count—explained most of the variation in death burden among the 93 zoonotic transmission 
chains across all the top GAMs (Figure S13a in SI Appendix). Host predictors explained a very 
low percentage of the variation in death burden across all the top selected models, often dropping 
entirely during term selection. Virus species publication count tempered virus family effects 
(Figure S13c in SI Appendix) because virus species with high death burdens were also associated 
with high publication counts, likely because high death burdens motivate increased research 
efforts. In contrast, there was little evidence that only poorly studied viruses were limited to 
unusually low death burdens, implying that a lack of diagnostic effort is not a major driver of 
low death burdens in our data (Figure S13c in SI Appendix). After excluding the virus species 
publication predictor, we found that Coronaviridae, Orthomyxoviridae and Rhabdoviridae had 
the highest positive effect sizes on death burden, driven by, respectively, the SARS-CoVs, the 
Influenza A transmission chains, and Rabies virus (Figure 2.3b, Table S5c in SI Data and 
Results). With virus publication count removed, the top four models included two reservoir 
traits—phylogenetic distance from Primates and species richness—as significant predictors. 
Reservoir groups most closely related to Primates were associated with heightened death burdens 
relative to more distantly related reservoirs, consistent with results from our transmissibility 
analyses that indicated that reservoirs most closely related to Primates harbored more 
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transmissible viruses (Figure 2.3c). Reservoir species richness positively correlated with death 
burden, as we would expect given that species richness has been found to correlate with the 
number of viruses associated with a given reservoir order (Figure 2.3d) (57). However, both 
reservoir predictors explained a small fraction of the variation in death burden relative to virus 
family, confirming that death burden is largely a function of viral traits (Figure 2.3a).  
 While some reservoir groups—bats, primates, rodents, and birds—have sourced more 
high burden viruses than others (Figure 2.4a), both our model results and raw data suggested that 
high burden viruses appeared to be function of viral traits, not the reservoirs themselves. No 
single reservoir stood out as a consistent source of high burden viruses, with every reservoir that 
harbors high burden viruses also harboring substantially more viruses that cluster at the lowest 
death burdens (Figure 2.4a). This was not the case for virus family (Figure 2.4b) or primary 
transmission route (Figure 2.4c); Coronaviridae and Orthomyxoviridae and a respiratory 
transmission route were associated only with high burden zoonotic viruses. In general, the 
viruses linked to the lowest death burdens were associated with the lowest transmission capacity. 
As a deviation from this trend, Primates—which our models indicate harbor the most 
transmissible, but generally less virulent zoonotic viruses—harbored several highly transmissible 
viruses with low death burdens (Figure 2.4a).  

The highest death burdens were overall associated with zoonotic viruses that are less 
virulent but highly transmissible in human populations (Figure 2.4d). Respiratory pathogens with 
capacity for human-to-human transmission have often incurred massive burdens over short 
timeframes as a result of rare, but catastrophic spillover events that spark widespread 
transmission in humans. Critically, while our dataset included only six viruses with respiratory 
droplets as a primary transmission route—SARS-CoV-1, SARS-CoV-2, MERS CoV, Influenza 
A, Nipah, and Monkeypox—these viruses accounted for more than 85.9% of the deaths recorded 
for the 86 viruses in our death burden analysis, highlighting respiratory transmission as a high-
risk zoonotic trait. However, these data were derived from a notably small sample size, as three 
of the six respiratory viruses have caused only a single major epidemic. There was also 
substantial variation among these respiratory viruses, with the death burdens associated with 
SARS-CoV-1 and SARS-CoV-2 differing by more than 2.5 million people.  
 
Discussion 

A key insight from our work is that bats harbor the most virulent zoonotic viruses relative to 
other mammalian and avian reservoirs (Figure S2 in SI Appendix). Given that birds represent the 
only other flying vertebrates and that flight adaptations are hypothesized to influence the 
evolution of viruses virulent to humans in bat reservoirs (61), we expected avian viruses to 
similarly be associated with heightened CFRs in humans. However, we found that only order 
Chiroptera had an exceptionally high positive effect size on CFR in humans, while Aves had a 
neutral nonsignificant effect. It is of course possible that we observed this association between 
Chiroptera and high CFRs in part because low virulence zoonotic viruses have gone undetected 
in bat reservoirs; however, other poorly studied reservoirs are not comparably associated with 
heightened virulence, suggesting that detection bias cannot explain our results. Like CFR, 
transmissibility in humans was also correlated with reservoir traits, but in this case, Primates—
the reservoir group most closely related to humans—sourced the zoonotic viruses with the 
highest capacities for forward transmission in human populations. While a combination of both 
virus and reservoir taxonomy predicted virulence and transmissibility, death burden did not 
correlate with any reservoir group and instead, was a function of viral traits. Nevertheless, our 
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data indicated that mechanisms driving high death burdens are diverse and often contradict trait-
based predictions. Several high-profile zoonotic viruses linked to significantly higher death 
burdens than we would expect based on their capacity for forward transmission in the human 
population (Figure 2.4d), suggesting that death burden is highly dependent on both the contact 
rate at the human-animal interface and epidemiological dynamics within the human population—
factors which are not fully captured by the broad explanatory variables considered in trait-based 
analyses. 

Evolution of virulence theory typically assumes a tradeoff between virulence (death rate 
due to infection) and transmission rate on the basis that while high within-host growth rates 
increase infectiousness, they also increase damage to the host, increasing virulence and thus 
shortening the infectious period and reducing opportunities for future transmission (20,21). 
Critically, CFR is not equivalent to virulence, but instead, a proxy that can be reliably quantified. 
As defined by Day 2002 (81), CFR is a function of both pathogen virulence (𝛼) and clearance 
rate (𝜎), in which 𝐶𝐹𝑅 = 𝛼/(𝛼 + 𝜎). Thus, virulent pathogens (high 𝛼) with high clearance 
rates (high 𝜎)—e.g., acute, short-lived infections such as Chikungunya virus (82)—could 
produce low CFRs. In contrast, less virulent pathogens (low 𝛼) with low clearance rates (low 
𝜎)—e.g., persistent infections such as HIV (83)—could produce high CFRs. Nevertheless, in our 
data, we observed a relationship between CFR and transmissibility in humans that roughly 
supports the fundamental theoretical tradeoff between virulence and transmission rate (Figure 
S11 in SI Appendix). Viruses causing the highest CFRs in humans (>75% CFR) clustered in the 
lower right corner with the lowest capacity for forward transmission in the human population, 
implying maladaptive virulence. Conversely, the least virulent viruses (0% CFR) clustered at 
either the lowest transmission capacity—likely indicative of poor compatibility with humans—or 
the highest transmission capacity—suggesting transmission uninhibited by virulence.  

The surprisingly low virulence of avian zoonotic viruses in contrast to bat-borne viruses 
may reflect the extreme phylogenetic distance that separates birds from Primates. In our previous 
analysis, we found that mammalian reservoir hosts most closely related to humans harbor less 
virulent zoonotic viruses relative to more distantly related mammalian hosts such as bats (60). 
This positive correlation between reservoir phylogenetic distance from humans and viral 
virulence is consistent with trends that have been reported in cross-species pathogen emergences 
in other systems (48,60,62), and likely reflects maladaptive virulence resulting from mismatches 
in host biology, physiology, and ecology. Clearly, while bats are distantly related to humans, 
they are still mammals, whereas birds occupy a separate taxonomic class. It is possible that the 
positive correlation between phylogenetic distance and virulence collapses at distances beyond 
mammals, because viruses are expected to have a limited capacity to replicate in host 
environments that are very different from that of their reservoir, leading to ‘non-host resistance’ 
(84,85). Phylogenetic distance dropped from all CFR models likely due to a lack of granularity 
in our phylogenetic distance data, which described reservoir host cophenetic distance from 
Primates on a time-scaled phylogeny (57), producing only six unique distance values across all 
of the reservoir groups in our database. Trends across reservoir host groups overall support the 
hypothesis that the positive correlation between phylogenetic distance and virulence collapses at 
“extreme” distances. Nevertheless, more studies are needed to parse the effect of phylogenetic 
distance on virulence trends in animal-to-human spillovers. The time-scaled phylogeny 
represents the only available phylogeny that includes both mammals and birds. Future studies 
would benefit from developing additional phylogenies of mammalian and avian reservoirs, 
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which prioritize immunological or physiological traits that may more accurately proxy 
virologically relevant differences in host environments. 
 Chiroptera represented an outlier among distantly related reservoirs, with an undeniably 
positive effect size on CFR more than triple that recovered for any other mammalian order. 
Consistent with the hypothesis that bats represent a ‘special’ viral reservoir (50), the order 
Chiroptera does appear to harbor zoonotic viruses that are uniquely virulent upon spillover to 
humans, even when considering virulence effects that might be attributed to their phylogenetic 
distance from Primates. In bats, flight adaptations have been linked to viral tolerance, which 
previous work suggests may select for high growth rate viruses that could manifest as virulent 
upon emergence in less tolerant hosts such as humans (63). Notably, bats experience limited 
morbidity or mortality from intracellular infections with only a few known exceptions (50,86–
88). Conversely, while birds harbor several zoonotic viruses that are virulent in humans such as 
Highly Pathogenic Avian Influenza (HPAI), West Nile, and Equine Encephalitis viruses, only 
some avian species are tolerant of these infections—many avian species experience morbidity 
and mortality (89). Bats and birds are expected to experience similar selective pressures from 
flight—they have been found to incur comparable energetic costs while flying, despite different 
forms and physiologies (64,90). However, the two taxonomic groups, within disparate vertebrate 
classes, may have responded differently to these selective pressures. Specifically, there is a 
possibility that bats evolved cellular pathways that protect against both aging and 
immunopathology, whereas birds evolved pathways that only protect against aging. For example, 
bats have been found to host a suite of cellular-level anti-inflammatory adaptations—including 
enhanced cellular autophagy and downregulated signaling pathways linked to the induction of 
inflammatory antiviral defenses—which may both mitigate cellular damage induced by bat 
metabolism and inhibit immunopathology incurred upon viral infection (50,91–95). On the other 
hand, birds may rely primarily on systemic antioxidant responses (96), which mitigate oxidative 
stress, but do not interact so tightly with cellular-level processes that impact viral pathology. 
Critically, birds appear to be missing anti-inflammatory protein tristetraprolin (TTP) (97), and 
immunopathology is often the cause of death in birds that die from viral infections such as HPAI 
and West Nile virus (89). Differences between mammalian and avian immune systems may 
additionally play a role in their differing infection outcomes. The immune system is broadly 
conserved in amniotes, but some avian immunological features diverge from those of bats and 
other mammals: notably, birds lack lymph nodes and instead develop B cells in a specialized 
lymphoid organ, the bursa of Fabricius; have heterophil in their white blood cells as opposed to 
neutrophil; and produce only three classes of immunoglobulin in contrast to the five produced by 
mammals (61). Nevertheless, the differing effects of Chiropteran and avian metabolic 
adaptations on viral tolerance and viral evolution remain largely uncharacterized and more basic 
research in this field is needed (98). 

Order Cetartiodactyla had the largest negative effect size on CFR, but notably, Cetartiodactyl 
hosts in our dataset included only domesticated animal species—cattle, pigs, and camels. The 
long coexistence of domestic animals and humans likely facilitated increased research effort for 
this clade, which have may have led to greater detection of low virulence zoonoses in domestic 
animal species. A long history of domestic animal-human coexistence may also have supported 
the development of preexisting human immunity to some livestock diseases, resulting in lower 
virulence infections. 

