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Block-Level Consistency of Replicated Files

John L. Carroll

Computer Science Division
Department of Mathematical Sciences
San Diego State University
San Diego, California 92182

ABSTRACT

Wae investigate the construction of a reliable device. Such
a device appears to the file system as an ordinary block-
structured device, but is implemented as a set of server
processes on several sites. This allows for replication while
leaving the operating system kernel and the file system
unchanged.

The regular structure of the block-level replication
environment allows the use of consistency control algo-
rithms that are simpler and less network intensive. We
present three algorithms for maintaining file consistency in
a block-level replication environment. The first is a majority
consensus voting algorithm that recovers blocks only when
required for data access; the second is a variant of the
available copy scheme modified for replication at the block
level; the third is a naive version of the available copy
scheme that does not maintain any failure information.

Each scheme is evaluated in terms of availability and
network traffic. While block-level replication is shown to
allow improvements in the network traffic burden incurred
by voting, available copy schemes are shown to have
better availability and require significantly less traffic than
voting schemes. The naive available copy variant proposed
here is shown to be the algorithm of choice.

1. Introduction

A method often employed to increase availability and relia-
bility of files is to replicate data at several sites. In this way,
if a site fails it is likely that the other sites will continue to
operate and to provide access to the file. Availability and
reliability of a file can be made arbitrarily high by increasing
the order of replication.

A replicated file is an abstract data object with the
same semantics as an ordinary file, but which has greater
availability and reliability because data are replicated. A
common method for implementing a replicated file [2] is to
replicate on a per file basis. While conceptually attractive,
file-level replication can lead to unnecessary complications
for the implementor in trying to preserve file system seman-
tics.

We are constructing a reliable device which appears
to the file system as an ordinary block-structured device,
but which is implemented as a set of server processes on
several sites. Because it presents the same interface as an
ordinary device, the file system requires no modification
and normal file system semantics are preserved.
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We consider three policies for maintaining con-
sistency in a block-level replication environment. The first is
a variant on majority consensus voting, which takes advan-
tage of the block-level replication and recovers out-of-date
blocks only when they are required by the file system. This
decreases network traffic and simplifies the recovery pro-
cess. We also present two available copy algorithms
modified for the block-level environment which provide
extremely high availability in the absence of network parti-
tions.

The amount of network traffic generated by these
policies is also analyzed. The best overall scheme is shown
to be the naive available copy algorithm. Its availability and
low network traffic make it the algorithm of choice for imple-
menting a reliable device.

This paper is organized into five sections: Section 2
describes our system model; Section 3 describes the con-
sistency control and access algorithms; Section 4 presents
an analysis of the performance of our schemes in terms of
availability; Section 5 presents an analysis of network
traffic; Section 6 has our conclusions.

2. The Model

A common method for implementing a replicated file sys-
tem is at the file level [2]. The file is treated as a logical
entity that is replicated on a per file basis. While conceptu-
ally simple, making the file the unit of replication leads to
complications for the implementor when trying to preserve
file system semantics. If the file system is part of the
operating system kernel, as in most systems, the imple-
mentor has a choice: provide a replicated file system on top
of the operating system as a set of library procedures, or
move the replication into the operating system kernel.

The first choice is unsatisfactory because the imple-
mentor must provide an interface that preserves the
semantics of the original file system using only extant sys-
tem services. In essence, the implementor must build an
entire replicated file system on top of the original file sys-
tem. The second choice is also less than satisfactory
because it requires modification to the operating system
kernel.

A reliable device is implemented by a set of server
processes on several sites and appears to the file system
as an ordinary block-structured device. Because it presents
the same simple interface as an ordinary device, the file
system requires no modification and normal semantics are
preserved. This approach has the advantage that extant
programs can operate on replicated files without
modification.

