UCSF

UC San Francisco Previously Published Works

Title

Amino Acid-Derived Sensors for Specific Zn2+ Detection Using Hyperpolarized 13C Magnetic Resonance Spectroscopy

Permalink https://escholarship.org/uc/item/02t2j4d0

Journal Chemistry - A European Journal, 25(51)

ISSN

0947-6539

Authors

Wang, Sinan Korenchan, David E Perez, Paola M <u>et al.</u>

Publication Date

2019-09-12

DOI 10.1002/chem.201902771

Peer reviewed

HHS Public Access

Author manuscript *Chemistry.* Author manuscript; available in PMC 2020 September 12.

Published in final edited form as:

Chemistry. 2019 September 12; 25(51): 11842-11846. doi:10.1002/chem.201902771.

Amino Acid-Derived Sensors For Specific Zn²⁺ Detection Using Hyperpolarized ¹³C Magnetic Resonance Spectroscopy

Sinan Wang,

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

David E. Korenchan,

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

Paola M. Perez,

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

Céline Taglang,

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

Thomas R. Hayes,

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

Renuka Sriram,

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

Robert Bok,

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

Andrew S. Hong,

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

Yunkou Wu,

Department of Radiology, Johns Hopkins University, Baltimore, MD, USA 21287

Henry Li,

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

Zhen Wang,

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

John Kurhanewicz,

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA 94107

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

David M. Wilson,

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

Robert R. Flavell

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA 94107

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA 94107

Abstract

Alterations in Zn^{2+} concentration are seen in normal tissues and in disease states, and for this reason imaging of Zn^{2+} is an area of active investigation. Herein, enriched [1-¹³C]cysteine and [1-¹³C_]iminodiacetic acid were developed as Zn^{2+} -specific imaging probes using hyperpolarized ¹³C magnetic resonance spectroscopy. [1-¹³C]cysteine was used to accurately quantify Zn^{2+} in complex biological mixtures. These sensors can be employed to detect Zn^{2+} via imaging mechanisms including changes in ¹³C chemical shift, resonance linewidth, or T₁.

Graphical abstract

Enriched $[1^{-13}C]$ cysteine and $[1^{-13}C_2]$ iminodiacetic acid are developed as Zn²⁺-specific imaging probes using hyperpolarized ¹³C magnetic resonance spectroscopy. These sensors can be employed to detect Zn²⁺ via imaging mechanisms including changes in ¹³C chemical shift, resonance linewidth, or T₁. $[1^{-13}C]$ cysteine is able to accurately quantify Zn²⁺ in complex biological mixtures.

Keywords

imaging agents; zinc; hyperpolarization; ¹³C MRI; chemical shift

Zinc (Zn^{2+}) is the second most abundant transition metal ion in the human body and plays various structural, regulatory and catalytic functions in physiology.^{1,2} Multiple methods for

the measurement of Zn²⁺ concentration have been investigated as biomarkers for human disease, including blood and tissue tests, and imaging methods.³ Existing imaging techniques include fluorescence and magnetic resonance-based approaches. Small-molecule fluorescent agents with varying Zn²⁺ affinities have been used to image live cells^{4,5,6} Magnetic resonance imaging (MRI) using Zn²⁺-responsive contrast agents has been proposed as an alternative imaging method that would allow non-invasive high-resolution monitoring of Zn²⁺ metabolism. Although there has been some success using manganese-derived probes⁷ and paramagnetic chemical exchange saturation transfer agents,⁸ most reported Zn²⁺-responsive MRI agents are gadolinium-based.^{9,10}

Enabled by hyperpolarization techniques such as dynamic nuclear polarization (DNP) and parahydrogen induced polarization (PHIP),^{11–14} hyperpolarized (HP) probes for *in vivo* detection of a variety of analytes using HP ¹³C MRS have been developed.^{15,16} Hyperpolarized EDTA and EGTA were reported for multi-metal imaging.¹⁷ Here, we explored the use of HP ¹³C MRS for Zn²⁺-specific imaging. In particular, we identified *L*cysteine-1-¹³C ([1-¹³C]Cys) and iminodiacetic acid-1-¹³C₂ ([1-¹³C₂]IDA) as candidate probes that demonstrate altered magnetic properties upon binding Zn²⁺, optimized their polarization parameters, and demonstrated that [1-¹³C]Cys can accurately measure Zn²⁺ using ¹³C HP MRS in phantoms and biological samples (Figure 1A).