We found that both reservoir host and virus taxonomy predict the virulence and 
transmissibility of a virus in the secondary human host, consistent with the expectation that a 
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virus evolves virulence to maximize reproduction in its reservoir population (99). The optimal 
balance between virulence and transmission depends on how the reservoir host population 
responds to the virus (the ‘host selective pressure’), which is determined by the ecological, 
physiological, and biological traits of the reservoir. While we identified “special” reservoirs of 
virulent and transmissible zoonotic viruses, we found that the human death burden incurred by 
viral zoonoses does not correlate with any one reservoir host order, including bats, and instead, is 
a function of viral traits. Our data demonstrate that mechanisms driving high death burdens are 
diverse and often contradict trait-based predictions. High death burdens have resulted from rare 
spillover events of highly transmissible viruses that spread widely in the human population; 
small, but frequent spillovers of the least transmissible viruses; and historically low-burden 
pathogens that take off given the right ecological and evolutionary conditions. This suggests that 
ultimately, death burden depends on epidemiological circumstances, which should be shaped, not 
by reservoir host traits, but by a combination of viral traits and conditions in the animal host 
population and across and beyond the human-animal interface. Notably, the pandemic spread of 
SARS-CoV-2 can be attributed to its highly effective respiratory transmission between humans, 
a trait linked to its identity within Coronaviridae, rather than its bat origins (indeed, CoVs 
demonstrate gastrointestinal tropism in bat reservoirs) (100). 

However, several outliers demonstrated that capacity for forward transmission in human 
populations does not always predict death burden; it is critical to also consider epidemiological 
dynamics across and beyond the human-animal interface. Less transmissible viruses can 
accumulate large death burdens over many small, but frequent spillovers, particularly in systems 
in which humans regularly interact with animal reservoirs. Rabies, Hantaan (HTNV), and 
Japanese Encephalitis viruses have been associated with some of the highest death burdens 
induced by viral zoonosis despite lacking forward transmission in human populations (Figure 
2.4d). This is likely because these viruses spill over to humans from animal host populations that 
live amongst human communities—Rabies burden is largely driven by spillover from endemic 
circulation in domestic dogs (101), HTNV spills over from striped field mouse (Apodemus 
agrarius) populations that inhabit agricultural fields (102), and Japanese encephalitis is amplified 
via domesticated pigs (103). Outbreaks in these spillover host populations source human 
infections that are dead ends for further transmission but add up to large numbers. Emphasizing 
the importance of understanding system-specific dynamics, HTNV had a death burden more than 
18 times greater than the combined death burden of all ten other rodent-borne hantaviruses in our 
dataset, most likely because other rodent reservoirs of hantaviruses tend to overlap less with 
human populations (102). Furthermore, zoonotic viruses that have historically been low burden 
pathogens can “unexpectedly” cause high death burdens in the case of virus evolution or unique 
epidemiological circumstances (104). For example, Ebola virus first emerged in humans in 1976, 
causing deadly, but local outbreaks up until late 2013, when suddenly, emergence in a region 
with dense and interconnected human populations, coupled with virus adaptation (15), allowed 
an Ebola spillover event to spark a transnational epidemic that in just 2 years, caused more than 
6.5 times the total number of deaths recorded from 1976-2013 (104,105). These outliers suggest 
that understanding epidemiological dynamics—within wildlife populations and across and 
beyond the human-animal interface—in specific systems is a critical component of predicting 
death burden and consequently, danger to human health. 

Over the course of the last decade, a significant amount of funding and research effort has 
been dedicated to identifying correlates of zoonotic risk, often with a long-term aspiration of 
identifying ways to anticipate and prevent emerging zoonoses in the future (106–108). This 
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research increasingly prioritizes viral discovery over longitudinal studies of epidemiological 
dynamics and targets animal populations such as bats that have been identified as key zoonotic 
reservoirs. While our analysis corroborates the hypothesis that bats are a ‘special’ reservoir for 
virulent zoonotic viruses, we also demonstrate that viral traits—not bat reservoirs—pose the 
greatest danger to human health. We argue that burden, which does not correlate with any animal 
reservoir and instead appears to be a function of transmission conditions to and within the human 
population, more correctly approximates “danger” to human health than does virus virulence. 
While reservoir and viral traits can predict zoonotic capacity, virulence, and transmissibility, 
death burden is dependent on system-specific epidemiological dynamics, which are shaped by a 
combination of viral traits and conditions in the animal host population and across and beyond 
the human-animal interface. Thus, understanding and controlling the mechanisms that drive high 
death burdens in humans—high rates of human-animal contact and/or epidemiological dynamics 
in the human population that allow discrete spillover events to trigger human epidemics—
requires longitudinal surveillance of specific zoonotic or potentially zoonotic viruses in both 
animal and human populations. There is a pressing need for more longitudinal studies of 
transmission dynamics in human and wildlife populations to better understand and prevent the 
epidemiological conditions that cultivate the most dangerous cases of zoonotic viral emergence.   
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CHAPTER 3 
 

Hybridization capture for DNAm age estimation in bats: a cost-efficient, high-throughput 
design to support epidemiological and population modeling analyses across bat species. 

 
 
 
Abstract 
Mathematical models are powerful tools for understanding both viral dynamics and population 
trends in wildlife populations. Many mechanistic epidemiological and conservation models 
depend on age data, traditionally estimated via mark-recapture surveys, body measurements, 
lethal sampling of bone density, or tooth analyses—methods that are often prohibitively 
resource-intensive, imprecise, or impractical. DNA methylation (DNAm) assays offer a cutting-
edge alternative, requiring just a single, non-invasive DNA sample. The activity of DNA 
methyltransferases (DNMTs) changes over the course of an animal’s lifespan, producing age-
correlated trends in the percentage of DNA methylation (DNAm) at particular cytosine guanine 
dinucleotides (CpGs)—clock-type DNAm positions—that can be leveraged to construct an 
“epigenetic clock” for age estimation. A scalable age estimation method that could support 
epidemiological and conservation modeling would be particularly powerful in bat populations, 
given their zoonotic and conservation importance. Based on the Wilkinson et al. (2020) 
microarray, we developed a cost-efficient, high throughput in solution hybridization capture for 
assaying clock-type DNAm profiles in bats. Our method can be applied across species and the 
large sample sizes needed for robust modeling analyses.  
 
Introduction 
Age data offer key insights into wildlife ecology. Epidemiological modeling can infer the 
transmission dynamics of wildlife disease from age-structured seroprevalence data (109–111). 
Population viability analyses quantify wildlife population trajectories by using age-frequency 
data to estimate adult annual fecundity and survival rates (112,113). While age data can inform 
both zoonotic risk and conservation assessments, it is notoriously difficult to obtain from most 
wild animal species. Historically, chronological age has been estimated using methods that are 
prohibitively resource-intensive, imprecise, and/or unfeasible across sample sizes needed for 
modeling analyses—such as long-term mark-recapture surveys, body measurements, lethal 
sampling of bone density, and histological analysis of cementum annuli layering in tooth samples 
(114,115).  

Molecular age markers offer a cutting-edge alternative, often requiring just a single, non-
invasive DNA sample (116). In particular, the activity of DNA methyltransferases (DNMTs) 
changes over the course of an animal’s lifespan, producing age-correlated trends in the 
percentage of DNA methylation (DNAm) at particular cytosine guanine dinucleotides (CpGs)—
clock-type DNAm positions—that can be leveraged to construct an “epigenetic clock” for age 
estimation (114). DNAm-based age estimation has been reported to outperform other molecular 
methods in humans (117) and more recently, applied in wildlife populations (114,118–120). 

Wilkinson et al. (121) developed a microarray-based epigenetic clock for bats, 
identifying a set of 1,994 CpG sites that are conserved and correlated with chronological age 
across bat genomes. They identified these bat age-correlated sites from a custom mammalian 
microarray based on 35,541 50bp CpG-terminal sequences that are conserved across 62 
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mammals (including five bat species) and 1,951 sequences that have been identified in prior 
human biomarker studies (122).  

Such an epigenetic clock could support epidemiological and conservation modeling in bat 
populations, which is highly important for both global health and conservation (123,124). Bats 
are asymptomatic reservoir hosts for a number of zoonotic viruses that are virulent in humans, 
including the Ebola filoviruses, Nipah and Hendra henipaviruses, and SARS coronaviruses 
(50,123). Bats are also a highly ecologically and taxonomically diverse group, in many systems, 
providing key ecosystem services as seed dispersers, pollinators, insect-eaters, and nutrient 
recyclers; however, 80% of bats assessed by IUCN are considered threatened or data deficient 
(125). 

At $150 per sample, the Wilkinson et al. (126) microarray is prohibitively expensive 
across sample sizes needed for bat conservation and epidemiological modeling analyses. We 
adapted the Wilkinson et al. (126) microarray probe set to a cost-efficient, high throughput in 
solution hybridization capture. Our method can be applied across a diversity of bat species and 
the large sample sizes needed for robust epidemiological and population modeling analyses. 
 
Methods 
Designing the probe set. For target enrichment, we designed a set of 80bp myBaits biotinylated 
probes (Custom DNA-Seq, Arbor Biosciences) from the Wilkinson et al. (126) 50bp microarray 
probe sequences. Using the Burrows-Wheeler Aligner (BWA-MEM) (127), we mapped the 
1,994 Wilkinson et al. (126) microarray probe sequences containing the top 2,000 age-correlated 
sites to 17 bat species genomes: Antrozous pallidus, Desmodus rotundus, Eptesicus fuscus, 
Hipposideros galeritus, Lasiurus cinereus, Molossus molossus, Myotis lucifugus, Myotis myotis, 
Phyllostomus discolor, Pipistrellus kuhlii, Pteropus vampyrus, Rhinolophus ferrumequinum, 
Rousettus aegyptiacus, Tadarida brasiliensis, Rousettus madagascariensis, Eidolon dupreanum, 
and Pteropus rufus. We extended all perfect 50bp alignments by 30bp up- and downstream, and 
using the ‘msa’ package in R (128), ran a multiple sequence alignment of the extended sequences 
across all 17 species. We defined our 80bp probe sequences by identifying the most conserved 
80bp frame within the 110bp multiple sequence alignment (i.e., the frame that had the highest 
number of bp matches and lowest number of gaps summed across species) and recording the 
most common nucleotide across species at each base pair within that frame. To design our probe 
set for post-bisulfite-conversion capture, we made 9 variants for each 1,994 probe sequence—4 
bisulfite converted sequences for both strands and 1 unconverted sequence for a bisulfite 
conversion control—for a total of 17,946 probes.  
DNA extractions. Wing tissue samples were digested in 1.5mL tubes containing 120uL Biofluid 
& Solid Tissue Buffer (Zymo Research), 40uL Proteinase K (20 mg/mL), and 2uL DTT (X mM), 
and incubated overnight with rotation at 55°C. Digested samples were centrifuged at 10,000 rpm 
for 10 minutes to pellet remaining undigested material and lysates were transferred to a 96-well 
deep well plates. The remainder of the extraction protocol was conducted on the BenchSmart 96 
semi-automated pipetting system. To allow for RNA degradation, 20uL of RNAse A (from a pre-
prepared RNAse A 96-well plate) was added to the lysates. Note that RNAse A was added post-
digestion and at a high volume because DTT—added to facilitate digestion of the wing tissue 
hair—interferes with RNAse A activity. A 1:1 ratio of SPRI beads (180uL) were added to each 
sample and incubated with rotation for 20 minutes at room temperature. Plates were placed on 
magnetic racks to pellet the SPRI beads and washed twice with 80% ethanol—first with 380uL, 
and then with 180uL. For elution, plates were removed from the magnetic rack, and 50 uL of 
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nuclease-free water was added to the sample and bead solutions. After a 1-hour incubation with 
rotation at 55C, plates were placed on magnetic racks to pellet the beads, and the DNA samples 
were transferred to 96-well elution plates.   
 