In the case of a conventional operating system such
as UNIXT where the file system is part of the operating sys-

1UNIX is a Trademark of Bell Laboratories.



tem kernel, we would install a device driver stub which
would receive requests for block access from the file sys-
tem and would forward those requests to a user-state
server which would perform the data access and con-
sistency control algorithms. Such a scheme is iflustrated in
Figure 1.

In the UNIX model, a user-state process makes a file
system request to the operating system kernel. The file sys-
tem consults internal data structures to ascertain if it has
the requested block in the buffer cache. If the block is not
present then the file system requests the device driver to
fetch the block. The device driver stub then communicates
this request to the user-state server which executes the
consistency control and data access algorithms.

USER SPACE REMOTE
_-"| SHE
"” b
g .
USER BLOCK [=_
PROCESS SERVER [= —<i_
system 0/ s, T~<2 REMOTE
call dependent 1 SITE
procedure “‘.
eal] e
DEVICE ~
FILE ~.
DRIVER e,
SYSTEM [g STUB ~z| REMOTE
SITE
KERNEL SPACE

Figure 1: The unix Model

In a system design such as MACH [1], the reliable dev-
ice would be implemented as a user-state server process
which communicates with the file system via the inter-
process communication mechanism as is illustrated in Fig-
ure 2.

USER SPACE REMOTE

TR
VNS, | e
[ v \XJ | 1 "smE

KERNEL SPACE

Figure 2: The MACH Model

Since the server is a user-state process there is no
reason to require it to reside on the same site as the device
driver stub, in the case of UNIX, or on the same site as the
file system manager in the case of MACH. Because of this,
the reliable device model operates easily in the context of
diskless workstations.
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3. Consistency Control Algorithms

We present three algorithms for maintaining file con-
sistency in a block-level replication environment. Our
schemes are less expensive than schemes that replicate at
the file level because they recover only those blocks which
have been modified during the time that the site was under
repair. The savings in recovery time and network traffic can
be significant in the context of large, long-lived files.

3.1. Majority Consensus Voting

Majority consensus voting schemes [3,4,5,6,10,12] insure
the consistency of replicated files by honoring read and
write requests only when an appropriate quorum of the
sites holding copies of the file can be accessed.

In its simplest form voting assumes that the correct
state of a replicated file is the state of the majority of its
copies. Ascertaining the state of a replicated file requires
collecting a quorum of the copies. Should this be prevented
by one or more site failures, the file is considered unavail-
able.

The algorithm for reading first collects votes from all
operational sites. These votes contain the version number
of the requested block along with any weight assigned to
the site. If a quorum is present access to the data block can
proceed. if the local copy of the data block is out-of-date,
then it is requested from the site which presented the
highest version number. The restrictions on quorum com-
position insure that any quorum must contain the most
current copy, so it is never necessary to do any recovery
when a read operation is requested. However, it is more
efficient to keep the local copy up to date as we do in our
algorithm. This algorithm is illustrated in Figure 3.

function READ(s : site, k : index, B : block) : boolean
begin

let Q be the set of all reachable sites

if ¥ w,>read quorum then

eQ
let tbe a site such that v, x=max;. ofVix}
if Vs, k<Vi k then
request_block(t, k, B)
write_block(k, B)
Ve, k< Vik
end if
read_block(k, B)
return TRUE
else
return FALSE
end If
end READ

Figure 3: Weighted Voting Read Algorithm

The algorithm for writing is even simpler. Votes are
collected from all of the operational sites. These votes con-
tain the version number of the requested block and any
weight assigned to the site. If a quorum is present then the
maximum version number is found and incremented. The
restrictions on quorum composition insure that a site with
the highest version number must be present in any quorum.
The incremented version number is sent along with the
data block to all sites in the quorum. This repairs all out-of-
date copies that are operational. This algorithm is illustrated
in Figure 4.



function WRITE(s : site, k : index, B : block) : boolean
begin

let Q be the set of all reachable sites

if 3 w;>write quorum then

eQ
Ve k<M&X;e of Vi kf + 1

send_block(Q, k, B, vs )
write_block(k, B)
return TRUE
else
return FALSE
end If
end WRITE