We considered the requirements for a potential hyperpolarized Zn^{2+} imaging probe to include 1) a large change in ${}^{13}C$ chemical shift in the presence of Zn^{2+} , 2) good selectivity to Zn^{2+} over biologically abundant cations such as Ca^{2+} and Mg^{2+} , 3) insensitivity to changes in pH over the physiologic range, 4) a sufficient T₁ relaxation time for MRI, and 5) lack of known or predicted toxicity. We began our study by screening a variety of candidate Zn²⁺ ligands for their chemical shift response upon Zn^{2+} binding. Among the 34 tested compounds, 10 ligands demonstrated a chemical shift response to Zn²⁺ binding. We noted that ligands with logarithm of stability constants of Zn^{2+} (logK) greater than 6.9 all displayed a chemical shift response to Zn^{2+} binding, while ligands with logK lower than 5.2 did not have a chemical shift response to Zn^{2+} binding (SI Table S1). Ligands bearing a soft functional group such as pyridine tended to show a chemical shift response at lower Zn²⁺ stability constants while ligands with hard functional groups, such as hydroxyl showed a chemical shift response at higher stability constants. Cysteine and iminodiacetic acid were selected for further evaluation because of their large chemical shift response to Zn^{2+} binding (+4.6 and +7.3 ppm in the presence of equimolar Zn^{2+} , respectively), excellent water solubility, low molecular weight, predicting a long ${}^{13}CT_1$, and convenience for ${}^{13}C$ labeling. ¹³C-labeled cysteine was commercially available, and ¹³C-labeled IDA was synthesized from [1-13C]glycine and [1-13C]methyl bromoacetate in 3 steps with a 32% total yield (Scheme 1). Their specificity for Zn^{2+} versus other abundant physiologic cations and their sensitivity to pH changes were also tested. Both probes showed excellent specificity for Zn^{2+} over other main physiologic cations Na^+ , K^+ , Ca^{2+} and Mg^{2+} , and limited chemical shift change over the physiologic pH range of 6.5 to 7.4 (Figure 1B). These preliminary investigations suggested that $[1^{-13}C]Cys$ and $[1^{-13}C_2]IDA$ would be specific and sensitive probes for detecting Zn²⁺ using HP ¹³C MRI.

A quantitative method for determining Zn^{2+} concentration was developed for these probes using NMR. A titration curve was plotted to show the chemical shift difference between $[1-^{13}C]Cys$ and internal standard urea as a function of the Zn^{2+} to $[1-^{13}C]Cys$ ratio. The peak moved linearly with increasing Zn^{2+} up to 0.25 equivalents of Zn^{2+} to $[1-1^{3}C]Cys$. The rate of chemical shift change decreased at higher Zn²⁺ concentrations (Figure 2A, 2B, SI Table S2, SI equation S1). This suggests that $[1-^{13}C]Cys$ may have multiple Zn^{2+} binding conformations, as previously reported.^{18,19} The manifestation of the ¹³C signal as a single resonance indicates that the on-off rates for Zn²⁺ binding are rapid, compared with the absolute frequency difference between bound/unbound ¹³C resonances. A linewidth change with different $Zn^{2+}/[1-1^{3}C]Cys$ ratios was also observed. In particular, the linewidth increased significantly at lower Zn²⁺ concentrations with the widest linewidth being between 0.2 eq and 0.5 eq of [1-13C]Cys, thus demonstrating exchange broadening at different $Zn^{2+}/[1-^{13}C]Cys$ ratios (SI Table S3). The chemical shift change of $[1-^{13}C]Cys$ with equimolar Zn²⁺ was tested at different temperatures ranging from 20 °C to 50 °C and at various [1-13C]Cys concentrations from 1 mM to 100 mM. These studies showed that the temperature and concentration of $[1-1^{13}C]Cys$ (in the presence of equimolar zinc) had little or no influence on the chemical shift response (SI Tables S3 and S4).