Library preparation. Pre-capture libraries were constructed using the Kapa HyperPlus Library 
Preparation Kit (Kapa Biosystems), optimized to quarter volumes of all reagents unless 
otherwise specified. Briefly, DNA fragmentation reactions were incubated at 37°C for 35 
minutes. End repair, A-tailing, adapter ligation, and post-ligation cleanup were performed 
according to the Kapa protocol. Ligated adapters were xGen Stubby Adapters (Integrated DNA 
Technologies), which are pre-methylated and thus unaltered by bisulfite conversion. Indexing 
PCR reactions were assembled with 15uL Kapa 2x Ready Mix, 10uL of adapter-ligated product, 
and 5uL of the corresponding indexing oligo. After amplification, a double-sided Rx/Lx ratio of 
0.90x/0.75x was applied to select for a fragment size distribution mean of roughly 200bp. 
Following size selection, bisulfite conversion was performed according to the protocol outlined 
in the Zymo EZ-96 DNA Methylation-Lightning Kit (Zymo Research). Lastly, the targeted probe 
capture was performed according to the Arbor myBaits Hybridization Capture for Targeted 
Methylation Sequencing protocol. Sequencing coverage requirements for accurate DNAm 
percentages were determined by following Ziller et al. (129). 
Probe set validation. We assessed the efficacy of our probe set in silico by mapping all unique 
1,994 probe sequences back to the 17 bat genomes and analyzing coverage. In the lab, we 
prepared pre-capture sequencing libraries from four bat tissue samples—representing four 
individuals across three bat species (Rousettus aegyptiacus, 1; Eidolon helvum, 1; Pteropus 
mariannus yapensis, 2)—provided by the Museum of Vertebrate Zoology at University of 
California-Berkeley. We split each pre-capture library, continuing onto the probe capture with 
only one of the aliquots before sequencing. This approach was designed to allow us to validate 
DNAm data from our custom in-solution hybridization capture against standard whole genome 
Methyl-Seq data (130).  
 
Results 
The majority of our probes included multiple CpG sites, but in most cases, only one of the CpG 
sites were identified as age-correlated by Wilkinson et al. (126), and no probes had more than 
two age-correlated sites. 

Arbor Biosciences myBaits can hybridize to target regions with small indels and up to a 
5% mismatch in sequence. We predicted a probe would successfully capture a target if the target 
sequence—aligned against the probe sequence—was 5% or less divergent and contained less 
than three gap openings and no more than one gap extension. Using these criteria, we estimated 
that our probe set should capture more than 1,700 of the 1,994 target sequences in all 17 bat 
species genomes, and more than 95% of target regions in 12 of the genomes (Figure 3.1). These 
results indicate that our probe set should provide more than sufficient coverage for age analysis. 
We also found that 67% of probes mapped to all 17 genomes and 99.5% of probes mapped to 
more than half of the genomes, suggesting that our probe set is highly cost efficient (Figure 3.2). 

We were unable to complete the lab portion of our probe set validation—sequencing data 
was not available in time to compare DNAm data between the targeted and whole genome 
Methyl-Seq libraries.  

 
Discussion 
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The hybridization capture-based target enrichment strategy presented in this chapter is a key first 
step in increasing epidemiological and population modeling capacity in bat populations—
important for both public health and conservation. At the time of writing, our protocol, from 
DNA extraction through sequencing, was predicted to cost roughly $33 per sample, which is 
substantially cheaper than the Wilkinson et al. (126) microarray, priced at $150 per sample. 
Cost-efficient and high throughput, our method makes it possible to estimate bats’ chronological 
age across large sample sizes—critical for accurately modeling bat population viability and 
potentially zoonotic virus dynamics. By building off the Wilkinson et al. (126) microarray 
probes that target conserved CpG sites, we have maintained the flexibility of their assay and 
thus, our protocol can flexibly be applied to obtain age data for any bat species of interest. 

The targeted sequencing library preparation protocol proposed in this chapter requires a 
minimum of five days. A multi-day protocol is unavoidable—a double capture, which requires a 
minimum of three days, is recommended bisulfite-converted libraries because for the conversion 
process depletes input material (131,132). Nevertheless, future work may consider exploring 
alternate strategies to reduce protocol length. For example, recently, another group published a 
tagmentation-based methylation sequencing method for DNAm age estimation (133). 
Tagmentation does significantly reduce the library preparation protocol length; however, Tn5 
can be expensive, requires more troubleshooting, and may not be accessible to model-guided 
field projects in remote countries.  

Our in-silico analysis demonstrated that our capture design is both highly flexible and 
efficient, predicting that our probe set should capture a high percentage of target sequences 
across bat genera and species. However, before our hybridization capture can be leveraged to 
obtain age data for modeling analyses, future work will need to complete the lab portion of our 
probe set validation. Specifically, DNAm percentages across target CpG sites must be compared 
between our targeted and whole genome Methyl-Seq libraries to validate whether our probe set 
accurately captures DNAm data and identify any data biases. Our capture-based target 
enrichment protocol should also be applied to known-age samples to demonstrate that our 
method—combined with the Wilkinson et al. (126) clock—can be used to accurately determine 
chronological age. For this age validation step, it is important that the known ages are precise; 
for example, derived from captive individuals or age estimation methods such as mark-recapture 
(as opposed to less precise methods such as histological analysis of cementum annuli layering in 
tooth samples) (114,115,134). However, if ages from captive individuals are used it is important 
to consider that previous work has found that environment influences biological aging patterns 
(135) and thus DNAm data may differ between captive and wild animal populations. 
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CHAPTER 4 
 

The coevolution of parasite virulence, and host investment in constitutive and induced 
defense 

 
Introduction 
Parasites are ubiquitous in nature, affecting organismal evolution and ecology at all phylogenetic 
levels (136). Thus, a good understanding of how parasites and their hosts coevolve is critical for 
human and animal health, as well as our understanding of how infectious disease shapes natural 
systems (18,137). In particular, parasite and hosts impact each other at both the individual and 
population level, which has repercussions for both epidemiology and animal population dynamics 
(18,138). 

Parasites influence host life history traits (e.g., mortality rates), population characteristics (e.g., 
carrying capacities), and investment in immunity (138,139). In particular, hosts have evolved a 
range of diverse immune defenses against parasites including both tolerance and resistance (140–
143). Resistance mechanisms which act to reduce the fitness of the parasite while increasing that 
of the host can be usefully divided into two types: constitutive mechanisms, which are persistently 
active and typically act to prevent infection in the first place such that hosts do not become 
infectious (avoidance), and induced mechanisms, which are only activated during an infection and 
typically drive the recovery process (144,145). In this definition, constitutive defenses include 
innate mechanical barriers, complement and antimicrobial proteins, and phagocytic, granulocyte, 
and natural killer (NK) white blood cells, as well as the natural antibodies which bridge innate and 
adaptive immunity—whereas induced defenses include innate inflammatory responses, as well as 
adaptive cytokines and antibody responses (146). This distinction between constitutive and 
induced defense is important to host evolution at both the individual and population level. At the 
individual level, maintaining constitutive defenses that are always ready to act is costly even in the 
absence of pathogens, but avoids damage by preventing infection altogether; in contrast, activating 
induced defenses during an infection may be more energetically efficient since they are only used 
in the presence of the pathogen, but risks incurring damage from both the infection itself and very 
typically from the immune response (immunopathology) (147,148). At the population level, 
constitutive defense reduces the infection rate, while induced defense only shortens the infectious 
period and therefore there is the potential for different epidemiological feedbacks. These 
population level effects are important because effectively the host immune investment influences 
parasite epidemiological traits such as the prevalence and force of infection, which feedbacks into 
selection for immune defense in the first place (144,149).  

Host characteristics, in turn, influence parasite evolution—in particular, modulating the 
transmission costs and benefits of virulence (38,150). Classic evolution of infectious disease 
theory assumes a tradeoff between virulence and transmission rate on the basis that while high 
within-host growth rates increase infectiousness, they also increase damage to the host, thus 
shortening the infectious period and reducing opportunities for future transmission through 
increasing mortality (virulence) (20,21). Host mortality rates and carrying capacities impact the 
density of susceptible individuals available to the parasite, regulating opportunities for 
transmission and thus the transmission cost of virulence (38). In our context with respect to the 
host immune strategy, constitutive defense reduces infectiousness—heightening the transmission 
benefit of virulence—whereas induced defense introduces host damage from immunopathology—
heightening the transmission cost of virulence. Thus, understanding evolution in parasite-host 
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systems requires considering the costs and benefits of different parasite and host strategies, as well 
as parasite-host coevolution—at both the individual level and in the broader epidemiological and 
population dynamic context. Empirical work has described a complex web of interactions between 
parasite-host coevolution and ecological feedbacks (18,137,138). Eco-evolutionary theory (151) 
allows us to parse how these interactions actually shape the diversity of parasite and host strategies 
that we observe in nature (140,144). 

Here, we develop eco-evolutionary theory that makes general predictions regarding how the 
interplay between parasite-host coevolution, population dynamics, and epidemiology impact host 
investment in constitutive and induced defense, and parasite growth. There has been theory on 
how parasites influence host investment in constitutive and induced immune defense (152,153), 
and how these two arms of defense influence the evolution of other host characteristics (154) and 
parasite growth (147). However, few theoretical studies have incorporated parasite-host 
coevolution in their models (145). Furthermore, to our knowledge, only one evolutionary model 
of host constitutive and induced defense has accounted for epidemiology and population dynamics; 
however, this model did not consider parasite-host coevolution (144). We therefore lack a general 
theory on the evolution of host constitutive and induced defense and parasite growth that accounts 
for both coevolution and population and epidemiological dynamics. Our goal is to address this gap 
and provide a framework for understanding host immune defense and parasite growth strategies in 
natural systems. 

 
Methods 
We explore epidemiological and coevolutionary feedbacks to the evolution of host constitutive 
and induced immune defense, and parasite growth using a classic compartmental epidemiological 
model (155–157): 
 

𝑑𝑆
𝑑𝑡 = 8𝑎[𝑐] − 𝑞(𝑆 + 𝐼)=(𝑆 + 𝑓𝐼) − 𝑏𝑆 − 	𝛽[𝑐, 𝑝]𝑆𝐼 + 𝛾[ℎ]𝐼 

𝑑𝐼
𝑑𝑡 = 𝛽[𝑐, 𝑝]𝑆𝐼 − (𝑏 + 𝛼[ℎ, 𝑝] + 𝛾[ℎ])𝐼 

 
All hosts reproduce at rate 𝑎, which is reduced due to competition by a density-dependent 

factor, 𝑞. Infected hosts can potentially suffer an additional reduction in birth rate by a sterilizing 
factor, 𝑓 (when 𝑓 = 0, the parasite is a castrator). Specifically, when the parasite castrates the host 
(𝑓 = 0), infected hosts lose their reproductive capacity until they recover back to the susceptible 
class. All hosts die at a natural mortality rate, 𝑏. Transmission is a density-dependent mass-action 
process with a coefficient, 𝛽. Infected hosts suffer increased mortality, or virulence, at rate 𝛼, and 
can recover back to susceptibility at rate 𝛾. 