Figure 4: Weighted Voting Write Algorithm

3.2. Avallable Copy

When network partitions are known to be impossible, avait
able capy [7,8] schemaes provide a simple means for main-
taining file consistency. Available copy schemes are based
on the observation that so long as at least one site has
been continuously- available it is known to hold the most
recent version of the data blocks making up the files. An
available copy scheme provides higher availability than vot-
ing schemes because it can continue to operate when all
but one site have failed, while voting schemes require a
majority of the sites to be operational in order to function.

The rule for writing a block when using an available
copy scheme is simple: write to all available copies. Since
all available copies receiva each write request, they are
kept in a consistent state: data can then be read from any
available copy. If there is a copy of the data block on the
local site, than the read operation can be done locally,
avoiding any network traffic.

When a site recovers following a failure, if another
site holds the most recent version of the data blocks the
recovering site can repair immediately. In order to speed
recovery, it is desirable to ascertain as quickly as possible
the last site, or set of sites, that failed.

We consider a method which requires only that the
availability information be brought up to date when a data
block is modified or when a repair operation occurs. Our
scheme assumes a fixed set of sites participating in the
replication which are connected via a network which pro-
vides reliable message delivery and is free of partitions. We
assume clean failure; if a site fails it simply halts,
malevolent failures are not tolerated. This fail-stop [11]
:aehavior can be simulated by an appropriate software
ayer. :

Definition 3.1. The was-available set, denoted W,, for a
site s is'the set of all sites that received the most recent
write request and all of those sites which have repaired
from site s.

The was-available sets represent those sites which
received the most recent change to a data block. We posit
the existence of an atomic broadcast mechanism. This
condition can be relaxed by ascertaining which sites are
operational when the sites first communicate and by send-
ing this information along with the first write request. The
second write request will contain the set of sites which
received the first write request and so forth. By delaying the
information in this way, communication costs are minimized
at the expense of some small increase in recovery time.
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Definition 3.2. Let S=fs,, - * -, s,} be the set of sites which
hold copies of the data blocks; then the closure of a was-
available set W; is denoted by C*(W;).

The closure of the was-available set has been
described in an earlier paper {8].

The sites making up the system where the data
blocks are replicated can be in any one of three states:
failed, comatose or available. A failed site is one that has
ceased to function due to hardware or software failure. A
comalose site is one that has been repaired but the current
state of the data blocks is not known. Sites enter this state
following a total failure and remain there until the most
recent version of the data blocks are found by examining
the version numbers of the other sites. A site that has been
continuously operational or that has been repaired and
holds the most recent version of the data blocks is said to
be available.

When a site recovers from a failure, it must commun-
icate with other sites to determine if it holds the most recent
version of the data blocks. In all cases where a site s
repairs from another site ¢, it does so by first sending to ta
version vector v containing what it believes to be the
correct version number for each of the data blocks. Site ¢
returns another version vector v’ which contains the correct
version number for each data block along with copies of
those blocks which have been modified while s was not
operational. Site s replaces those blocks which are out-of-
date with current copies and v' becomes the new v. The
recovery algorithm is illustrated in Figure 5.

procedure RECOVERY(s : site)
begin
state(s)«—comatose
select
when:all sites in C*(W;) have recovered
let te C*(W,) : Vue C*(W,), version(t)2version(u)
or
when Jue S : state(u)=available
let tbe any such u
end select
If s#tthen
send(tv)
request(t, (v’, {blocks}))
repair those blocks that differ in v’
VeV’
Woe—WoJfs]
send(t, W;)
end if
state(s)e-available
end RECOVERY

Figure 5: Avallable Copy Recovery Algorithm

3.3. Naive Avallable Copy

A naive available copy [8] scheme does not attempt to
detect the last site to fail. Because it does not maintain
availability information about sites holding copies of the
data block, network traffic is reduced at the cost of introduc-
ing poor worst-case behavior.