A similar titration method was utilized for IDA for quantitative determination of Zn^{2+} concentration. When Zn^{2+} was added to $[1-^{13}C_2]IDA$, a new resonance at a lower field appeared. The area under the peak (integration) increased linearly with increasing Zn^{2+} concentration from 0 to 0.5 equivalents of Zn^{2+} to $[1-^{13}C_2]IDA$, which indicates that $[1-^{13}C_2]IDA$ binds to Zn^{2+} with a 2:1 probe:Zn stoichiometry, as previously reported (Figure 2C, 2D).²⁰ Additionally, the unbound $[1-^{13}C_2]IDA$ peak demonstrated increasing line broadening in response to Zn^{2+} (SI Table S5). It is worth noting that the $[1-^{13}C_2]IDA$:Zn complex appears as two separate peaks while the $[1-^{13}C_2]IDA$ are slower than the frequency difference between bound and unbound resonances and the on and off rates for $[1-^{13}C]Cys$ are more rapid. These results are analogous to prior findings in ^{15}N , ^{19}F , and hyperpolarized ^{13}C pH imaging probe development efforts.^{21–27} Overall, these data demonstrate that the chemical shift of the $1-^{13}C$ NMR signal of cysteine and IDA change in a predictable and quantitative manner in response to Zn^{2+} concentration.

Next, we developed and optimized a hyperpolarization method for ¹³C labeled [1-¹³C]Cys and [1-¹³C₂]IDA. For [1-¹³C]Cys, the optimized preparation was obtained by a mixture of 1.0 eq of [1-¹³C]Cys, 0.5 eq of 4N HCl and 2.65 eq of glycerol, with 20 mM OX063 radical. ²⁸ Using this method, $13.4 \pm 0.6\%$ back-calculated polarization was obtained with a polarization time constant of 1227 ± 30 (n = 3). The T₁ relaxation time was 36.0 ± 1.8 seconds at a magnetic field of 3T. A Zn²⁺-dependent decrease in T₁ of [1-¹³C]Cys was observed when polarized [1-¹³C]Cys was mixed with various equivalents of Zn²⁺. A T₁ of 17.5 seconds was observed when 1 equivalent of Zn²⁺ was present (Table S6). For [1-¹³C₂]IDA, the optimized preparation included a mixture of 1.0 eq of [1-¹³C₂]IDA disodium salt, 14.0 eq of D₂O and 1.8 eq of DMSO, with 15 mM OX063.¹⁷ Using this method, $6.6 \pm 0.9\%$ (n = 3) back-calculated polarization was obtained with the polarization time constant of 1480 ± 38 (n = 3). The T₁ was 39.3 ± 1.0 seconds at 3T. The T₁ of both bound and unbound [1-¹³C₂]IDA resonances were also Zn²⁺ dependent, with the T₁

decreasing to 16.6 seconds when 1 eq of Zn^{2+} was present (Figure 3, SI Table S7). We hypothesize that the decrease in T_1 is due to an increase in molecular weight of the complex. ²⁹ The high percent polarization, and relatively long T_1 of the Zn^{2+} ligands suggested feasibility for subsequent imaging experiments.

The ability of the probes to image Zn^{2+} concentration was tested using phantoms on a 3T MRI system. For cysteine, a copolarization method, as we have previously reported, was developed with $[1-^{13}C]$ urea as a chemical shift standard.²³ A four-compartment phantom containing various Zn^{2+} concentrations in each compartment was prepared (Figure 4A, B). As in the thermal equilibrium measurements, a chemical shift change was observed in response to Zn^{2+} in the ¹³C cysteine spectrum. By using the best-fit linear model of chemical shift asFigure 3 a function of Zn^{2+} concentration (Figure 2B inset), hyperpolarized $[1-^{13}C]$ Cys was able to accurately determine the concentration over the physiologically relevant range of $0.2 - 20 \text{ mM } Zn^{2+}$. At the highest tested Zn^{2+} concentration of 40 mM, a slight deviation was observed, possibly due to signal loss and/or line broadening.

A phantom imaging experiment to determine the sensitivity showed that HP $[1^{-13}C]Cys$ can detect 200 µM of Zn²⁺ when 4 mM of $[1^{-13}C]Cys$ was present (Figure 4B). When hyperpolarized $[1^{-13}C_2]IDA$ was tested in a phantom for Zn²⁺ imaging, the Zn²⁺ bound $[1^{-13}C_2]IDA$ peak appeared when more Zn²⁺ was present. The line broadening of both the Zn²⁺ bound and unbound peaks of $[1^{-13}C_2]IDA$ resulted in a loss of SNR between 0.2 eq Zn²⁺ and 0.3 eq Zn²⁺ (SI Figure S2). For this reason, accurate Zn²⁺ concentrations could not be obtained using this probe. Overall, these phantom experiments demonstrated that hyperpolarized $[1^{-13}C]Cys$ is a sensitive and accurate Zn²⁺ biosensor over the physiologic range, while issues with line broadening and signal loss limit the applicability of $[1^{-13}C_2]IDA$.