We allow both host and parasite parameters to evolve. Specifically, three key traits are 
subject to selection: 1) host constitutive defense (𝑐), defined as reduced susceptibility to infection 
(resistance); 2) host induced defense (ℎ), defined as an increased ability to clear disease (an 
increased recovery rate); and 3) the parasite growth rate (𝑝). Each of the three evolving traits 
carries a cost. We assume that constitutive defense—persistently active and thus energetically 
costly to maintain—reduces the birth rate (140,144,149,154,158). In contrast, we assume that 
induced defense—activated only after infection—incurs an immunopathology cost from immune 
activation, increasing mortality in infected hosts (144,146). Thus, only infected hosts pay the cost 
of induced defense, whereas all hosts pay the cost of constitutive. Induced defense may incur some 
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costs in the absence of disease (154), but we deliberately maintain simplistic assumptions to 
develop a baseline model from which future work that includes more complex assumptions about 
costs can be developed. Lastly, we assume that parasite growth leads to higher transmission (𝛽), 
but also increases virulence (𝛼) (144,152). All three evolving traits are also tied to the population-
level epidemiology—constitutive defense reduces transmission (𝛽), induced defense shortens the 
infectious period (by increasing the host recovery rate, 𝛾), and parasite growth increases 
transmission (𝛽) (144,149). 
 
We define the host recovery rate as a simple function of induced defense, such that, 
 

𝑦[ℎ] = ℎ +	𝛾! 
 
Transmission and virulence are functions of both host and parasite parameters. Specifically, we 
assume the transmission coefficient, 𝛽, is a multiplicative, ‘universal’ function of constitutive 
defense and parasite growth, such that, 
 

𝛽[𝑐, 𝑝] = (𝛽! − 𝑐)𝐵[𝑝] + 𝑘 
 
which has been commonly used in previous studies (140,149). Similarly, we define virulence as a 
multiplicative function of immunopathology (the cost of induced defense) and parasite growth, 
such that, 
 

𝛼[ℎ, 𝑝] = 	Γ[ℎ]𝑝 +	𝛼!	 
 
 
Thus, constitutive defense trades off with host reproduction, induced defense trades off with 
increased mortality of infected hosts, and parasite growth trades off with transmission. These three 
trade-offs are given by exponential functions, such that: 
 
a[𝑐] = a! −

(#!)"

#"
J1 − exp N	 #"

#!
(𝑐 − 𝑐!)OP, 

Γ[ℎ] = Γ! −
(%!)"

%"
J1 − exp N%"

%!
(ℎ − ℎ!)OP, 

and, 
B[𝑝] = B! −

(&!)"

&"
J1 − exp N&"

&!
(𝑝 − 𝑝!)OP, 

 
where a' = 𝑑𝑎

𝑑𝑐R , a( = 𝑑(𝑎
𝑑𝑐(R  and similarly for Γ', Γ(, B' and B( The advantage of this form 

is that for a chosen singular point at (ℎ!,	Γ!)	we	can	fix	the	gradient	as	Γ'	and	the	curvature	as	
Γ(,	allowing	us	to	easily	manipulate	the	trade-off	(159). Importantly, constitutive and induced 
defense do not trade off with each other and instead, evolve independently. 

We model evolution using the adaptive dynamics framework (160,161). As such, we assume 
that rare mutants with a small phenotypic difference attempt to invade a (monomorphic) resident 
at endemic equilibrium. The success of the mutant depends on its invasion fitness, defined as the 
growth rate in the environment set by the resident. For the parasite, this is simply the growth of 
mutant-infected individuals. For the two host arms, we instead use the fitness proxy of the negative 
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determinant from the mutant’s part of the Jacobian, which has been shown to be sign equivalent 
to the true fitness (159). In isolation, each of the traits will evolve in the direction of its local 
selection gradient; for example, for the parasite, [𝜕𝑟/𝜕𝑝)]*#+* where 𝑝) is the mutant trait. The 
three mutant fitness gradients together then form a dynamical system of ordinary differential 
equations (for simplicity we assume equal mutation rates): 

 
𝜕𝑠,-.
𝜕ℎ)

k
/#+/
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When all three equations are 0 simultaneously (i.e., none of the traits are experiencing 

directional selection), there will be an ‘equilibrium’ of the evolutionary dynamics, termed a 
singular strategy in adaptive dynamics. The behavior at this point depends on second-order fitness 
terms (160,161). In particular, if the strategy for each trait cannot be invaded by any nearby 
mutants, then it is termed evolutionarily stable. If the singular strategy is locally attracting from 
nearby initial conditions, then it is termed convergence stable. Here, we check for these stability 
conditions numerically. Code to produce the plots in Python is available on Github. 
 
Results 

a) Coevolution of parasite growth and host investment in constitutive and induced defense 
when the parasite has no impact on host fertility (f = 1) 

 
i. Varying mortality (b) when f = 1 

 
We first consider coevolutionary dynamics when the parasite has no impact on host fertility 

(𝑓 = 1). In response to increased background mortality in the host population, there can be 
selection for investment in both higher constitutive and induced defense (Figure 

 4.1a-b) which means that shorter rather than longer lived hosts invest in more defence. 
Notably, there is a faster increase in constitutive defense, such that shorter-lived hosts invest 
relatively more in constitutive than induced defense; and longer-lived hosts invest relatively more 
in induced than constitutive defense. Although it is often thought that longer lived organisms are 
more at risk of infection, these results reflect how immune defenses incur fewer total costs over 
shorter lifespans, particularly with respect to the constant reproductive cost of constitutive defense. 
Furthermore, heightened background mortality rates reduce the host population density (Figure 
4.1d), reducing transmission risk in a density dependent parasitic and furthermore higher 
background mortality also reduces parasite prevalence (Figure 4.1e) again reducing risk. The key 
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to these effects is that with long lived hosts, prevalence is very high in these models, and therefore 
the risk of infection is so high even with strong immunity, that the costs are defense make outweigh 
the benefits. Our other key result is that counter to classic theory, the parasite is not strongly 
selected to increase exploitation as host mortality increases.  This is likely driven by the increased 
investment in defense on the part of the host.  Furthermore, once host investment in induced 
defense reaches a threshold (Figure 4.1a), immunopathology costs select for reduced parasite 
growth (Figure 4.1c). 

Our result that decreasing lifespan selects for higher overall immune investment—with a 
steeper increase in constitutive defense—is consistent with results from our previous model in 
which only the host evolved (144). However, in this prior modeling analysis, hosts invested 
relatively more in constitutive than induced defenses across all natural mortality rates. In contrast, 
here, with parasite-host coevolution, we find that as the background mortality rate decreases, the 
relative investment between induced and constitutive defense flips such that longer-lived hosts 
invest relatively more in induced than constitutive defenses (Figure 4.1a-b). This result is a product 
of coevolutionary dynamics. Lower background mortality increases host population density 
(Figure 4.1d), which supports a higher parasite prevalence (Figure 1e)—as a result, the parasite 
reduces its growth rate (Figure 4.1c), decreasing virulence, which simultaneously reduces the 
advantage of constitutive avoidance (Figure 4.1b) and the immunopathology cost of induced 
defense (Figure 4.1a). Furthermore, longer lifespans accumulate higher costs from investing in 
immune defense, particularly constitutive. 
 

ii. Varying competition (q), f = 1 
 

Increasing the host birth rate sensitivity to crowding (i.e., increasing competition, or 
decreasing the carrying capacity) reduces the host population density (Figure 4.2d), leading to a 
pattern where investment in immunity is somewhat constant until we reach very high densities 
(low q) and the hosts reduce investment in defence (Figure 4.2a-b). A key driver of this is that 
extreme host population densities (Figure 4.2d) and parasite prevalence (Figure 4.2e) begin to 
make infection inevitable, selecting for low investment in immune defense as hosts “give up” to 
reduce costs (Figure 4.2a-b). Parasite growth (Figure 4.2c), is selected to be high at very high 
densities, then falls off before increasing again with very strong competition.  Notably, we 
previously found that when only the host evolves, there are monotonic increases in both arms of 
defense (144). In contrast, adding parasite-host coevolution produces non-monotonic changes such 
that investment in both induced (Figure 4.2a) and constitutive (Figure 4.2b) defense begins to 
decrease slightly when competition exceeds a threshold. 

The parasite strategy is independent of competition itself and is thus purely driven by the 
host evolutionary response. Specifically, in response to the immunopathology costs from 
increasing host induced defense, there is selection for reduced parasite replication (Figure 4.2c), 
which reduces prevalence (Figure 4.2d). However, as the host immune investment levels off, 
selection on the parasite reverses such that the replication rate increases (Figure 4.2c), which 
subsequently increases immunopathology costs, selecting for a reduction in host immune 
investment (Figure 4.2a).  
 

b) Coevolution of parasite growth and host investment in constitutive and induced defense 
when the parasite is a castrator (f = 0) 
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i. Varying mortality (b), f = 0 
 

Overall, the castrating parasite generally selects for higher host defense across mortality 
levels (Figure 4.3a-b) relative which is in clear contrast to when the parasite is non-castrating 
(Figure 4.1a-b). This reflects the strong selective pressure for hosts to protect their reproduction. 
However, because immune defense is costly, hosts moderate their investment in immunity in 
response to the infection risk—reducing constitutive defense (Figure 4.3b) to avoid unnecessary 
reproductive costs as parasite prevalence declines (Figure 4.3e)—and the parasite virulence—
reducing induced defense (Figure 4.3a) to avoid immunopathology as parasite growth rate 
increases (Figure 4.3c). In contrast to the case where there is no castration, although prevalence 
still increases with reduced mortality, it does not reach such high levels that the host begins to 
‘give up’ on immune defense until host are very long lived, when there is some evidence of induced 
defenses declining (Figure 4.3a). The key difference between the case when infecteds reproduce 
and when they don’t is the much stronger selection for higher parasite growth rates when hosts 
suffer higher background mortality in castrators.  A key cause of this is the difference in the 
selection for immune defence in the host in the two cases.  

