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Access and Mobility of Wireless PDA Users

Marvin McNett and Geoffrey M. Voelker
Department of Computer Science and Engineering
University of California, San Diego

Abstract

In this paper, we analyze the mobility patterns of users
of wireless handheld PDAs in a campus wireless network
using an 11 week trace of wireless network activity. Our
study has three goals. First, we characterize the high-level
mobility and access patterns of handheld PDA users and
compare these characteristics to previous workload mobil-
ity studies focused on laptop users. Second, we develop
two wireless network topology models for use in wireless
mobility studies: an evolutionary topology model based on
user proximity and a campus waypoint model that serves as
a trace-based complement to the random waypoint model.
Finally, we use our wireless network topology models as a
case study to evaluate ad-hoc routing algorithms on the
network topologies created by the access and mobility pat-
terns of users of modern wireless PDAs.

1 Introduction

As wireless access proliferates, understanding user behav-
ior and wireless network performance has become crucial
as a basis for developing and evaluating new applications,
such as context-aware applications, new network infras-
tructure, such as middleware support for public-area net-
works, and new wireless communication architectures, such
as ad-hoc networking.

Over the past few years there have been a number of
wireless workload studies characterizing user behavior and
network performance in a variety of settings, including
metropolitan networks [24], university campuses [17], con-
ferences [5], and most recently corporate networks [6]. The
goals of these studies have ranged from developing low-level
radio signal and error models [11], network installation and
maintenance issues [5], and characterizing user workload
models, network performance, and mobility of laptop users
[17].

In this paper, we extend previous wireless studies by
characterizing the mobility patterns of users of wireless
handheld PDAs in a campus wireless network, and eval-
uating the implications of these mobility patterns on new
wireless communication architectures like ad-hoc networks.
We use a trace of wireless network access by 275 freshmen
with HP Jornada PDAs over the course of the Fall, 2002,
term at our University. A key aspect of our trace is the
focus on handheld PDA users. Even more so than lap-
top users, we expect handheld PDA users to exhibit high
degrees of both casual and extended wireless access and
mobility.

Our study has three goals. First, we characterize the
high-level mobility and access patterns of handheld PDA
users, and compare these characteristics to previous work-
load mobility studies focused on laptop users.

Second, we develop two wireless network topology mod-
els for use in wireless mobility studies. Previous work fre-
quently uses synthetic models of user mobility patterns,
such as the popular “random waypoint” model [9], to de-
rive wireless network topologies that change due to user
mobility. To complement these synthetic models, we de-
rive two new models of network topologies that incorporate
user mobility patterns from our traces. Our evolutionary
topology model represents connectivity among users solely
based on observed network proximity: an edge connects
two nodes if two users can reasonably “hear” each other.
In this model, the network topology evolves over time as
nodes and edges appear and disappear based upon user
connections, disconnections, and movements observed in
our trace. Our campus waypoint model serves as a trace-
based analog of the random waypoint model. In this model,
we associate users with geographic locations on campus,
and model their mobility vectors and potential interactions
as they access the wireless network over time. However,
rather than choosing user locations, speeds, and directions
using random distributions, we instead use the access and
mobility patterns of users in our trace.

Finally, we use the evolutionary network topology model
as a case study to evaluate ad-hoc routing algorithms in
a realistic setting. Ad-hoc routing has been a popular re-
search topic for a while, and many protocols have been
proposed and evaluated in the literature [21, 16, 20, 22].
Surprisingly, however, very few have been evaluated in re-
alistic user settings [19]. As a result, we know little about
the trade-offs and applicability of these algorithms to com-
mon, expected situations. Since groups of users with hand-
held PDAs have often been used as a motivating setting for
ad-hoc networking, we use our trace to evaluate popular
ad-hoc routing algorithms on the network topologies cre-
ated by the access and mobility patterns of users of modern
wireless PDAs.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes our user
population and trace methodology. Section 4 character-
izes the access and mobility patterns of the users in our
trace. Section 5.1 describes the two mobility models we
create based upon our trace, and Section 6 evaluates ad-
hoc routing algorithms using one of those models. Finally,
Section 7 summarizes our results and concludes.



2 Related Work

In this section, we first discuss previous trace based studies
of wireless network user behavior. We then discuss various
mobility models that have been proposed and studied in
the literature.

2.1 Trace Studies

Three early studies on wireless network usage were per-
formed at Stanford University [18, 24, 25]. In [18], the
authors study a small set of 8 users for an 8-day period. In
their trace, laptop users switch between wired and wireless
networks. The wide area wireless network used in their
study covered an entire metropolitan area and is intrinsi-
cally different from the 802.11b wireless network used in
our study. Their focus was on how often users switched
between the wired and wireless networks, how often users
changed position geographically, latency in the wireless
network, and optimizations for improving wireless network
performance. The granularity of geographic location was
limited by the large, half mile radius of the wireless radios
used.