The naive scheme operates as the previous scheme
would if the was-available sets were fixed so that
Vse S, W,=S, where S is the set of all sites. Sites recover
as in the previous scheme except that no site availability
information is kept. The algorithm for such a scheme is



illustrated in Figure 6.

procedure SIMPLE_RECOVERY(s : site)
begin
state (s)e—comatose
select
when all sites have recovered
let te S : Yue S, version(t)2version(u)
or
when 3ue S : state(u)=available
let t be any such u
end select
If s=tthen
send(t, v)
request(t, (v, {blocks}))
repair those blocks that differ in v’
VeV’
end if
stato(s)e«-available
end SIMPLE_RECOVERY

Figure 6: Nalve Avallable Copy Recovery Algorithm

4. Availability Analysis

In this section we compare the availabilities of replicated
blocks managed by majority consensus voting, available
copy and naive available copy. In all three cases, we
assume that the copies of the replicated block reside on
distinct sites of a computer network. Sites are subject to
failure. When a site fails, a repair process is immediately
initiated. Should several sites fail, the repair process will be
performed in parallel on these failed sites. We also
assume that the repair process will attempt to bring up to
date all the copies that might have become obsolete during
the time the site under repair was not operational. Such
attempts will not always be successful since they depend
on the availability of up-to-date copies of the replicated
block. Since the available copy algorithm does not operate
correctly in the presence of partitions, we assume that the
communications network linking the several sites where the
physical-copies of the replicated blocks reside cannot fail.

We assume that individual site failures and that indi-
vidual site repairs are independent events distributed
according to a Poisson law. In other words, the probability
that a given site will experience no failure during a time
interval of duration t is e where A is the failure rate, and
the probability that a given site will be repaired in less than t
time units is 1—e~* where p is the repair rate.

The availability A of a system is the limiting value of
the probability p(t) that system will be operating correctly at
time &

A= lim p()
t—eo

4.1. Majority Consensus Voting

Wae will restrict our analysis to the case where all sites con-
taining copies have equal failure rates A and equal repair
rates p. Under these conditions, it is common. to assign
equal weights to all copies. Equal weights cause a particu-
lar problem for replicated blocks with an. even number of
copies. Draw conditions will occur every time an equal
number of .copies are up and down. To solve these ties, we
will need to adjust by a small quantity the weight of one of
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the copies. The availability Ay(n) of replicated bock with n
copies will be given by [10]

n
9l

[ n/2)
Ay(n) = /§n Trp) for nodd (1.a)
and

el e
Ay(n)= /§n Tep) + é(1+p)” for neven (1.b)

with p=A/. This latter expression can be rewritten as

2k 2k 2k
o= (o]« )+
2k-1
, /
k-1[ J ]p .
= & rppe AR

4.2. Avallable Copy.

The state-transition-rate diagram for a replicated block hav-
ing n copies has 2n states. The first n states labelled from
S, to S, represent the states of the block when 1 to'n
copies are available; n new states labelled from Sj to S7_4
represent the states of the block when all copies of the
block have failed and 0 to n—1 copies not including the
copy that failed last have recovered but remain comatose.
As seen in Figure 7, all states S; with j=1, - - - ,n—1 have
one outward transition leading to state S, (S; for S;) and
corresponding to the failure of one of the j available copies
and one outward transition to state S;,, corresponding to
the recovery of one of the n—j failed copies. State S, has
only one outward transition ‘leading .to S, ;. Once alf
copies of the block have failed, the block is in state Sj and
will return to state S, if and only if the last available copy
recovers. If any of the n—1 other copies recovers, that copy
will remain comatose and the block will be in state S7. As
a result, state Sy has one outward transition with rate p
leading to state S, and another one with rate (n—1)u lead-
ing to state Sj.