Parasites that castrate the host flip trends across host natural mortality rates. Notably, when 
only the host is allowed to evolve, castrators select for increased investment in induced defense, 
but decreased investment in constitutive defense (144). This occurs because increasing host 
background mortality and infection-induced castration makes the additional reproductive cost of 
constitutive defense unsustainable; but then, given that only susceptible hosts can reproduce, 
induced defense is critical for allowing infected individuals to recover and reproduce.  However, 
here, when the parasite is allowed to coevolve, there is selection for higher parasite growth (Figure 
4.3c). This increasing parasite growth in turn selects for declining investment in induced defense 
after immunopathology costs exceed a threshold (Figure 4.3a). Once investment in induced 
defense begins to decline (Figure 4.3a), preventing infection-induced castration becomes the key 
mechanism for maintaining host reproduction and thus, there is selection for higher constitutive 
defense (Figure 4.3b). However, investment in constitutive defense peaks at intermediate host 
lifespans—because host castration increases with parasite growth and reaches a threshold at which 
the reproductive cost of constitutive immunity outweighs its infection avoidance benefit (Figure 
4.3b-c), especially given the decline in parasite prevalence (Figure 4.3e). 

 
ii. Varying competition (q), f = 0 

 
Parasites that castrate the host also flip trends across levels of host birth rate susceptibility 

to crowding. At low competition levels, extreme host population densities (Figure 4.2d and Figure 
4.4d) and parasite prevalence (Figure 4.2e and Figure 4.4e) make infection inevitable. When the 
parasite does not affect host reproduction, this heightened infection risk selects for low investment 
in immune defense as hosts “give up” to reduce costs (Figure 4.2a-b). However, when the parasite 
is a castrator, hosts cannot afford to “give up”—instead, this heightened infection risk selects for 
high investment in immunity (Figure 4.4a-b) to protect reproduction, at whatever cost. 

However, again, because immune defense is costly, hosts moderate investment in induced 
and constitutive immunity in response to the parasite infection risk and virulence. Increasing 
competition decreases the host population density (Figure 4.4d) and consequently, the risk of 
infection (Figure 4.4e), which allows hosts to reduce investment in defense (Figure 4.4a-b). 
Initially, at mid to low levels of competition, there is selection for increased investment in 
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constitutive defense, as only preventing infection altogether directly protects the host from 
castration (Figure 4.4b). However, as competition increases and further reduces the birth rate, 
constitutive defense becomes too reproductively costly and is selected against (Figure 4.4b). It is 
energetically impossible to achieve complete constitutive immunity, or absolute infection 
avoidance—thus, infection-induced reduction of the birth rate is unavoidable, making the 
additional reproductive cost of constitutive defense unsustainable, especially as the infection risk 
declines (Figure 4.4e). 

Induced defense acts on the recovery rate, after the host is already infected; thus, while 
hosts can regain their reproductive ability through recovering, induced defense itself does not 
directly protect against castration. Notably, when only the host is allowed to evolve, there is 
selection for decreased investment in constitutive defense, but induced defense remains unaffected 
(144). However, when the parasite is allowed to coevolve, the decreasing host birth rate selects for 
higher parasite growth (Figure 4.4c), increasing immunopathology costs and selecting for 
decreasing investment in induced defense (Figure 4.4a). 
 
Discussion 
We have analyzed how the interplay between parasite-host coevolution, population dynamics, and 
epidemiology influence the optimal parasite growth strategy and host investment in constitutive 
(always present and costly) as opposed to induced (activated and costly only upon infection) 
defense. Critically, we provide the first theoretical framework that considers both coevolutionary 
and population-level dynamics. We examine trends across host competition and natural mortality 
rates when the parasite does not directly affect host fertility, as well as when the parasite is a 
castrator. We show that incorporating host-parasite coevolution into our model captures feedbacks 
between the host immune and parasite growth strategies that are missed when only the host is 
allowed to evolve. Furthermore, we find that whether the parasite affects host reproduction 
significantly impacts host-parasite coevolution; when the parasite is a castrator, selection on the 
host is often largely geared towards minimizing reproductive costs—either by investing in 
immunity to avoid infection or recover when parasite prevalence is high, or by reducing investment 
in reproductively costly constitutive defense when the parasite prevalence is low. 

When hosts coevolve with a non-castrating pathogen, increasing host background mortality 
selects for overall higher investment in immunity, with a faster increase in constitutive defense. 
These results, as well as the results from our prior host evolution model, are consistent with the 
Lee (146) pace-of-life prediction, which posits that fast-living species should invest relatively 
more in constitutive than induced defense because short lifespans neither accumulate the energetic 
costs of non-specific constitutive defense nor benefit from more specific induced defenses. 
However, only the coevolutionary model recaptures the pace-of-life prediction that slow-living 
species should invest relatively more in induced than constitutive defense because constitutive 
immunity is particularly costly over long lifespans. Empirical support for these Lee (146) 
predictions has been found in mammals (162), birds (163), and invertebrates (164). Additionally, 
short-lived stickleback populations demonstrated higher overall immune activity relative to their 
long-lived counterparts (165), and crucian carp shifted immune investment to the cheapest 
constitutive defense in response to increasing mortality rates (166). Nevertheless, the empirical 
literature is not conclusive—some studies have supported a contrasting theory that shorter 
lifespans may instead constrain immune investment overall, prioritizing resources to meet 
development and reproductive demands (167–170). In natural systems, the relationship between 
lifespan and immune strategies is likely confounded by environmental factors, pathogen diversity, 
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and other host life history strategies such as reproductive strategies and body size (146,165). Our 
work also emphasizes that there are different predictions when the pathogen impacts host 
reproduction, and this is not always taken into account in these studies.  

With respect to the parasite evolution, increasing natural mortality in the host population 
initially selects for increased parasite growth; until, at intermediate host lifespans, 
immunopathology costs select for reduced parasite growth. This result that short host lifespans 
select for reduced parasite growth contradicts previous theory that the cellular rate of pathogen 
growth is instead slower in larger-bodied, slower-living species (36,171). However, this previous 
theory is based on a body of work that compares parasite replication rates with host metabolism 
and body mass—metrics that are generally correlated with lifespan, but ultimately, reflect 
physiology. The physiological conditions within fast-living hosts may indeed select for increased 
parasite replication rates. However, our model indicates that the ecological and coevolutionary 
processes associated with fast-living hosts—higher background mortality rates and immune 
investment—select for parasites with reduced growth rates to avoid depleting the susceptible 
host population. Nevertheless, the relationship between host mortality and pathogen replication 
rates remains, to our knowledge, unexplored in empirical systems and thus, future research is 
needed to test our eco-evolutionary model predictions. 

Increasing host competition (i.e., host birth rate sensitivity to crowding) selects for overall 
increasing host investment in defense; although when competition is intense, investment falls 
again. Notably, this non-monotonic trend in defense is only recovered by our model when allowing 
parasite-host coevolution—and is likely a more realistic representation of real-world trends. There 
is a lack of empirical literature on how parasite-host coevolution is influenced by birth rate 
sensitivity to crowding; however, there is literature on the effects of crowding. Specifically, the 
density-dependent prophylaxis (DDP) theory posits that high host density increases the risk of 
infection, selecting for higher immune investment (172). Empirical support for the DDP theory 
has been derived primarily from insect systems (173), but has also been found in some animal 
populations such as elk (174). At extreme host densities, our model finds the opposite of the DDP 
theory—“give up” on immune defense to reduce costs. It is possible that the extreme densities in 
our model are not observed in real world systems—at intermediate densities, our model trends in 
host defense are more consistent with the DDP theory, suggesting that these intermediate density 
levels may reflect more realistic conditions. However, potentially consistent with the non-
monotonic trends observed in our model, empirical work suggests that the stress and limited 
resource availability of high density host populations can also reduce immune function (175–177). 
Critically, the empirical literature reports that the relationship between host competition and 
investment in immune defense is driven by density-dependent changes in parasite risk and 
resources available to support the energetic demands of immune function, whereas our model only 
accounts for density-dependent changes in the birth rate. Thus, our results highlight that density-
dependent decreases in birth rate may also contribute to the observed correlation between high 
host density and increased immune investment. Notably, the empirical literature has identified a 
possible tradeoff between reproduction and immune function, where, in line with our model 
results, lower reproductive output may increase energetic resources for immune investment 
(169,178). Additionally, our model may explain why empirical pace-of-life predictions regarding 
immune function are inconclusive. Host pace-of-life is determined by a combination of natural 
mortality and birth rate, and our model suggests that these two factors have opposing effects on 
immune investment—we found that decreasing host pace-of-life by decreasing natural mortality 
reduces overall immune investment, whereas decreasing pace-of-life through density-dependent 
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decreases in birth rate (i.e., increasing birth rate sensitivity to crowding) increases overall immune 
investment. 

 Critically, these trends flip when the parasite castrates the host—there is a clear distinction 
between parasites that castrate their hosts and those that do not. Specifically, we found that 
castrators select for overall lower host investment in immune defense. When the parasite is a 
castrator, the reproductive cost of constitutive immunity often outweighs its infection avoidance 
benefit. When the castrator itself is allowed to coevolve, selection for higher parasite growth 
heightens immunopathology costs, selecting for decreased investment in induced defense. To our 
knowledge, immune defense strategy in empirical host systems affected by castrating parasites 
remains unexplored. Nevertheless, snail populations exposed to castrating nematodes have been 
found to invest more in reproduction (179), mature and reproduce at smaller sizes (180,181), and 
increase reproductive output (182)—suggesting that if reproduction trades off with constitutive 
immunity (as in our model), hosts exposed to castrating parasites would be expected to decrease 
investment in constitutive defense as observed in our analyses of both mortality rates and 
competition. Nevertheless, the direct relationship between infection-induced host castration and 
parasite-host coevolution remains, to our knowledge, unexplored in empirical systems and thus, 
future research is needed to test our eco-evolutionary model predictions. 

Importantly, our model does not capture how exposure to pathogens changes with 
lifespan—hypothesized to be a key mechanism underlying observed variation in immune defense 
strategies; while short-lived hosts can rely on non-specific constitutive defense, long-lived hosts 
are likely to live to encounter pathogens more than once and thus benefit from specific adaptive 
induced defense (146). For future analyses, incorporating model structure that allows the level and 
specificity of pathogen exposure to vary with lifespan and other host life history characteristics 
may help parse contrasting results in the empirical literature. Furthermore, our model assumes that 
constitutive and induced defense do not directly trade off with each other and instead, evolve 
independently. However, in some systems, there is evidence of a constitutive-induced trade-off, 
which has been hypothesized to generate and maintain observed diversity in host defense both 
within and between species (144,183,184). When only the host evolves, we found that assuming a 
direct trade-off between constitutive and induced defense does not generate evolutionary 
branching and coexistence between genotypes (144). Future modeling analyses should assess 
whether incorporating parasite-host coevolution allows a direct constitutive-induced tradeoff to 
generate evolutionary branching in host defense and parasite growth strategies. 

 We have applied eco-evolutionary theory to make a series of predictions regarding the 
coevolution of parasite growth and host defense strategies. Our analysis demonstrates the 
importance of considering coevolution and population-level dynamics and provides a framework 
for future research. In particular, our work would benefit from modeling analyses that examine 
whether our trends change when adding additional dynamics such as spatial structure (185) and 
multiple infections (186). There is also a need to experimentally test our theoretical predictions, as 
well as collect comparative data in natural systems. Overall, we have provided the theoretical 
groundwork for building a mechanistic understanding of how parasites and hosts coevolve at both 
the individual and population level—contributing to the study of human and animal health, as well 
as how infectious disease shapes natural systems.    
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FIGURES 
 

CHAPTER 1 FIGURES 
 

 
Figure 1.1. Host phylogenetic distance from humans predicts zoonotic risk. Partial effect 
plots from our selected GAMs show the relative effect of host phylogenetic distance from 
humans on (a) human CFR (virulence); and (b) capacity for human-to-human transmission 
(human transmissibility). Data points represent partial residuals, and shaded regions represent 
95% confidence intervals around mean partial effects. Full model descriptions are provided in SI 
Data and Results, Table S5a-b . 
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Figure 1.2. Spillover type modulates host predictors of zoonotic risk. Partial effect plots from 
our selected GAMs show how direct (orange) versus intermediate (blue) spillover changes the 
relative effect of host phylogenetic distance from humans on (a, b) human CFR (virulence); and 
(c, d) the capacity for human-to-human transmission (human transmissibility). Data points 
represent partial residuals, and shaded regions represent 95% confidence intervals by standard 
error around mean partial effects. Full model descriptions are provided in SI Data and Results, 
Table S5c-d. 
 