In [24], the same wireless network infrastructure was
used as in [18]. However, a set of 24,773 users were ob-
served in [24] over a 7 week period to study user mobility
and network access properties. These goals are similar to
our own, but were for a much wider area with a larger au-
dience, using a very different network setup. Due to the
dates of the trace period, we also assume that most of the
users in the trace were laptop users.

The last Stanford study [25] focused on local area wire-
less network activity of 74 users in the Stanford Computer
Science Department over a 12-week period. In that study,
they analyzed data polled from access points using SNMP,
subnet router tcpdump data, and an authentication log to
characterize network access, network loads, and network
traffic types.

Three subsequent studies followed the Stanford research.
Balachandran et al. [5] supplement previous studies with
a workload from a wireless LAN at an ACM conference.
Their goal was to characterize user behavior in this set-
ting to facilitate the planning and deployment of wireless
networks. Since the network was confined to a large au-
ditorium for the conference, the mobility characteristics of
the users in the trace were very limited.

Kotz and Essien [17] recently extended the study in [25]
to an entire campus wide wireless network at Dartmouth
College. They collected data from 1706 users across 476 ac-
cess points over an 11 week period. Their study focused on
a more general population of wireless users. However, their
trace data did not allow for them to distinguish among
device types (PDA, laptop, etc.), nor did they focus on
modeling mobility.

Most recently, Balazinska and Castro [6] analyzed a cor-
porate wireless LAN workload of 1366 users across 177 ac-
cess points. Again, data was collected by using SNMP
to periodically poll all access points involved. In their
study, Balazinska and Castro compare their results with
results from the previous studies to distinguish user be-
havior among the various user groups and identify factors
which contribute to these differences.

The recent studies of 802.11 wireless networks use AP
associations to track user mobility. In our study, we refine
this technique to use signal strength information for all
access points detected by the device at a particular time.

2.2 Mobility Models

Numerous mobility models have been proposed for use in
simulation and evaluation of ad-hoc routing protocols. A
recent survey presents a number of these models which are
divided into entity and group mobility models [10]. The
survey also present simulation results from these models
to emphasize the importance of properly choosing a mo-
bility model for research simulations. They show that the
choice of mobility model greatly impacts the performance
of various ad-hoc routing protocols.

Perhaps the most widely used mobility model has been
the random waypoint model [9]; this is in part due to its
implementation in the popular Network Simulator, ns2 [1].
In this model, each node begins a simulation stationary for
pause time seconds, then randomly chooses a destination
in the simulation space and moves to that location with
a speed between speedmin and speedmae (chosen from a
uniform distribution). Once a node reaches its destination,
the process repeats. A few studies have been performed on
this mobility model to overcome shortcomings. Aside from
being far from realistic user behavior in most settings [14],
random waypoint creates non-uniform [8] and fluctuat-
ing [23] node densities within the simulation area, as well
as decrease the average nodal speed over time [26, 27].

Recently, there have been a number of mobility models
proposed as alternatives to the standard random waypoint
model (e.g., [4, 7, 10, 12, 13, 14, 15, 27]). In general, the
goal of these models is to increase the realism of random
waypoint in particular settings. For example, [12] proposes
a group mobility model called Reference Point Group Mo-
bility (RPGM). In this model, node velocity vectors are
calculated as the sum of a group center velocity vector
and a random motion vector for each node. Such a model
could be used for group movement in disaster recovery
where teams work and move together throughout a dis-
aster area, or to model movement of convention attendees
moving from room to room between project demonstra-
tions. In [15], three movement models were proposed: con-
ference, event coverage, and disaster area!. New to these
models was the incorporation of obstacles through which
neither users nor radio signals could pass. [7] proposes a
mobility model with smooth, rather than sudden, changes
in both velocity and direction. A “Mobility Vector Model”
is proposed in [13] which is similar to the model in [12].
However, [13] introduces an “acceleration factor” which,
when properly chosen, also generates smoother node tra-
jectories. “Freeway” and “Manhattan” mobility models
are proposed in [4]. These models restrict movement to
paths defined prior to simulation. In addition, node move-
ment depends upon the node’s previous velocity and the
velocity of nearby nodes considered to be in the same lane.

Most recently, [27] shows that any mobility model in
which speed and destination are chosen independently suf-
fers from average speed decay. They propose a framework

1A common theme, but with many differing models.



in which any given mobility model can be transformed to
eliminate variations in average node speed as simulation
time progresses. Finally, [14] proposes a mobility model
that incorporates both obstacles and paths. Node move-
ment is not only restricted to paths, but follows a shortest
path route to the node’s randomly chosen destination. In
addition, node transmissions do not pass through obsta-
cles. This framework was used to model student movement
between buildings on a college campus.

Each of the above mentioned works test various ad-hoc
routing protocols using their mobility models. Although
protocol performance results vary from model to model,
results indicate that a few key characteristics of the mo-
bility models play major roles in the effectiveness of the
ad-hoc protocol under study. For example, average link
lifetime and link change frequency which result from the
model are key characteristics which affect the performance
of the protocol.