Figure 7: State Diagram for Available Copy

All states S} with j=1,..,n-2 have three outward
transitions: one leading to state Sj_; cotresponding to the
failure of one of j the comatose copies, another one with
rate p leading to state S;,, corresponding to the recovery
of the last available copy, and a third one with rate
(n-j-1)p leading to state S7,, corresponding to the
recovery of one of the other n—j-1 failed copies. State .
S’_, has no third outward transition since the only failed:



copy is necessarily the last available copy.

One can easily derive from the equilibrium conditions
for our system the availability A4(n) of the replicated block

Ao = 5

where p; denotes the probability that the block is in state S;.
In particular, we have [8]

1+3 2
Ax(2) = _i’_P_t_;L @)
(1+p)
2 3, nnt
Au(3) = 2+9p+137p +11p +22p (3)
(1+p)°(2+3p+2p%)
6+37p +99p2 + 152p° + 124p* +47p5 +6p°
4)= 4
A4 (1+p)*(6+13p+11p2 +6p°) @
where p = A/

A more general lower bound for the availability of
available copy algorithms can be derived from the equili-
brium of flows between states S,,S,.,,  -:.52. S, and
states S),_y,Sho, + * , S, Ss. Since we have

W(Phot +Pra+ "+ + +P7+Po) = Apy

nEn—1
(1+p)"

we can obtain a lower bound for the probability of being in
any of the non-available states:

and p1+pi =

_np"

’+ 7
+P1+pPo < (1+p)"

Phor+Phat
Hence,

" +pi+po) <1- '—p_,, 5
(1+p)
Theorem 4.1. The availability As(n) of a replicated block
with n identical copies managed by an available copy con-
sistency algorithm is greater than the availability Ay(n) of a
block with 2n—1 or 2n identical copies managed by a voting

algorithm as long as the failure-to-repair rate ratio p
remains less than or equal to one.

Proof: Since Ay(2n-1)= Ay(2n), we only need to prove
that As(n) > Ay(2n-1)forallp < 1.

i From equations (1.a) and (3), we know that
Ax(3) > Ay(5).

ii. For k 2 4, let us compare the lower bound for As(n)
given by inequality (5) with the upper bound for

Ay(2n-1)
2n-1 "
n p

(1+pp"
A sufficient condition for A4(n) > Ay(2n-1) is then given by

This inequality holds for n = 4 and any p < 1. Since

Aa(n)=1-(pp1 +Phat *

Ay@n-1) <1-

>(1+p)"" (6)

[2n+1} [2n—1] [2n-—1}
n+1 n n
——————+1=2n+l+1—2ﬂ+1 >2

n n n n n
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for all n > 1, it also holds by recurrence for all n >4 and
anyp< 1.

4.3. Naive Available Copy

In the naive available copy algorithm, no record is kept of
which copy failed last. Once all the copies of a block have
failed, the recovery algorithm will then have to wait until al/
copies of the block have recovered. It will then select the
copy with the highest version number, mark it as being
available and use it to bring all other copies of the block
up-to-date.

Figure 8: State Diagram for Naive Available Copy

As seen in Figure 8, the state-transition-rate diagram
for a replicated block of n copies managed by a naive avail-
able copy algorithm has the same 2n states as if the block
was managed by a conventional available copy algorithm.
Transitions between states will be quite similar to those
observed for a conventional available copy algorithm with
the exception that there will be no transitions from state S
with j<n-2 to an available state.

From the state transition diagram, we have

KkApy = (n—k+1)upy_ + AP, k=23, ..,n(7)
kHP'n—k = (n_k+ 1)}"p;l—k+1 +“'p'n—1 k= 2v 3! w1 (8)
Ap1 = pPHy (9)
From equation (7), we obtain
K (n=)! (j-1)!
pk—/=z1 (n k)lkl P p1

and from equation (8)

n-H! (j-1)!