0.3 0.6 0.9 0.3 0.6 0.9

−200

0

200

400
ef

fe
ct

 o
n 

hu
m

an
 c

as
e 

fa
ta

lit
y 

ra
te

primary spillover from reservoir hosts

secondary spillover

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9

−4

0

4

8

max host phylogenetic distance from humans

ef
fe

ct
 o

n 
hu

m
an

 tr
an

sm
is

si
bi

lit
y

(a)

(c)

(b)

(d)



 37 

 
Figure 1.3. Correlation between virus and host types. Across host phylogenetic distance from 
humans, the distributions of (a) zoonotic virus species, grouped by family; and (b) mammalian 
host species, grouped by host order. Colors correspond to host order.  
 
 

0.00

0.25

0.50

0.75

1.00

H
er

pe
sv

iri
da

e

Pi
co

rn
av

iri
da

e

Ad
en

ov
iri

da
e

R
et

ro
vi

rid
ae

Bo
rn

av
iri

da
e

R
eo

vi
rid

ae

O
rth

om
yx

ov
iri

da
e

Po
xv

iri
da

e

Ar
en

av
iri

da
e

H
an

ta
vi

rid
ae

Pa
ra

m
yx

ov
iri

da
e

C
or

on
av

iri
da

e

Fi
lo

vi
rid

ae

R
ha

bd
ov

iri
da

e

N
ai

ro
vi

rid
ae

pr
op

or
tio

n 
of

 z
oo

no
tic

 v
iru

se
s

(a)

0.3 0.6 0.9
host phylogenetic distance from humans

DIDELPHIMORPHIA
EULIPOTYPHLA
PROBOSCIDEA
CHIROPTERA
DIPROTODONTIA
RODENTIA
LAGOMORPHA
SCANDENTIA
CARNIVORA
CETARTIODACTYLA
PERISSODACTYLA
PRIMATES

(b)



 38 

 
 
 

 
Figure 1.4. Bat-borne viruses are the most virulent of all mammalian zoonoses. 
Phylogenetic distance and CFR data for all mammalian zoonoses with colors indicating host 
order. Each point represents a unique CFR per host order for each virus. 
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Figure 1.5. Viral predictors of zoonotic risk. Partial effect plots from our selected GAMs show 
the relative effect of maximum host phylogenetic distance from humans (red) and host 
phylogenetic breadth (blue) on (a, b) the probability that a virus is zoonotic; (c, d) human CFR 
(virulence); and (e, f) capacity for human-to-human transmission (human transmissibility). Data 
points represent partial residuals, and shaded regions represent 95% confidence intervals by 
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standard error around mean partial effects. Full model descriptions are provided in SI Data and 
Results, Table S5e-g. 

 
 
CHAPTER 2 FIGURES 
 

 
Figure 2.1. Predictors of global CFR estimates. (A) Top 15 models ranked by AIC. Rows 
represent individual models and columns represent predictor variables. Cells are shaded 
according to the proportion of deviance explained by each predictor. Cells representing predictor 
variables with a p-value significance level of <0.1 are outlined in black. (B-D) Effects present in 
the top model: reservoir host group, virus family, vector-borne transmission, and bridged 
spillover. Lines represent the predicted effect of the x-axis variable when all other variables are 
held at their median value (if numeric) or their mode (if categorical). Shaded regions indicate 
95% CIs by standard error and points represent partial residuals. An effect is shaded in gray if 
the 95% CI crosses zero across the entire range of the predictor variable; in contrast, an effect is 
shaded in purple and considered “significant” if the 95% CI does not cross zero. Full model 
results are outlined in Table S5a in SI Data and Results. (B) Reservoir host groups are ordered 
by increasing cophenetic phylogenetic distance from Primates (in millions of years), as indicated 
on the top axis. 
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Figure 2.2. Predictors of capacity for forward transmission within the human population 
following zoonotic spillover. (A) Top 15 models ranked by AIC. Rows represent individual 
models and columns represent predictor variables. Cells are shaded according to the proportion 
of deviance explained by each predictor. Cells representing predictor variables with a p-value 
significance level of <0.1 are outlined in black and otherwise outlined in gray. (B-E) Effects 
present in the top model: virus family, reservoir group phylogenetic distance from Primates, 
vector-borne transmission, and log-transformed virus species publication count. Lines represent 
the predicted effect of the x-axis variable when all other variables are held at their median value 
(if numeric) or their mode (if categorical). Shaded regions indicate 95% CIs by standard error 
and points represent partial residuals. An effect is shaded in gray if the 95% CI crosses zero 
across the entire range of the predictor variable; in contrast, an effect is shaded in purple and 
considered “significant” if the 95% CI does not cross zero. Full model results are outlined in 
Table S5b in SI Data and Results. 
 

 
Figure 2.3. Predictors of post-1950 death burden, excluding the virus species publication 
count predictor. See Figure S12 in SI Appendix for inclusion. (A) Top 15 models ranked by 
AIC. Rows represent individual models and columns represent predictor variables. Cells are 
shaded according to the proportion of deviance explained by each predictor. Cells representing 
predictor variables with a p-value significance level of <0.1 are outlined in black and otherwise 
outlined in gray. (B-E) Effects present in the top model: virus family, reservoir group 
phylogenetic distance from Primates, reservoir group species richness, and vector-borne 
transmission. Lines represent the predicted effect of the x-axis variable when all other variables 
are held at their median value (if numeric) or their mode (if categorical). Shaded regions indicate 
95% Cis by standard error and points represent partial residuals. An effect is shaded in gray if the 
95% CI crosses zero across the entire range of the predictor variable; in contrast, an effect is 
shaded in purple and considered “significant” if the 95% CI does not cross zero. Full model 
results are outlined in Table S5c in SI Data and Results. 
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Figure 2.4. Death burden per year (cumulative post-1950 death counts divided by the 
length of reporting time), grouped by (A) reservoir host group, (B) virus family, (C) 
primary transmission route, and (D) CFR in humans. Colors indicate transmissibility 
between humans, with “1” indicating the lowest level of transmission (i.e., no recorded forward 
transmission in human population post-spillover) and “4” indicating the highest level of 
transmission (i.e., record of endemic transmission in human populations post-spillover). (A) 
Reservoir host groups are ordered by increasing cophenetic phylogenetic distance from Primates 
(in millions of years), as indicated on the top axis. 
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CHAPTER 3 FIGURES 
 

 
Figure 3.1. Number of probes (out of 1,994) that map to bat genomes across species.  
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Figure 3.2. Proportion of bat species (out of 17) captured by probes. 
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CHAPTER 4 FIGURES 
 

 
Figure 4.1. Plots of the optimal (continuously stable) strategy in (a) induced defense, (b) 
constitutive defense, and (c) the parasite growth rate against the natural host mortality rate, b, when 
the parasite has no impact on host fertility (𝑓 = 1); and the equilibrium host population densities 
(d) and parasite prevalence (e). Parameter values: 𝑞 = 0.1, 𝛼 = 1, 𝛾 = 1, 𝛽 = 2, 𝑓 = 1. 
Constitutive trade-off: 𝑎! = 10, 𝑎' = −0.05, 𝑎( = −0.1, 𝑐! = 1. Induced trade-off: 𝛾! = 1, 𝛾' =
0.02, 𝛾( = 0.1, ℎ! = 1. Parasite trade-off: 𝐵! = 1, 𝐵' = 0.3, 𝐵( = −0.4, 𝑝! = 1. 
 

 
 

a b c
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Figure 4.2. Plots of the optimal (continuously stable) strategy in investment in (a) constitutive 
defense, (b) induced defense, and (c) the parasite growth rate against the host birth rate 
susceptibility to crowding (competition) when the parasite has no impact on host fertility (𝑓 = 1) 
and c2 = -0.1; and the equilibrium host population densities (d) and parasite prevalence (e). 
Parameter values: 𝑏 = 1, 𝛼 = 1, 𝛾 = 1, 𝛽 = 2, 𝑓 = 1. Constitutive trade-off: 𝑎! = 10, 𝑎' =
−0.05, 𝑎( = −0.1, 𝑐! = 1. Induced trade-off: 𝛾! = 1, 𝛾' = 0.02, 𝛾( = 0.1, ℎ! = 1. Parasite trade-
off: 𝐵! = 1, 𝐵' = 0.3, 𝐵( = −0.4, 𝑝! = 1. 
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Figure 4.3: Plots of the optimal (continuously stable) strategy in (a) induced defense, (b) 
constitutive defense, and (c) the parasite growth rate against the natural host mortality rate when 
the parasite is a castrator (𝑓 = 0). Parameter values: 𝑞 = 0.2, 𝛼 = 1, 𝛾 = 1, 𝛽 = 2, 𝑓 = 0. 
Constitutive trade-off: 𝑎! = 10, 𝑎' = −2, 𝑎( = −0.5, 𝑐! = 1. Induced trade-off: 𝛾! = 1, 𝛾' =
1.5, 𝛾( = 2.5, ℎ! = 1. Parasite trade-off: 𝐵! = 1, 𝐵' = 0.5, 𝐵( = −0.4, 𝑝! = 1. 
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Figure 4.4. Plots of the optimal (continuously stable) strategy in (a) constitutive defense, (b) 
induced defense, and (c) the parasite growth rate against the host birth rate susceptibility to 
crowding (competition) when the parasite is a castrator (𝑓 = 0). Parameter values: 𝑏 = 1, 𝛼 =
1, 𝛾 = 1, 𝛽 = 2, 𝑓 = 0. Constitutive trade-off: 𝑎! = 10, 𝑎' = −2, 𝑎( = −0.5, 𝑐! = 1. Induced 
trade-off: 𝛾! = 1, 𝛾' = 1.5, 𝛾( = 2.5, ℎ! = 1. Parasite trade-off: 𝐵! = 1, 𝐵' = 0.5, 𝐵( =
−0.4, 𝑝! = 1. 
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TABLES 
 

CHAPTER 1 TABLES 
 
Table 1.1. Definition of terms used in this study. 
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Table 1.2. Description of 
predictor and response 
variables used in the 
GAM analyses. 
    

Term Type Description 

Response variables     

Human case fatality rate numeric 
The proportion of human cases for a given virus that 

are fatal 

Human transmissibility 
categorical 

ranking (1-4) 
A virus' capacity for human-to-human transmission. 

See SI Methods for a description of the ranking system 

Zoonotic potential binary (0,1) 
The probability that a virus has the capacity to infect 

humans (i.e., is or is not zoonotic) 

Host predictors   

Length of gestation period  numeric Length of pregnancy (in days) 

Litter size numeric Average number of offspring produced at one time 

Maximum lifespan  numeric Maximum recorded longevity (in months) 

Body mass  numeric Average body mass (in grams) 

Phylogenetic distance from 
humans numeric 

Distance from humans on a cytochrome b 
phylogenetic tree 

Taxonomic order categorical Taxonomic classification 

Number of disease-related 
citations numeric 

Number of PubMed citations relevant to zoonotic 
diseases; to control for any potential publication bias  

Viral predictors   

Whether or not the virus is 
enveloped categorical Does the virus have an external envelope? 