Until now, these synthetic models have been the only
means of specifying user movement for ad hoc routing pro-
tocol testing. Our study provides much needed data to
compliment, as well as, validate the synthetic models in
use today.

3 'Trace Methodology

In this section, we describe the procedure used to collect
the trace data as well as definitions and data analysis meth-
ods.

3.1 Data Collection

We collected trace data from approximately 275 freshmen
PDA users? for an 11 week period between September 22,
2002 and December 8, 2002. The freshmen were the initial
students in a new college (anonymized as “New College”)
on our university campus. Our colleges have a particu-
lar academic theme and define graduation requirements
for students in the college, but are independent of ma-
jor; colleges have students representing all majors on cam-
pus. Each PDA was equipped with a Symbol Wireless
Networker 802.11b Compact Flash card. The trace PDAs
consisted of 97 Jornada 548s and 185 Jornada 568s running
the Windows Pocket PC 2000 and 2002 operating systems,
respectively®. We identify users according to their regis-
tered wireless card MAC address, and assume that there
is a fixed one-to-one mapping between users and wireless
cards. The mapping is anonymous; we have no mapping
of MAC address to user names.

The University campus has extensive 802.11b coverage
in which students can roam. The students in our trace
resided at the “Roosevelt” College housing facility — an
approximately 130m x 130m square area near the southeast
corner of the University campus with complete 802.11b

2There were 3 development PDAs which uploaded data dur-
ing the trace period.

3The slight discrepancy in the number of total users and
number of total trace PDAs is due to a few network cards —
likely developers’ cards — moving between a 548 and 568.

coverage. Overall wireless activity was extensive: students
associated with over 400 unique APs in our trace.

We developed a background data collection tool called
WTD (Wireless Topology Discovery) and installed the tool
on each PDA prior to distribution. For our trace, WTD
periodically recorded the following information:

e Access point (AP) signal strength (for each AP de-
tected)

e AP MAC address (for each AP detected)
e Current AP association

e WTD program version number

e Device type (Jornada 548 or 568)

e Power state (on AC or battery power)

Note that WTD recorded the AP signal strength and
MAC address for all APs that it could sense across all fre-
quencies for each time interval, not just the AP the wireless
card was associated with at the time. Recording all APs
provides much richer topology information than just the
associated AP.

As a trade-off between the granularity of samples and
the resource and power overhead of collecting the data,
we used a sampling period of 20 seconds. Once either the
local data file reached a critical size or a maximum data
file age was reached, WTD contacted our server to upload
its sample collection in bulk.

A practical feature of the software is its ability to pe-
riodically check our database for new releases and bug
fixes. Once detected, a new version is automatically down-
loaded to the device and re-launched. This feature makes
it easy to add functionality to the data collection software
or adapt to unexpected problems.

3.2 Preliminary Data Analysis

A key aspect of our data analysis involved determining
when and where a sample was taken, in addition to defin-
ing a user session and its duration. This information en-
abled us to reconstruct the necessary topology information
for later experiments, as well as describe device usage pat-
terns.

Since all PDAs maintained their own clocks, we needed a
method for resolving the time in which a sample was taken.
Our approach compared the sample upload time according
to the PDA with the sample upload time according to our
database server. The clock skew between the PDA and
our server was then calculated and added to the sample
timestamp recorded when the PDA took the sample.

We determined user geographic locations using the lo-
cator software from another project [3]. This software uses
trilateration based on recorded AP signal strengths (for all
APs detected in the sample) along with empirical correc-
tions to calculate user locations on campus.

One difficulty encountered during initial data analysis
was to determine when a session began and ended. We
observed that many sessions occurred on the edge of AP



detection. This caused a single session to appear to be sev-
eral very short sessions as the AP signal fluctuated between
detected and undetected. As a result, we used a simple
heuristic requiring sessions to have a minimum length of
one minute and 1.5 minutes between sessions.

Finally, we observed a steady decline in user population
over the trace period. Though not unforeseen, the dropout
rate was higher than expected. Although it would be im-
possible to say what the exact cause was for the decline,
we attribute the decline to two contributing factors. First,
rather than purchasing the PDAs for an explicit need (e.g.,
as with laptops), students were simply given the devices for
being a New College freshman independent of whether stu-
dents wanted the device. Because these users are from a
variety of different majors and interests, it is likely that
some opted to stop using the device after an initial trial.
We have also heard of this device abandonment trend in
other studies in which devices were simply given to the
user population [2]. This trend raises the interesting ques-
tion of the extent to which students, usually considered
early adopters, actually have a strong demand for current
handheld PDA technology.