E (n k)'kl P pn1

j=1

Phk=

Since the sum of the probabilities of being in any given
state must be equal to one,

1

P1= 1
B(n;p)+PB(n;;)
where
n Kk
o) — (n=p)! G=1)!
B(n!p)_kgﬁg (n k)lkl pl

The availability Aya(n) of a replicated block with n copies
managed by a naive available copy consistency algorithm
is then given by

Ana(n) = é Pk =

k=1

B(n;p)
B(n;p)+pB(n;

1
p)



Note that Ans(2) = Ay(3), which means that two copies
managed by our naive available copy algorithm have the
same availability as three copies managed by a voting
algorithm.

4.4. Discussion

We have already shown that the conventional available
copy algorithm with n copies performed better than voting
with 2n copies. The figures 9 and 10 contain the availabili-
ties of replicated blocks with three and four available copies
respectively compared with the availabilities of replicated
blocks with six and eight voting copies. In all three graphs,
p varies between 0 and 0.20; the first value corresponding
to perfectly reliable copies and the latter to copies that are
repaired five times faster than they fail and have an indivi-
dual availability of 83.33%.

1. -
- ]
99 =
> b 3
.98 E i
E 2 ]
z 2
< . F' +—4 Three Available Copies ]
9 o . . . 3
- 00— Three Naive Available Copies’;
é o—o Five or Six Voting Copies \§
-96 ;: 4 i 1 1 ‘ i I 1 1 l 1 i 1 1 ] 1 1 1 1 :
0. .05 1 .15 .2

Failure to Repair Rate Ratio

Figure 9: Avaliabllities for Three Available Copies and
Six Voting Copies

99 B
by 2
S 98 E
‘= o 3
> o ]
< r . . ]
o7 F +—+ Four Available Copies ]
o F g— Four Naive Available Copies 3
g O—o0 Seven or Eight Voting Copiesé
-96 : 1 1 1 i l H 1 1 1 I 1 1 1 1 l 1 1 1 1 :

0. .05 .1 .15 .2
Failure to Repair Rate Ratio

Figure 10: Availabilities for Four Available Copies and
Eight Voting Coples
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These graphs clearly indicate that both the traditional
and the naive available copy algorithms produce much
higher availabilities than voting. And, they fail to show any
significant difference between the two available copy algo-
rithms under investigation for values of p less than 0.10.
Most of today's computers are characterized by availabili-
ties well above 0.95 and by valuss of p well below 0.05,
which could lead us to the conclusion that the naive
recovery algorithm would perform as well as the conven-
tional algorithm. Besides, observed repair time distribu-
tions are characterized by coefficients of variation less than
one. Under such conditions, sites will tend to recover in the
same order as they failed. The last site to recover after a
total failure will often be the last one that failed. When this
happens, the conventional available copy algorithm will be
unable to recover faster than our naive algorithm as it will
have to wait for the last copy to recover in order to get the
last copy that failed.

5. Network Traffic Analysis

We compare the cost in network traffic of majority con-
sensus voting, available copy, and naive available copy by
analyzing the number of transmissions required by each
scheme, since network congestion is influenced mainly by
the number of messages rather than the size of the mes-
sages. While it is possible to instead focus on the sizes of
the messages by estimating the total number of actual
blocks transferred by each scheme, the differences are
similar to the results obtained below, though slightly less
pronounced.

This analysis will focus on the number of high-level
transmissions that occur, such as requests for version vec-
tors, block transfers, and the like. The details of the network
implementation will determine the actual number of mes-
sages generated by a high-level request. While these low-
level transmissions may vary with different networks, their
number should be proportional to the number of high-level
requests. Consequently, this analysis will focus on the
number of high-level transmissions. We do not attempt to
model systems which guard against concurrent access of
files; each of the consistency schemes would then require
further message traffic to implement appropriate commit
protocols.