Whether or not the virus 
replicates in the cytoplasm  categorical Does the virus replicate in the cytoplasm? 

Average genome length numeric Metric for genome size 

DNA or RNA categorical Is the virus DNA or RNA? 

Genome composition categorical Viral genome classification 

Maximum host phylogenetic 
distance from humans numeric 

Phylogenetic distance from humans of the most 
distantly related known host for a given virus  

Maximum host phylogenetic 
breadth numeric 

Maximum phylogenetic distance between the two 
most distantly related known hosts for a given virus  
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Number of citations numeric 
Number of relevant PubMed citations; control for 

research effort bias 

Categories for virus-mammal 
associations   

Reservoir status binary (1,2) 

Host species role in the maintenance of zoonotic 
transmission. Species that maintain viruses 

endemically are reservoir hosts (reservoir status = 1). 
Species that harbor the virus but are not implicated in 
zoonotic maintenance are secondary hosts (reservoir 

status = 2). 

Spillover capacity binary (1,0) 

Host species role in the spillover of zoonoses to 
humans. Spillover  hosts ("1") defined as species that 
are a source of human infection. Non-spillover hosts 

("0") defined as species that have no record of 
transmission to humans. 

Spillover type binary (1,2) 

Chain of spillover transmission for a given virus-host 
system. Spillover to humans from a reservoir host is 

"primary spillover" (reservoir status = 1, spillover 
capacity = 1, spillover type = 1). Spillover to humans 

from a secondary host is "secondary spillover" 
(reservoir status = 2, spillover capacity = 1, spillover 

type = 2). 
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APPENDICES 
 

 CHAPTER 1 SUPPORTING INFORMATION 
 
SI Data and Results. Databases with variable descriptions and references; outputs for all 
selected GAMs; and a review of key findings from past meta-analysis on zoonotic risk. 
Available at https://doi.org/10.1098/rstb.2019.0296. 
 
Supporting Information (SI) Methods. Extended description of the methods used in this 
study.  
A list of viruses and associated mammalian hosts was obtained from an extensive database of 
virus-mammal associations published by Olival et al. (28). Using the information provided, we 
extracted associations corresponding to directly transmitted viruses previously PCR-identified or 
isolated in both mammals and humans, and with evidence of animal-to-human spillover. Viruses 
classified as zoonotic based on exclusively serological data and viruses with vector-borne 
transmission or “spillback” from humans to animals were excluded. Viruses such as HIV that 
have zoonotic origins, but now maintain separate, genetically distinct animal and human 
transmission cycles (187) were also not included. We supplemented our initial list of virus-
mammal associations by cross-referencing other existing virus databases (7,9,29) and conducting 
literature searches. For each virus, we confirmed the accuracy, detection quality, and 
completeness of the mammal associations, resolving any inconsistencies between the referenced 
database and scientific literature. Through our searches, we additionally identified virus and 
mammal associations that were missing from our list and added those that met the criteria we 
outlined above. We compiled a list of 420 virus-mammal associations, which included 278 
unique host species and 67 unique zoonotic viruses (SI Data and Results, Table 1). 

For each virus-mammal association in our database, we conducted a series of literature 
searches to collect two metrics of zoonotic risk: viruses’ human case fatality rate and capacity for 
human-to-human transmission. We collected CFRs as a proxy for virulence, reporting the mean 
of the maximum and minimum recorded CFR per zoonosis in the literature. When different 
CFRs for a given virus could be linked to spillover events from different host species, we 
reported these distinct host-CFR associations as separate entries in our database. This distinction 
occurred in the case of two viruses only, Nipah virus, which spills over to humans from both pigs 
(73) and bats (74), and Marburg virus, which spills over to humans from both primates (188,189) 
and bats (190). We additionally collected information on each zoonosis’ capacity for human-to-
human transmission according to a four-point scale, adapted from previously defined 
classification schemes (8,11,13,29). We assigned a human transmissibility level of “1” to viruses 
for which human-to-human transmission had not been recorded; “2” to viruses for which human-
to-human transmission had been recorded, but was described as atypical; “3” to viruses for 
which human-to-human transmission had occurred regularly, but was restricted to self-limiting 
outbreaks; and “4” to viruses for which endemic human transmission had been reported. We 
constructed this ranking system based on literature that has defined epidemic outcomes for 
different levels of human-to-human transmission (2,11,13). Previous meta-analyses have relied 
on binary categorization (e.g., pathogens are either capable or incapable of human-to-human 
transmission) which fails to capture critical nuance. Slight variations in viral capacity for 
between-human transmission can have a large impact on the outcomes of human epidemics (13). 
In capturing the full extent of variation in viruses’ capacity to transmit between humans, our 



 85 

classification system provides a better foundation for identifying viruses that pose the greatest 
threat to human populations. 

In addition to collecting our targeted metrics of virulence and transmissibility, we 
classified each virus-mammal association according to the mammal’s role in the transmission of 
a virus. First, we used a binary code to distinguish between reservoir and secondary hosts 
(“reservoir status”), assigning “1” to mammal species that maintain viruses endemically 
(reservoir hosts) and “2” to species that harbor the virus but are not implicated in zoonotic 
maintenance (secondary hosts). Thus, the “reservoir status” variable identifies the primary 
selective environment (i.e., reservoir) of viruses in zoonotic transmission cycles. We assigned a 
second binary code to define each host’s role in zoonotic spillover to humans (“spillover 
capacity”), assigning “1” to mammal species that serve as a source of human infection and “0” to 
species that have no record of transmission to humans. Thus, the “spillover capacity” variable 
identifies host species implicated in infecting humans. Combining these two codes, we defined a 
third “spillover type” code to distinguish between “primary” spillover from a reservoir host 
species (reservoir status = 1, spillover capacity = 1) and “secondary” spillover from a secondary 
host species (reservoir status = 2, spillover capacity = 1). 

In addition to the virus-mammal association database, we compiled a database of all 
directly-transmitted mammalian viruses, including both zoonotic and non-zoonotic viruses. We 
extracted directly-transmitted viruses from the extensive database of mammalian viruses 
published by Olival et al. (28), again excluding viruses with vector-borne transmission, 
“spillback” from humans to animals, or exclusively human transmission. We collected 7 
additional viruses from Geoghegan et al. (7), compiling a total of 345 unique viruses 
(supplementary table 2). 
 Using previously published databases (7,9,28–33), we collected a series of host and viral 
predictor variables that based on the literature, we hypothesized might explain observed variation 
in zoonotic virus dynamics in human hosts. The literature has identified a suite of life history, 
ecological, immunological, and biological host factors that can influence host-pathogen 
coevolution (17,19,21,191). In this study, we focused on four life history traits that could be 
quantified across mammal species: body mass, litter size, gestation period length, and lifespan. 
Host reproductive effort trades off with investment in immunity and shapes the demography of 
the susceptible host population (38,39). Long-lived hosts are associated with heightened 
transmission in a population (40,41). The literature has additionally linked host body mass with 
the rate of disease progression (34), reservoir competence (35), and pathogen replication rate 
(36,37). Our analysis builds off previous work by Luis et al. (192), which considered host life 
history traits such as body mass, lifespan, and litters per year in a meta-analysis of zoonotic 
burden across bats and rodents. In addition to including viral traits such as genome length and 
whether or not the virus replicates in the cytoplasm, we analyzed viruses’ host ranges. 
Replicating Olival et al. (28), we first considered viruses’ host phylogenetic breadth, as a 
pathogen’s degree of generalism has been posited to influence the evolution of virulence (193). 
We additionally considered the position of a virus’ host breadth relative to humans by 
considering the maximum host phylogenetic distance from humans across a virus’ host range.   

We obtained these host traits primarily from the PanTHERIA database (31), 
supplementing missing trait information with the Animal Diversity Web (33), The Encyclopedia 
of Life (30), AnAge database of animal ageing and longevity (32), and literature searches 
(supplementary table 3). We proxied unavailable trait data by averaging across other host species 
in the same genus, or borrowing data from species in the same family that had similar body 
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masses. Additionally, we collected host taxonomic classification, phylogenetic breadth, and 
phylogenetic distance from Olival et al. (28); virus recombination rates from Geoghegan et al. 
(7); and virus taxonomic classification and genome composition from the International 
Committee on Taxonomy of Viruses (ICTV) database (194). Our full database with references is 
available in the supplementary information (supplementary tables 1–4). Table 1.2 lists and 
describes all predictor and response variables used in our analysis. 

Olival et al. calculated hosts’ phylogenetic distance from humans and viruses’ host 
phylogenetic breadths from a matrix of phylogenetic distances between mammal species. The 
authors derived the distance values in this matrix from a maximum likelihood phylogenetic tree 
of mammalian cytochrome b sequences using the ape package in R (195,196). Cytochrome b is a 
mitochondrial protein with high sequence variability and availability across mammal species, 
and as a result, is commonly used to determine phylogenetic relationships between mammals 
(197). Cytochrome b has also been demonstrated to be the most effective mitochondrial genetic 
marker for reconstructing mammalian phylogenies (198). Many previous studies of parasite 
sharing between animals and plant species have quantified the degree of phylogenetic difference 
between host species as the number of years since species diverged in evolutionary history (199–
202). Using time since divergence in this context implies that host species share pathogens due to 
mutual ancestry. However, spillover occurs when a pathogen overcomes genetic barriers to infect 
a novel host – it does not arise due to shared ancestry between two host species (203). Host 
genetic factors also determine how the host will respond to infection, which will influence the 
pathogen’s virulence and capacity for transmission in a novel host population (204). Given the 
lack of a universally identified and available genetic loci for host immune traits, studies of cross-
species pathogen emergence have often relied on mitochondrial genetic markers to measure the 
degree of phylogenetic difference between host species (55,205). Although cytochrome b 
sequences are available for the majority of mammal species, some species in our dataset lacked 
sufficient sequence data and thus, were excluded from the Olival et al. matrix of phylogenetic 
distances. We calculated phylogenetic distance values for these missing species by averaging 
across other host species in the same genus or order, which is noted in supplementary table 3. 
There were 7 viruses missing phylogenetic breadth values; we used viruses in the same genus as 
proxies, which is noted in supplementary table 2.   
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CHAPTER 2 SUPPORTING INFORMATION 
 
SI_Data_and_Results. Databases with variable descriptions and references, and table outputs 
for all selected models. Available at https://doi.org/10.1073/pnas.2113628119. 
 