A second contributing factor was the fact that a com-
plete depletion of battery resulting in a device hard re-
set occurred more often than initially expected. Since our
tracing module resided in soft state on the PDAs, a hard
reset permanently removed all pre-installed software (in-
cluding WTD). This situation may have also contributed
to students abandoning their devices. After losing all their
personal data and settings, some users may have opted to
cease using their PDA out of frustration. Since the Jornada
568s possessed a small, replaceable backup battery, this
problem was more prevalent in the Jornada 548s, where
only 23 devices (22 percent of 548s) recorded data the fi-
nal week of the trace, as opposed to 64 Jornada 568s (33
percent of 568s). Due to complicated issues involved with
the PDA distribution, there was no means for recalling
and/or restoring devices once they were in the student’s
possession. These issues were, unfortunately, out of our
control.

4 User Behavior

In this section, we study user behavior based upon our
trace data. First, we characterize overall activity of our
PDA users, focusing on daily usage patterns. Next, we
discuss user mobility focusing on movement among access
points on campus. Finally, we discuss user access to the
wireless network, analyzing user and AP session counts
and length. Where appropriate, we compare and contrast
our results with previous trace studies. For most measure-
ments, we provide cumulative distribution functions and
explicitly quantify the median, 80th percentile, and 90th
percentile statistics.

4.1 Activity

We start by illustrating the location of wireless activity
on campus, and then quantify overall user PDA activity
during our trace period. Figure 1 shows snapshots of user
locations taken at noon and 1PM on September 24. The

(b)

Figure 1: User locations across the University campus at
noon (a) and 1PM (b) on September 24, 2002 (dark cir-
cled ’x’). The dense areas at the lower right are Roosevelt
College student housing buildings (where the New College
freshmen were temporarily housed).

majority of activity takes place at the student housing fa-
cility in the lower right hand corner of the map. This was
the case throughout the duration of the trace. Other loca-
tions of moderate activity were lecture halls where a large
number of undergraduate courses are taught.

In terms of overall user PDA activity, Figure 2 shows
the number of active users per hour across the 11 weeks of
the trace, and Figure 3 shows the number of active users
per hour for just the first full week of the trace (the most
active week). These graphs show a number of high-level
characteristics of the user population in our trace. First,
device usage and network access follow regular diurnal pat-
terns, with peak usage typically between 1pm—2pm and
minimum usage between 5am—6am. Activity during the
week is significantly higher than the weekend: an average
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Figure 2: Number of active users each hour over study
duration. The shallow decline indicates user dropout, a
result of device abandonment or loss of trace module.

of 33 percent more users per hour on the weekdays than
during the weekends. We also find that student usage of
PDAs is relatively bursty — likely reflecting the ease with
which users can carry and activate their PDAs as well as
the constraints of using PDAs for extended periods of time.

The extended time span of low usage around 11/30 cor-
responds to the Thanksgiving weekend. The peak on 10/16
corresponds to a day in which many users participated in
a psychological experiment for a New College class.

Second, as mentioned in Section 3.2, the graph shows a
clear decline in recorded user activity over the trace period.
Again, it it not clear what the contributions of user dropout
and loss of trace module are to this decline. Figure 4 shows
the average number of users per hour for each week of the
trace. A second degree polynomial has been fitted to the
data in a least squares sense to highlight the user activity
decline trend. The trace starts with an average of 40 users
per hour for the first week and ends with 21 — a loss of
nearly 2 active users per hour each week.

Third, there are typically between 10 and 15 users ac-
tive even in the early hours of the morning. For the most
part, we can assume that these are PDAs left on over night
and sitting in their cradles. This assumption is based on
the typically long session durations and device immobility
observed among this set of PDAs.

The Dartmouth [17] and IBM [6] traces also show clear
diurnal patterns of usage. The decline in user activity only
appears in our trace due to the reasons discussed above.

4.2 Access

Next we study user access to the wireless network in terms
of session counts and session durations.

4.2.1 Session counts

Figure 5 shows the CDF of the number of user sessions.
Note that 50 percent of the users initiated more than 77
sessions over the trace period. This means that the me-
dian user initiated an average of one session per day over
the trace period. Clearly, many of the students were not
relying upon their device in their daily activities. Still, 20
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Figure 4: Average number of active users per hour for each
week of trace. Week 10 was Thanksgiving break.

percent of the users did initiate over 231 sessions (roughly
three times per day), and 10 percent initiated over 335
(roughly four times per day).

To understand user activity on a day to day basis, Fig-
ure 6 presents a CDF of the number of days the users
actually turned on their PDAs. From Figure 6 we can
see that half the users turned on their devices less than
21 days during the trace. This is lower than the median
number of days from the Dartmouth study [17] in which
laptop users connected a median of 28 days over their 77
day trace. Furthermore, the distribution of number of days
in which a user used their device was nearly uniform in the
Dartmouth study. Clearly this is not the case from the
inset graph of Figure 6. There, we see that there were 20
users who only used their PDAs one day during our trace
period. The number of users for each number of active
days tends to drop from there. This is further indication
of user dropout during our trace period.