The number of messages generated by a given
operation often depends on the average number of sites
participating in the operation, which in voting depends on
the average number of operational sites and in the avail-
able copy schemes involves the average number of avail-
able sites. The average number of sites responding to a
query from some local site, given, of course, that the local
site is operational and available, is:

U= X ipi
n
;-1 Pi

Since the values for p; vary for each of the three
schemes, this formula is dependent on the balance equa-
tions corresponding to the scheme being used. Let U}, U}
and U}, denote the average number of participating sites in
an n-site network using majority consensus voting, avail-
able copy and naive available copy, respectively. The for-
mula for voting participation, for example, is

un < A +p)"
"7 (+p)—p”



From this it follows that Uj=n (1-p)+ O (p?). Ug,Uj and U}
all agree to within O(p?), which is negligible for values of p
in the range typical for computer systems.

We consider two types of networks in turn: multi-cast
mechanisms in which a single transmission may be
received by several sites, and networks which require
transmissions to be addressed to an individual site. The
three schemes retain their relative advantages in either
type of network, though the differences are amplified in a
single destination network.

5.1. The Multi-cast Environment

In a multi-cast network, the naive available copy scheme
need only broadcast one message when a write is per-
formed, and the reliable delivery assumption is sufficient to
guarantee that this write is successful. It has been shown
[8] that consistency can be guaranteed without postulating
an atomic broadcast mechanism.

A write using the available copy scheme will also
always be successful. However, the local site now also
receives responses from each of the other operational
sites, and thereby determines a more current was-available
set. Since the local site broadcasts the write and the
remaining operational sites each reply, the average number
of messages caused by a write in an available copy
scheme using this mechanism in an n-site network is there-
fore U3. By contrast, we will consider voting to require one
message quetying the existence of a quorum, which pro-
vokes return messages from each of the other operational
sites before the block update is actually broadcast. The
message traffic for successful writes in voting would then
be 1+Uf. The expected message traffic associated with
the: modification of a single replicated block in the majority
consensus voting scheme described “here s
1+ n(1-p)+ O(p?) network transmissions, as compared to
n{1-p)+ O(p?) for available copy and 1 for naive available
copy-

Read access generates no network traffic.in the
available copy schemes since all available sites contain a
local copy of the most recent version of each block. Voting
again requires the collection of a quorum before a read is
permitted, resulting in at least U} messages, and at most

¥+ 1 if the local version is not up to date. A lower bound
on the expected message traffic:associated with the access
of a single reiplicated. block in majority consensus voting is
n(1-p)+ Q(p*) network transmissions, as compared to
'zero for the available copy schemes.

There is one other situation in which the consistency
schemes might provoke network. traffic:- after site repair.
Block-level replication  makes ‘it possible for voting to
dispense with recovery upon repair, without degrading user
access or availability. The voting algorithm presented in
this paper incurs no traffic upon recovery.

A site in an available copy network must attempt
recovery by broadcasting one requsst for information from
the:remote sites, which will generate responses from each
of the operational sites. The recovery of this site will
require two more messages: a request for the transmission
of a version vector, and the response to that request,
though these two last transmissions may be delayed until
the remaining sites in the was-available set are repaired.
The average total number of messages upon recovery for
both available copy and naive available copy is therefore

A+2 and %+2 respectively, represented by

152

2+n(1-p)+ O(p?).

While both available copy schemes incur no network
traffic for reads, naive available copy requires fewer mes-
sages for writing, and has recovery costs comparable to
those of the available copy scheme. In voting, reads are
almost as expensive as writes, and voting requires
significantly more messages to write than available copy.

Since the block-level replication. allows voting to
dispense with recovery traffic, the margin by which avail-
able copy outperforms voting is dependent on the fre-
quency of reads compared to site failures. The relative
scarcity of site failures suggests that recovery traffic be
discounted entirely; it is interesting to note that site failures
would have to be more frequent than disk accesses in
order for the voting schemes to begin to compare favorably
to the available copy schemes.