Finally, we verified that HP [1-¹³C]Cys could accurately determine Zn^{2+} concentration in biological samples (Figure 5) by comparing imaging results against a commercially available fluorescence based Zn^{2+} quantification kit. Rat serum and prostate extracts were selected as biological samples with low and high Zn^{2+} concentration, respectively. In these samples, the Zn^{2+} concentration was accurately measured at 0.1 and 1.9 mM, respectively. The HP and kit Zn^{2+} measurements agreed within 0.1 mM. In order to verify that the signal change in these samples represented a specific response to Zn^{2+} , additional tubes including serum spiked with exogenous Zn^{2+} , and a prostate sample with additional tris(2pyridylmethyl)amine (TPA), a high-affinity and specific chelator, were investigated.³⁰ We found that the Zn^{2+} concentration was accurately measured in the spiked serum sample, and that the addition of the TPA to the prostate extract blocked the chemical shift change. These data confirm that Zn^{2+} is both necessary and sufficient to induce the chemical shift change in cysteine, and moreover that this probe accurately and specifically determines Zn^{2+} concentration in complex biological samples.

For future *in vivo* applications, [1-¹³C]Cys in particular demonstrates both possible advantages and limitations compared against existing techniques. Owing to the short lifetime of the signal, it is unlikely that it would be internalized into cells in a time course reasonable to measure intracellular zinc concentration. Therefore, this method would likely be restricted

to extracellular space Zn^{2+} imaging. However, zinc can be secreted from tissues including pancreas and prostate in response to glucose treatment. For example, Sherry et al. have developed imaging methods to detect the release of Zn^{2+} ions from β -cells in response to high glucose,³¹ as well as to differentiate between healthy and malignant prostate tissue in mouse models.³² Such a model could applied for initial *in vivo* testing of these probes. An additional limitation could be metabolic transformation, which could confound interpretation of spectroscopic data. Toxicity concerns are unlikely based on the known toxicology profile of cysteine.³³ The majority of Zn^{2+} imaging probes are gadolinium-based contrast agents, which face the concern of their deposition in brain and environment, a concern which would be avoided in this case.³⁴ A final potential benefit of this method is the broad range of zinc concentration in serum and other tissues, potentially enabling high image contrast. Overall, these preliminary data suggest both possibilities and limitations for

Taken together, these data demonstrate that $[1^{-13}C]Cys$ and $[1^{-13}C_2]IDA$ represent promising probes for imaging Zn^{2+} using hyperpolarized ¹³C MRI. The probes demonstrate large changes in signal and chemical shift in response to Zn^{2+} , excellent selectivity over other biologically relevant cations and changes in pH, favorable T₁ and polarization parameters, and can be imaged in phantom experiments. $[1^{-13}C]Cys$ accurately quantified Zn^{2+} concentration in biological samples at physiologically relevant concentrations. For this reason, $[1^{-13}C]Cys$ is a particularly promising probe for future *in vivo* hyperpolarized magnetic resonance imaging of pathologies with alterations in Zn^{2+} homeostasis such as prostate cancer, neurodegenerative disease, and diabetes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

future in vivo applications of these methods.

Acknowledgements

R.R.F. acknowledges a Howard S. Stern award of the Society of Abdominal Radiology, a David Blitzer Prostate Cancer Foundation Young Investigator Award, a Department of Defense Prostate Cancer Research Program Physician Research Training Award, and NIH R21 EB026012–01.