Figures 5 and 6 indicate that some users did find their
PDA useful. Twenty percent used their PDAs more than
46 days (60 percent of the 77 days), and 10 percent used
them more than 58 days (75 percent of the 77 days). And
there were a few ‘die hard’ users who used their PDAs
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of days the users powered on their devices during the trace.
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nearly every day.

4.2.2 Session durations

Figure 7 shows the heavy tailed distribution of user session
lengths. A user session length is the time duration in which
a user PDA is powered on and able to detect nearby access
points. The extremely long sessions are likely PDAs left
running in their cradles. One session actually lasted 333
hours — nearly two weeks! The median session duration, or
the time a PDA remains connected to the wireless network,
was only 6.25 minutes compared to 16.6 minutes for laptop
users [17]. Further, only 16 percent of all sessions are at
least one hour, compared to 29 percent for laptop users.
However, for both PDA and laptop users, 27 percent of
sessions were under one minute. Still, a substantial number
of sessions were long: 20 percent of user sessions were 41
minutes or longer, and 10 percent were 121 minutes or
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longer.

From the perspective of the access point, Figure 8 con-
tains the distribution of number of AP sessions for the set
of APs recorded in our trace. An AP session is the time
duration in which a user PDA associates with an access
point. This heavy tailed distribution makes it difficult to
see that there was a median of 14 sessions at an AP. This
heavy tail indicates that a few APs were used very fre-
quently and held a large portion of the total number of
AP sessions, while many of the APs from our trace held
only a few, infrequent sessions. Around 20 percent of the
APs held 120 or more sessions, 10 percent held 304 or more
sessions, and just 10 different APs held 50 percent of all
AP sessions in our trace. Not surprisingly, these AP were
located at the student housing facility, the hotspot of PDA
activity in our trace.

Figure 9 shows the CDF of AP session lengths. Note
again that this is again a very heavy tailed distribution. In-
terestingly, AP sessions were a median of only 1.85 minutes
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Figure 11: Number of access points with which users asso-
ciate during the first week. Inset is histogram of the same
with 50 bins.
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Figure 10: Number of access points with which users asso-
ciate over the entire trace. Inset is histogram of the same
with 50 bins.

in length. This indicates that there was significant roaming
during user sessions, where the median was 6.25 minutes
in length. This is not surprising considering that multiple
APs were detected in most samples, and our cards period-
ically scan for the AP with the highest signal strength. If
an AP with a higher signal strength is detected, a reassoci-
ation will occur unless the card is explicitly instructed not
to do so. Since signal strengths can vary significantly from
one moment to the next at the same location, even sta-
tionary users experience reassociation when their devices
detect two or more APs with similar signal strengths. As
further evidence, the maximum AP session length was only
62 hours as compared to a 333 hour user session length.

4.3 Mobility

In this section, we characterize overall user mobility from
two perspectives: (1) the distribution of the number of
access points with which users associate and the number
which they detect, and (2) the distribution of number of
users which associate with particular access points. In-
tuitively, the first captures how widely users in the trace
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Figure 12: Number of access points with which users as-
sociate on first Monday of the trace (9/23/2002). Inset is
histogram of the same with 50 bins.

roam across campus while using their PDAs. The second
captures how concentrated this roaming is.

We find that students are relatively mobile and use their
PDAs in many locations. Figure 10 shows the cumulative
distribution of the number of unique access points that
users associate with throughout the trace (the inset graph
shows the raw distribution histogram with 50 bins). From
the graph, we see that 50 percent of the users visit 21 APs
or more, 20 percent visit 56 APs or more, and 10 percent
visit 71 APs or more during the entire trace. In extreme
cases, some students associated with over 130 APs. Com-
pared to the laptop users in the Dartmouth study [17], we
find that the typical wireless PDA user is over twice as mo-
bile as the typical laptop user in terms of associated access
points. This indicates that PDA users tend to operate in a
larger number of locations than their laptop counterparts.

Figures 11 and 12 show CDF plots of the user AP as-
sociation counts for just the first week and first Monday
(9/23/2002) of the trace, respectively. These graphs pro-
vide a finer grained view of user activity, and demonstrate
that users are quite active. Within the first week, 225 users



CDF of User AP Sightings

\

=)
o
T
“
i

e
N
)
a
i

CDF of Distinct Visitors Counts

=
o

o
=~
T

Fraction of Users
o
(%)
T

o
2

0.3r = l
S
=z

0.2 a

0.1 50 100 150 200 1

o ‘ : No. APs Sighted ‘

0 20 40 60 80 100 120
Number of APs Sighted

Figure 13: Number of access points which a users detects
over entire trace. Inset is histogram of the same with 50
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Figure 14: CDF of APs detected in a sample. Most samples
detected multiple nearby access points. Inset is histogram
of the same.

had associated with an access point, half of which had al-
ready associated with 10 or more different APs. Note from
Figure 12 that 142 users were active on the first Monday.
A few extreme users associated with over 30 APs on that
day alone.