The two available copy schemes have identical read
and recovery costs; naive available copy gains its advan-
tage by employing a less complex write protocol. The
advantage generated by the naive available copy scheme
is therefore dependent on the relative frequency of reads to
writes. Research on observed access patterns of typical
computer systems show the read to write ratio to be in the
neighborhood of 2.5:1 [9].
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Figure 11: Multi-cast Results

Figure 11 illustrates the comparisons for several read

1o write ratios for a typical value of p (p=0.05). The depen-

dent axis reflects. the number of high-level netwerk
transmissions generatéd by one write and x reads, where x
is the expected number of reads associated with a single
write. Varying x does not affect the performance of the
available copy schemes since their read traffic cost is zero.
Voting costs are illustrated for values of x from 1 to 4,
reflecting read to write ratios of 1:1, 2:1, 4:1. The graph
compares schemes employing the same number of sites. A
comparison of schemes with equal availabilities would
result in much steeper voting traffic costs.

5.2. The Unique Addressing Environment

In the absence of a multi-cast network, separate messages
must be individually addressed to each destination site.
While this increases the message traffic incurred by each of



the three schemes, their relative differences remain intact.

A write using the available copy schemes now
account for n—1 messages, since the local site must send
individual messages to each of the remote sites. Available
copy, on the other hand, incurs added traffic since each of
these sites now respond to the local site, accounting for
n+Uj3-2 messages. A write under the voting scheme
incurs even more traffic, since the local site must request
quorum information and version numbers from all n-1
remote sites, receive responses from U1 sites, and then
send the updated block to each of those sites, accounting
for n+2U7-3 messages.

Reading a block still generates no message traffic in
the available copy schemes, but voting must again ascer-
tain a quorum, leading to a traffic burden of n+ U{-2, or, if
the most recent version is not local, n+ U{—1. Voting again
has no recovery costs, while the available copy schemes
must ask each possible site for updates, receive version
vectors, and at some point request and receive from a
‘specific remote site the updated blocks, accounting for
n+ Uj or n+ U}, messages.
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Figure 12:'Unique Address Resuits

Figure 12 illustrates the traffic incurred by each of the
three schemes for different values of nfor a typical value of
p. Typical read to write ratios are again used. Factoring in
the overhead of unsuccessful writes in voting ‘would pro-
duce an even-less favorable comparison. Similarly, the
contrast between schemes with equal availabilities rather
than equal sites further amplifies the advantages of avail-
able copy over majority consensus voting.

6. Conclusions

To increase the availability and reliability of files the data
are often replicated at several sites. The usual method is to
treat files as logical entities and to replicate on a per file
basis. This can lead to unnecessary complications for the
implementor in trying to preserve file system semantics.

We have investigated the construction of a reliable
device. Such a device appears to the file system as an
ordinary block structured device, but is implemented as a
set of server processes on several sites. This allows us to
provide replication while leaving the operating system ker-
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nel and the file system unchanged. Since the file system is
not modified, the file operation semantics remain the same.

The consistency control algorithms based on majority
consensus voting were impressively overshadowed by the
performance of the available copy schemes. A consistency
control mechanism based on available copy had the availa-
bility of a voting scheme with twice the number of sites.

Available copy was shown to be significantly less
network-intensive than voting when the two schemes
employed the same number of sites, and the available copy
mechanisms even further outperform voting when systems

- with similar availabilities are compared.

The voting schemes obviate the concern for network
partitions. Howaever, the available copy algorithms do not
require the added burden of insuring reliable message
delivery, nor do they have to deal with failed access
attempts. An available site is not dependent on the
existence of any quorum in order to successfully read or
write a block.

The naive available copy scheme presented in this
paper likewise eclipses the standard available copy algo-
rithm. Its simplicity allows lower implementation costs and
incurs fewer network transmissions without measurably
sacrificing block availability.
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