References

- Kambe T, Tsuji T, Hashimoto A, Itsumura N, Physiol. Rev. 2015, 95, 749–784. [PubMed: 26084690]
- [2]. Vallee BL, Auld DS, Acc. Chem. Res. 1993, 26, 543–551.
- [3]. Costello LC, Franklin RB, Mol. Cancer. 2006, 5, 1–13. [PubMed: 16403226]
- [4]. Zhang XA, Hayes D, Smith SJ, Friedle S, Lippard SJ, J. Am. Chem. Soc. 2008, 130, 15788– 15789. [PubMed: 18975868]
- [5]. Komatsu K, Kikuchi K, Kojima H, Urano Y, Nagano T, J. Am. Chem. Soc. 2005, 127, 10197– 10204. [PubMed: 16028930]
- [6]. Tsien RY, Nat. Cell Biol. 2003, 16–21. [PubMed: 12511887]
- [7]. Zhang X, Lovejoy KS, Jasanoff A, Lippard SJ, Proc. Natl. Acad. Sci. 2007, 104, 10780–10785.
 [PubMed: 17578918]
- [8]. Trokowski R, Ren J, Kálmán FK, Sherry AD, Angew. Chemie. Int. Ed. 2005, 44, 6920-6923.
- [9]. Lo ST, Martins AF, Jordan VC, Sherry AD, Isr. J. Chem. 2017, 57, 854–886. [PubMed: 30319140]

- [10]. Esqueda AC, López JA, Andreu-de-Riquer G, Alvarado-Monzón JC, Ratnakar J, Lubag AJM, Sherry AD, De León-Rodríguez LM, J. Am. Chem. Soc. 2009, 131, 11387–11391. [PubMed: 19630391]
- [11]. Gram A, Hansson G, Hansson L, Lerche MH, Ardenkjær-larsen JH, Servin R, Thaning M, Golman K, 2003, 100, 10158-10163.
- [12]. Golman K, Axelsson O, Jo H, Månsson S, Olofsson C, Petersson JS, Magn. Reson. Med. 2001, 5, 1 - 5
- [13]. Leunbach I, Mansson S, Petersson JS, Ardenkjaer-Larsen JH, Golman K, Proc. Natl. Acad. Sci. 2003, 100, 10435-10439. [PubMed: 12930896]
- [14]. Nikolaou P, Goodson BM, Chekmenev EY, Chem. -A Eur. J. 2015, 21, 3156–3166.
- [15]. Day SE, Kettunen MI, Gallagher FA, Hu DE, Lerche M, Wolber J, Golman K, Ardenkjaer-Larsen JH, Brindle KM, Nat. Med. 2007, 13, 1382–1387. [PubMed: 17965722]
- [16]. Bhattacharya P, Chekmenev EY, Reynolds WF, Wagner S, Zacharias N, Chan HR, Bünger R, Ross BD, NMR Biomed. 2011, 24, 1023–1028. [PubMed: 21538638]
- [17]. Mishra A, Pariani G, Oerther T, Schwaiger M, Westmeyer GG, Anal. Chem. 2016, 88, 10790-10794. [PubMed: 27766840]
- [18]. Shindo H, Brown TL, J. Am. Chem. Soc. 1965, 87, 1904–1909. [PubMed: 14290272]
- [19]. Li NC, Manning RA, J. Am. Chem. Soc. 1955, 77, 5225–5228.
- [20]. Ni LB, Zhang RH, Liu QX, Xia WS, Wang H, Zhou ZH, J. Solid State Chem. 2009, 182, 2698– 2706. [PubMed: 20161370]
- [21]. Düwel S, Hundshammer C, Gersch M, Feuerecker B, Steiger K, Buck A, Walch A, Haase A, Glaser SJ, Schwaiger M, Schilling F, Nat. Commun. 2017, 1–9. [PubMed: 28232747]
- [22]. Korenchan DE, Taglang C, Von Morze C, Blecha JE, Gordon JW, Sriram R, Larson PEZ, Vigneron DB, Vanbrocklin HF, Kurhanewicz J, Wilson DM, Flavell RR, Analyst 2017, 142, 1429-1433. [PubMed: 28322385]
- [23]. Flavell RR, Von Morze C, Blecha JE, Korenchan DE, Van Criekinge M, Sriram R, Gordon JW, Chen H, Subramaniam S, Bok RA, Wang Z, Vigneron D, Larson P; Kurhanewicz J, Wilson DM, Chem. Commun. 2015, 51, 14119-14122.
- [24]. Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjær-Larsen JH, Zandt RI, Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM, Nature 2008, 453, 940-943. [PubMed: 18509335]
- [25]. Jiang W, Lumata L, Chen W, Zhang S, Kovacs Z, Sherry AD, Khemtong C, Sci. Rep. 2015, 5, 9104. [PubMed: 25774436]
- [26]. Shchepin RV, Barskiy DA, Coffey AM, Theis T, Shi F, Warren WS, Goodson BM, Chekmenev EY, ACS Sensors 2016, 1, 640-644. [PubMed: 27379344]
- [27]. Shchepin RV, Goodson BM, Theis T, Warren WS, Chekmenev EY, ChemPhysChem 2017, 18, 1961-1965. [PubMed: 28557156]
- [28]. Jensen PR, Karlsson M, Meier S, Duus J, Lerche MH, Chem. -A Eur. J. 2009, 15, 10010–10012.
- [29]. Keshari KR, Wilson DM, Chem. Soc. Rev. 2014, 43, 1627–1659. [PubMed: 24363044]
- [30]. Huang Z, Zhang X, Bosch M, Smith SJ, Lippard SJ, Metallomics 2013, 5, 648–655. [PubMed: 23715510]
- [31]. Lubag AJM, De Leon-Rodriguez LM, Burgess SC, Sherry AD, Proc. Natl. Acad. Sci. 2011, 108, 18400-18405. [PubMed: 22025712]
- [32]. Preihs C, Zhang S, Lo ST, Chen S, Li WH, Clavijo Jordan MV, Lubag AJM, De Leon-Rodriguez LM, Rofsky NM, Sherry AD, Proc. Natl. Acad. Sci. 2016, 113, 5464-5471.
- [33]. Lewis RJ Sr (ed), Sax's Dangerous Properties of Industrial Materials, 11th Edition Wiley-Interscience, Wiley & Sons, Inc Hoboken, NJ 2004, p1059.
- [34]. Guo BJ, Yang ZL, Zhang LJ, Front. Mol. Neurosci. 2018, 11, 1–12. [PubMed: 29403353]