Data and materials availability: All data, data references, code, and materials used in the 
analysis are publicly available in the main text, the supplementary materials, or the following 
github repository: https://github.com/sguth1993/zoonotic_risk_meta_analysis 
 
SI_Appendix. Supplementary methods and figures (Figure S1-13). 
Exclusion criteria. We excluded seven viruses (Table S2 in SI Data and Results) that have only 
caused human infections in laboratory settings. We additionally did not include viruses such as 
HIV (206) and HCoV-229E (207) that have zoonotic origins, but have maintained separate, 
genetically distinct human transmission cycles since before 1950 (Table S3 in SI Data and 
Results). We excluded such viruses for several reasons: precise death and case count records are 
sparse pre-1950; viruses that have circulated within the human population for centuries or 
decades often have unconfirmed or disputed origins; and over long timescales, viral evolution in 
the human population is expected to muddle any relationship between zoonotic history and 
dynamics in the human population (104). With this strict inclusion criteria, we compiled 89 
unique virus species (Table S1 in SI Data and Results). Each virus species was associated with 
one reservoir host order, with the exception of Rabies virus and Mammalian 1 orthobornavirus, 
which are both known to be maintained by two distinct nonhuman animal reservoir orders in 
independent transmission cycles (57). 
Supplementary analyses. For each virus, in addition to collecting global CFR estimates from 
the literature, we calculated up to three country-specific CFRs from death and case counts in 
countries that have reported the largest outbreaks of that virus—when available, using data that 
spanned multiple outbreaks and/or years to maximize sample size and accuracy. We expected 
that global CFR estimates would be more precise approximations of virulence, while country-
specific CFR reports would allow us to assess and account for potentially confounding effects of 
regional differences in health care and overall infrastructure. To test whether GDP per-capita 
predicts country-level variation in CFR, we modeled all 119 country-specific CFR estimates 
separately (Table S6c in SI Data and Results). To gage whether variation in GDP per-capita 
among viruses’ geographic ranges might confound the trends in global CFR estimates, we then 
modeled GDP per-capita and CFR estimates aggregated at the level of the 86 unique zoonotic 
transmission chains (Table S6d in SI Data and Results). For this second model, we calculated a 
composite GDP per-capita for each aggregated CFR statistic by weighting each country’s GDP 
per-capita by the proportion of cases in the CFR calculation that were recorded in each country 
and summing the weighted GDPs per-capita.  

We assigned a human transmissibility level of “1” to viruses for which forward 
transmission in human populations post-spillover had not been recorded; “2” to viruses for which 
forward transmission in humans had been recorded but was described as atypical; “3” to viruses 
for which transmission within human populations had occurred regularly but was restricted to 
self-limiting outbreaks; and “4” to viruses for which endemic human transmission had been 
reported.  

Recording death and case data from laboratory-confirmed outbreaks in the literature 
required maintaining a strict definition of zoonotic, excluding some viruses that have been 
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included in previous analyses (28,57,68). We compiled excluded viruses that met looser 
inclusion criteria—specifically, seven viruses that have only caused human infections in 
laboratory settings and 25 viruses that lacked molecular confirmation of infection of humans, but 
still had serological evidence of infection in humans—in a supplementary database (Table S2 in 
SI Data and Results). To assess whether our observed trends held across a larger sample of 
zoonotic viruses, we ran an additional GAM analysis of global CFR estimates with this 
supplementary database, including 121 unique virus species with a total of 126 unique zoonotic 
transmission chains (Table S6b in SI Data and Results). Viruses included in previous analyses 
that met neither our loose nor strict inclusion criteria are outlined in Table S3 in SI Data and 
Results. 

We calculated reservoir host group cophenetic distance from Primates using a composite 
time-scaled phylogeny of the mean divergence dates for all reservoir clades, as presented in the 
TimeTree database (57,208). In our prior analysis (60), phylogenetic distance values were 
derived from a phylogenetic tree of mammalian cytochrome b sequences (28,195,196), which 
captured significantly more variation between host orders. The time-scaled phylogeny used in 
this analysis produced only six unique distance values across all reservoir groups in our database 
but represented the only available phylogeny that included both mammals and birds. 

Given that the number of zoonoses harbored by a reservoir group appears to correlate 
with species diversity within that group (57), we hypothesized that species diversity might 
influence reservoir effect size on CFR in humans; thus, we included reservoir species richness, 
which we derived from the Catalogue of Life using version 0.9.6 of the taxize library in R 
(57,72), taking the sum of values across bird orders for the Aves reservoir group. If increasing a 
reservoir group’s total number of zoonotic viruses also increases their number of virulent 
zoonoses, reservoir species richness might inflate the mean CFR of zoonotic viruses harbored by 
species rich reservoir groups—or alternatively, given that most zoonotic viruses have low CFRs 
in humans, species richness might instead reduce the mean CFR associated with these reservoirs. 
Nevertheless, we expected that higher numbers of zoonotic virus species would inflate the total 
death burdens associated with species rich reservoir groups. 
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Figure S1. Data provenance and analysis flowchart.  
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Figure S2. Histogram of human case fatality rates (CFRs) across all zoonotic virus species 
included in our virulence analysis, grouped by reservoir host type. 
 

 
Figure S3. Predicted human CFR of zoonotic viruses sourced from each reservoir host group 
when using the top selected model of global CFR estimates. 
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Figure S4. Predictors of global CFR estimates, excluding bat lyssaviruses. (A) Top 15 models 
ranked by AIC. Rows represent individual models and columns represent predictor variables. 
Cells are shaded according to the proportion of deviance explained by each predictor. Cells 
representing predictor variables with a p-value significance level of <0.1 are outlined in black 
and otherwise outlined in gray. (B-D) Effects present in the top model: reservoir host group, log-
transformed virus species publication count, vector-borne transmission, and bridged spillover. 
Lines represent the predicted effect of the x-axis variable when all other variables are held at 
their median value (if numeric) or their mode (if categorical). Shaded regions indicate 95% CIs 
by standard error and points represent partial residuals. An effect is shaded in gray if the 95% CI 
crosses zero across the entire range of the predictor variable; in contrast, an effect is shaded in 
purple and considered “significant” if the 95% CI does not cross zero. Full model results are 
outlined in Table S6a in SI Data and Results. (B) Reservoir host groups are ordered by 
increasing cophenetic phylogenetic distance from Primates (in millions of years), as indicated on 
the top axis.  
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Figure S5. Predicted human CFR of zoonotic viruses sourced from each reservoir host group 
when using the top selected model of global CFR estimates, excluding bat lyssaviruses. 
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Figure S6. Predictors of global CFR estimates, including virus species that met a lenient 
definition of zoonotic. (A) Top 15 models ranked by AIC. Rows represent individual models and 
columns represent predictor variables. Cells are shaded according to the proportion of deviance 
explained by each predictor. Cells representing predictor variables with a p-value significance 
level of <0.1 are outlined in black and otherwise outlined in gray. (B-F) Effects present in the top 
model: reservoir host group, virus family, vector-borne transmission, spillover type, and virus 
species publication count. Lines represent the predicted effect of the x-axis variable when all 
other variables are held at their median value (if numeric) or their mode (if categorical). Shaded 
regions indicate 95% CIs by standard error and points represent partial residuals. An effect is 
shaded in gray if the 95% CI crosses zero across the entire range of the predictor variable; in 
contrast, an effect is shaded in purple and considered “significant” if the 95% CI does not cross 
zero. Full model results are outlined in Table S6b in SI Data and Results. (B) Reservoir host 
groups are ordered by increasing phylogenetic distance from Primates, as indicated on the top 
axis. 
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Figure S7. Predictors of variation among the 119 country-specific CFR estimates. (A) Top 15 
models ranked by AIC. Rows represent individual models and columns represent predictor 
variables. Cells are shaded according to the proportion of deviance explained by each predictor. 
Cells representing predictor variables with a p-value significance level of <0.1 are outlined in 
black and otherwise outlined in gray. (B-D) Effects present in the top model: reservoir host 
group, virus family, and vector-borne transmission. Lines represent the predicted effect of the x-
axis variable when all other variables are held at their median value (if numeric) or their mode (if 
categorical). Shaded regions indicate 95% CIs by standard error and points represent partial 
residuals. An effect is shaded in gray if the 95% CI crosses zero across the entire range of the 
predictor variable; in contrast, an effect is shaded in purple and considered “significant” if the 
95% CI does not cross zero. Full model results are outlined in Table S6c in SI Data and Results. 
(B) Reservoir host groups are ordered by increasing cophenetic phylogenetic distance from 
Primates (in millions of years), as indicated on the top axis.  
 

 
Figure S8. Predictors of CFRs calculated from country-level data aggregated at the level of the 
86 unique zoonotic transmission chains. (A) Top 15 models ranked by AIC. Rows represent 
individual models and columns represent predictor variables. Cells are shaded according to the 
proportion of deviance explained by each predictor. Cells representing predictor variables with a 
p-value significance level of <0.1 are outlined in black and otherwise outlined in gray. (B-D) 
Effects present in the top model: reservoir host group, virus family, vector-borne transmission, 
and bridged spillover. Lines represent the predicted effect of the x-axis variable when all other 
variables are held at their median value (if numeric) or their mode (if categorical). Shaded 
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regions indicate 95% CIs by standard error and points represent partial residuals. An effect is 
shaded in gray if the 95% CI crosses zero across the entire range of the predictor variable; in 
contrast, an effect is shaded in purple and considered “significant” if the 95% CI does not cross 
zero. Full model results are outlined in Table S6d in SI Data and Results. (B) Reservoir host 
groups are ordered by increasing cophenetic phylogenetic distance from Primates (in millions of 
years), as indicated on the top axis. 

 
Figure S9. Histogram of human transmissibility rankings across all zoonotic virus species 
included in our analysis of capacity for forward transmission in humans, grouped by host order. 
 

 
Figure S10. Effects present in the selected model to predict capacity for forward transmission 
within the human population with reservoir host order as a predictor instead of phylogenetic 
distance from humans. Effects include reservoir host group, virus family, vector-borne 
transmission, and virus species publication count. Lines represent the predicted effect of the x-
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axis variable when all other variables are held at their median value (if numeric) or their mode (if 
categorical). Shaded regions indicate 95% CIs by standard error and points represent partial 
residuals. An effect is shaded in gray if the 95% CI crosses zero across the entire range of the 
predictor variable; in contrast, an effect is shaded in purple and considered “significant” if the 
95% CI does not cross zero. Full model results are outlined in Table S6e in SI Data and Results. 
(A) Reservoir host groups are ordered by increasing cophenetic phylogenetic distance from 
Primates (in millions of years), as indicated on the top axis.  
 

 
Figure S11. Relationship between CFR and transmissibility in humans. 
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Figure S12. Histogram of post-1950 death counts, grouped by host order. Here, death counts 
were plotted to display the data distribution and are not adjusted for variation in the length of the 
reporting timeline. In the death burden model, we normalized counts by including an offset for 
the exact number of years over which deaths were recorded. 
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Figure S13. Predictors of post-1950 death burden. (A) Top 15 models ranked by AIC. Rows 
represent individual models and columns represent predictor variables. Cells are shaded 
according to the proportion of deviance explained by each predictor. Cells representing predictor 
variables with a p-value significance level of <0.1 are outlined in black and otherwise outlined in 
gray. (B-E) Effects present in the top model: virus family, virus species publication count, 
reservoir group species richness, vector-borne transmission, and bridged spillover. Lines 
represent the predicted effect of the x-axis variable when all other variables are held at their 
median value (if numeric) or their mode (if categorical). Shaded regions indicate 95% CIs by 
standard error and points represent partial residuals. An effect is shaded in gray if the 95% CI 
crosses zero across the entire range of the predictor variable; in contrast, an effect is shaded in 
purple and considered “significant” if the 95% CI does not cross zero. Full model results are 
outlined in Table S6f in SI Data and Results. (C) Reservoir host groups are ordered by increasing 
cophenetic phylogenetic distance from Primates (in millions of years), as indicated on the top 
axis.  
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