Figure 13 is similar to Figure 10, except that it shows the
cumulative distribution of the number of access points that
users could have associated with throughout the trace, i.e.,
the set of APs detected, but not necessarily associated with
during the trace. Recall that our wireless monitor records
all access points sensed by the 802.11 wireless card, not just
the AP with which the card is associated. Comparing the
graphs in Figures 10 and 13, we find that users see many
more access points than they associate with: 50 percent of
the users see 39 APs or more, 20 percent see 86 APs or
more, and 10 percent see 107 APs or more.

Overall, users see an average of 2 access points at a lo-
cation. Figure 14 shows the distribution of number of APs
detected per sample. Notice that 60 percent of all samples
detected multiple access points and 10 percent of all sam-
ples saw 4 or more APs. Such overlapping wireless network
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Figure 15: Distribution of number of distinct visitors to an
AP. Inset is histogram of the same with 125 bins.

deployments provides useful opportunities for location de-
termination and load balancing.

Looking at user mobility from the opposite perspective,
Figure 15 shows the cumulative distribution of distinct
users seen across the access points for the entire trace (the
inset graph shows the raw distribution histogram using 125
bins). Many access points only see a few users: 50 percent
of the APs see 5 users or less. However, a significant frac-
tion of access points see a large number of users: 20 percent
see 51 or more users, and 10 percent see 84 or more.

5 Trace-Based Mobility Models

Evaluations of mobile systems frequently use synthetic
models of user mobility patterns, such as the popular ran-
dom waypoint model [9] and its numerous refinements
(e.g., [10, 14, 26]), to derive wireless network topologies
that change due to user mobility. Synthetic mobility mod-
els have a number of advantages, including the ability to
arbitrarily scale the various parameters of the model to
exercise the system across a wide range of parameter sce-
narios.

However, synthetic mobility models have the obvious
limitation that they are synthetic. Without basing its mo-
bility patterns on realistic, observed object mobility, the
extent to which a synthetic model is representative of how a
mobile system would behave and perform in the real world
remains unclear. As a result, we argue that evaluations
of mobile systems need to also include the use of mobility
models derived from real, measured mobility patterns.

To complement synthetic models, we propose two new
models of network topologies that incorporate user mo-
bility patterns from our traces. These models represent
the indoor and outdoor mobility of people with handheld
PDAs.  Consequently, they only represent a particular
mobility scenario, but one that is common in applications
of mobile systems. Since these models are derived from
traces, we are in the process of making these models avail-
able for download and use by other researchers.



5.1 Evolutionary topology model

The evolutionary topology model is a constructive model
based upon the mobility of the users in our trace as well as
the wireless connectivity of the 802.11b devices they used.
We call it “evolutionary” because we derive the network
topology from the network proximity of the users, and the
topology naturally evolves over time as users move about
as well as when they join and leave the network.

A compelling feature of the model is that it incorporates
the wireless connectivity and propagation characteristics
of 802.11. Consequently, it naturally captures and mod-
els the range, interference, and obstruction properties of
802.11 that are challenging to realistically model using an-
alytic approaches. For example, rather than determining
whether two nodes can communicate with each other based
on a range parameter, the evolutionary topology model
bases connectivity on the ability of users’ 802.11 devices to
communicate in a particular location at a particular time.
Our experience is that this feature is critical for improving
the realism of the network topology (see Section 5.1 below).
As a result, we consider this model to be particularly re-
alistic for wireless mobility scenarios using 802.11 devices,
which is the most common scenario evaluated using wire-
less simulators [1, 28]. Note that this model intimately
ties together user mobility and network topology, trading
off realism with generality. Our second model below re-
moves the dependency on the use of 802.11 wireless, albeit
at some expense of realism.

The evolutionary topology model represents connectiv-
ity among users solely based on observed network proxim-
ity. For each time slot, we create a node in the topology for
each active user in our trace, and create edges to connect
nodes if users’ wireless devices could reasonably commu-
nicate with each other at that location and time in the
trace. Ideally, the topology would have an edge between
two nodes if the users’ wireless devices sensed each other
in the trace. Recall, though, that in our trace we recorded
all of the access points that each user could sense (not just
the AP the user was associated with); we had planned to
detect all 802.11b devices, both user and AP, but device
limitations prevented user-user detection.

As a result, we approximate connectivity between two
users by creating an edge between two nodes if the inter-
section of the set of APs sensed by their PDAs is non-
empty, and remove the edge if the intersection of APs be-
comes empty again. In other words, we create an edge
between two nodes representing users in the topology if
those users could sense at least one AP in common during
that time slot. This approximation will have errors, since
two users sensing the same AP does not necessarily mean
that they can potentially communicate directly with each
other. However, in Section 5.2 below we argue that this
error is acceptably small compared to the use of current
radio models, and that the resulting topology is consider-
ably more realistic as a result. In effect, we are generating
a topology very near to the actual topology. We call this
the “nearby” topology.