Author Manuscript

Scheme 1. Synthesis of $[1-^{13}C_2]$ IDA disodium salt.

Figure 1.

Approach to specific detection of Zn^{2+} via hyperpolarized magnetic resonance spectroscopy (A) Structures of $[1-^{13}C]Cys$ and $[1-^{13}C_2]IDA$. (B) Specificity of 50 mM $[1-^{13}C]Cys$ and $[1-^{13}C_2]IDA$ for physiological cations (present at 1 equivalent). pH-dependence of chemical shift was measured at pH 7.4 and 6.5, the physiologically relevant extracellular range.

Figure 2.

Response of $[1^{-13}C]Cys$ and $[1^{-13}C_2]IDA$ to Zn^{2+} can be detected by several magnetic resonance mechanisms. (A) ¹³C NMR Spectra for 50 mM $[1^{-13}C]Cys$ with varying Zn^{2+} concentrations (B) Standard titration curve of $[1^{-13}C]Cys$ in response to various Zn^{2+} concentrations. The insert shows the titration curve at low Zn^{2+} equivalents. (C) Spectra for 50 mM $[1^{-13}C_2]IDA$ with various Zn^{2+} concentrations highlighting formation of a Zn^{2+} bound species, and increased linewidth upon Zn^{2+} binding. * represents natural abundance citric acid peak (D) Standard titration curve of $[1^{-13}C_2]IDA$.

Figure 3.

Dynamic ¹³C NMR spectra following polarization of $[1^{-13}C]Cys$ (left) and $[1^{-13}C_2]IDA$ (right). Pulse conditions were TR = 3s, 5° hard pulses, 10 kHz spectral width, 30 timepoints, nominal spectral resolution = 0.5 Hz.

Figure 4.

0.6 mM

11.2

HP [1-¹³C]Cys accurately quantifies Zn^{2+} concentration in phantom imaging experiments through use of chemical shift measurements. (A) Phantom imaging conducted using 40 mM [1-¹³C]Cys. (B) Phantom experiment conducted using 4 mM [1-¹³C]Cys, indicating high sensitivity for low concentrations of Zn^{2+} .

Chemistry. Author manuscript; available in PMC 2020 September 12.

0.6 mM

Figure 5.

Hyperpolarized [1-¹³C]Cys phantom imaging experiment demonstrating accurate Zn^{2+} quantification in biological samples. Accurate detection of Zn^{2+} concentration in presence of exogenous Zn^{2+} and in the presence of Zn^{2+} -chelating TPA demonstrates specificity of the probe for Zn^{2+} over other endogenous analytes.