Logically, we recreate this nearby topology for each time
slot in the trace. As a result, the network topology natu-
rally evolves to model the mobility patterns of users and
radio propagation characteristics over time. Nodes and
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Figure 16: Snapshot of the evolutionary topology model at
noon on Monday, September 23, 2002.

Metric | Min | Max | Avg | Median
Nodes 6 48 18 18
Links 2 532 41 35
Degree 1 22 4 4
Table 1: High-level characteristics of the evolutionary

topology model for the first week of the trace.

edges appear and disappear based upon PDA on/off events
and user movements observed in our trace. In practice, we
only explicitly record the node and edge changes in the
topology over time for efficient representation.

Figure 16 shows an example timeslice of our evolutionary
topology model at noon on Monday, September 23, 2002,
in the Roosevelt College part of campus. The nodes in the
nearby topology represent 22 users, with each node having
an average degree of 7.4 for a total of 81 edges. The evolu-
tionary model also emphasizes the limitation of the popu-
lar two-ray ground reflection model for radio propagation
in an environment containing obstacles. This radio prop-
agation model is often used in wireless networking simula-
tions to determine when nodes are within communication
range by calculating the strength of the received signal(s).
Figure 16 shows that the evolutionary model accounts for
obstacles to generate a more realistic connectivity graph
than the two-ray ground model. For this geographic set-
ting, the two-ray ground model would create a completely
connected graph under typical radio settings.

Overall, from our trace we found that the evolutionary
topology model results in interesting topologies only within
the Roosevelt College location of campus. This part of
campus is home to users with the deployed PDAs. Once
these users move throughout campus, they create numer-
ous islands of disconnected graphs; the campus waypoint
model described next better captures and takes advantage
of this extended, outdoor mobility. Focusing on the mo-
bility patterns and topology of users within the Roosevelt
College, Table 1 shows the high-level characteristics of the
resulting evolutionary topology for the first week of our
trace. In Section 6, we use this evolutionary topology
model to evaluate the performance of popular ad-hoc rout-



ing algorithms.

5.2 Campus waypoint model

The campus waypoint model serves as a trace-based analog
to the random waypoint model. In this model, we asso-
ciate users with geographic locations on campus and model
their mobility vectors and potential interactions as they
access the wireless network over time. However, rather
than choosing user locations, speeds, and directions using
random or other synthetic distributions and models, we in-
stead use the access and mobility patterns of users in our
trace. In this section we describe the model and compare
its characteristics to common synthetic models.

In the campus waypoint model, the campus geography
with 802.11 wireless coverage serves as the geographic re-
gion in which nodes roam. This region is roughly a 1400m
by 1700m rectangle. For each time step in the model, we
determine user location based upon the set of APs that
each user senses in that time slot and the known geographic
locations of those APs relative to the campus geography.
For each user, we estimate user location via trilateration
among the locations of sensed APs.

We model user mobility over time based upon (1) the
evolving set of sensed APs, and (2) the disappearance and
reappearance of users at different AP locations on campus
assuming reasonable velocities. A user always appears in
the model when connected to the wireless network. For
each time slot, we update user location whenever the set
of sensed APs changes. The location of a continuously
connected user over time determines the mobility rate, di-
rection, and pause time of that user. The mobility pat-
terns from these kinds of users generally represent roaming
within a building or within building clusters.

A user may appear in the model depending upon its
wandering status. A user wanders when it disassociates
from the network and reassociates at a different location;
these mobility patterns generally represent outdoor roam-
ing among buildings across campus. We model wandering
direction simply as the vector between the locations of dis-
association and reassociation. We model wandering speed
by computing the geographic distance between locations
and dividing by the time between associations. To ignore
situations where users wander far off a straight line, we
impose a minimum speed of 0.5 mph on wandering speeds
along a straight line. Wandering users can optionally ap-
pear in the model depending upon the scenario simulated.
Although in our trace users disassociated from the network,
ad-hoc routing simulations, for example, can still take ad-
vantage of wandering users to model scenarios that assume
users keep their devices active while wandering.

When comparing the mobility characteristics in our
campus waypoint model to those used in typical synthetic
models, we make three significant observations. First, un-
like node mobility in typical parameterizations of synthetic
simulations, we find that only a small percentage of users
— 11% on average for the first, most active week of trace —
are actually in motion at any one time. In contrast, default
parameterizations for synthetic scenarios, independent of
the complexity of the mobility model, result in most nodes
being mobile. Second, given that our users are walking,
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users move in the campus waypoint model at an average
speed of 2.2 mph, or roughly a meter per second on average.
For comparison, the default node speed for ad-hoc routing
in ns2 wireless scenarios draws from a uniform distribu-
tion between 0—20 meters per second. Lastly, users appear
and disappear from the network. This behavior, absent
in most documented simulations, can and does have dras-
tic effects on network topology and connectivity. Perhaps
the reason for the absence of this behavior in most simu-
lations is in part due to the fact that node on/off events
are not currently implemented in the ns2. We have, how-
ever, extended ns2 to model these events for the protocol
evaluations of Section 6.

From our observations, we conclude that default param-
eterizations of mobility models commonly used to evaluate
mobile systems represent very aggressive mobility scenar-
ios. Such scenarios indeed stress the ability of systems to
deal with mobility, but at the expense of realism. For sce-
narios where user movement is limited to walking, at least,
our results suggest that commonly parameterized synthetic
mobility models are too aggressive. We explore this issue
in more detail in the next section.

6 Ad-Hoc Routing Evaluation

Groups of users with handheld PDAs have often been used
as a motivating setting for ad-hoc networking. In this sec-
tion, we use the evolutionary topology model to study pop-
ular ad-hoc routing algorithms on the network topologies
formed among users of modern wireless PDAs. Our goal is
to be indicative of the performance of these protocols in a
realistic mobility scenario.

We used ns2 version 2.1b8 to simulate and compare the
performance of the DSR, DSDV, and AODV ad-hoc rout-
ing protocols. Our study focused on the Roosevelt Col-
lege student housing area from noon to 1pm on Monday,
September 23, 2002. Recall that this area consists of eight
buildings laid out in approximately a 130m x 130m square
area (lower right corner of Figures 1(a) and 1(b)). This
area and time corresponds to a scenario where users estab-
lish an ad-hoc network among a cluster of nearby buildings,
with mobility both inside individual buildings as well as
among buildings. Though node numbers fluctuated, there
were at least 30 PDAs active during the hour of simulated
communication.

Using the default ns2 wireless constant bit rate (CBR)
traffic of 4 packets/sec, 512 byte packets, we ran simula-
tions with a random 10, 25, and 50 percent of the nodes
communicating at any one time. The simulation results
indicate that all three protocols were roughly equivalent
in performance; the packet delivery ratios for all protocols
were within 2-4% of each other across the various workload
scenarios. Even with nodes appearing and disappearing,
all three protocols were able to quickly adapt to find new
routes between senders and receivers, and user mobility
was not a key factor in the performance of the protocols.

These results reflect the low rate of change of the net-
work topology: for the topology we simulated, the topol-
ogy change at the rate of only 11 link changes per minute.
Students moved around in the network during the hour,
but the rate of movement was low compared to the ability



of the routing protocols to quickly adapt. Although de-
pendent on our trace scenario, these results again suggest
that many ad-hoc routing simulations are overly aggres-
sive in their parameter choices for speed (up to 20 m/sec)
and mobility. Such choices emphasize topological change
and, consequently, perhaps place too much emphasis on an
uncommon case. The basic routing protocols perform well
in this scenario and do not appear to require substantial
additional optimization — a topic that has been the source
of considerable effort in ad-hoc routing research.

We do not claim that these results are representative of
all interesting user mobility scenarios. However, we argue
(1) that the results are more indicative of protocol behavior
in a compelling deployment scenario than synthetic mod-
els with aggressive mobility, and (2) they underscore the
importance of linking models to realistic scenarios and pa-
rameterizations.

7 Conclusion

In this paper, we study the access and mobility charac-
teristics of an 11-week trace of wireless PDA users on a
university campus. Our study has three goals.

First, we characterized the high-level mobility and ac-
cess patterns of handheld PDA users. Compared to previ-
ous studies focused on laptop users, we found a much wider
variation in wireless network usage among PDA users. Fur-
thermore, we found that the PDA users were about twice
as mobile as laptop users in terms of the number of access
points they associated with in the same time period.

Second, we develop two wireless network topology mod-
els for use in wireless mobility studies: an evolutionary
topology model based upon the mobility of the users in our
trace as well as the wireless connectivity of the 802.11b de-
vices they used, and a campus waypoint model that serves
as a trace-based analog to the random waypoint model. We
compared the characteristics of these trace-based models
based upon realistic user mobility patterns and wireless
connectivity with default parameterizations of synthetic
models. The evolutionary topology model overcomes the
limitations of the popular two-ray ground reflection model
for radio propagation in an environment containing obsta-
cles. For our geographic setting, the two-ray ground model
would create a completely connected graph under typical
radio settings where our model reflects a much more real-
istic network topology. The campus waypoint model con-
trasts sharply with typical synthetic models in terms of
percentage of nodes mobile at a time as well as average
node speed in a campus scenario. The typical parameter-
izations of synthetic models are significantly more aggres-
sive than what we found in practice.

Finally, we use the evolutionary network topology model
as a case study to evaluate ad-hoc routing algorithms in
a realistic setting. The simulation results indicate that all
three protocols were roughly equivalent in performance,
and that user mobility was not a key factor in their perfor-
mance. The rate of topology change due to user mobility
from the trace was relatively low compared with the abil-
ity of the protocols to adapt to those changes. This result
underscores the importance of linking models to realistic
scenarios and parameterizations.
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