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ABSTRACT OF THE DISSERTATION

Interactive Schemes in Information Theory and Statistics

by

Yu Xiang

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2015

Professor Young-Han Kim, Chair

The ever-growing Internet, among other things, provides abundant evidence

that we are living in a world of interaction. It is thus of great importance to un-

derstand the benefits of interaction in our lives. In this thesis, we investigate the

role of interaction in information theory and statistics via three concrete problems:

distributed inference, point-to-point channel communication, and communication

over networks. First, we consider a classical hypothesis testing problem in a dis-

tributed setting, where communication constraints are present. More specifically,

two distributed agents, having only partial access to some random data set, are

required to perform a hypothesis test regarding the joint data distribution by

communicating their observations with each other. The goal is to characterize the

xi



optimal tradeoff between the testing performance and the communication budget.

We formulate an interactive version of this problem, where the two agents are al-

lowed to communicate in multiple rounds before making a decision. Interestingly,

the testing performance can be strictly improved given the same communication

budget. Moreover, we study a sequential version of the interactive hypothesis

problem which further improves the testing performance. Second, we investigate

the role of interaction in the reliability of communication by studying the opti-

mal coding over the Gaussian channel with noisy Gaussian feedback. While it is

well known that the reliability of communication can be strictly improved through

noiseless feedback, the theoretical understanding of the benefits of noisy feedback

is yet far from being complete. We propose two coding schemes that enable strict

improvement of the reliability of communication when the noise power in feedback

channel is smaller than a certain threshold. Finally, we study the impact of in-

teraction on relay networks. In particular, we focus on a network communication

problem, in which one nodes wishes to broadcast a common message to all the

other nodes in the network. Typically, relaying schemes are non-interactive, which

can be improved by two-round interaction schemes. We investigate this problem

beyond the two-round case and demonstrate via a simple example that infinite

rounds of interaction can further improve upon finite rounds interactive schemes.

xii



Chapter 1

Introduction

With the rapid advances of technologies, ranging from wireless communi-

cation and embedded systems to the Internet and microelectromechanical systems

(MEMS), a vast majority of humans and devices are being connected with each

other. This “Internet of things (IoT)”, not only enables information being col-

lected at a speed and scale unimaginable before, but more importantly, creates

unprecedented opportunities for interaction among all the participants. Consid-

ering the fact that billions of people interact through social media like Youtube

and Facebook everyday and the number of mobile-connected devices exceeded the

world’s population, we are indeed living in a world of interaction. It is thus of

great importance to explore the impact of interaction so that we can leverage it to

facilitate our understanding of the world.

Even though interactive models are more relevant and natural to real world

problems than non-interactive models, they have not been the main focus in both

information theory and statistics for different reasons. In information theory, the

main focus has been traditionally on one-way setups starting from Shannon’s sem-

inal work on the point-to-point channel to many classical network information

theory problems. The lack of investigation is also partly due to the technical diffi-

culties arising from the interactive models. In statistics, one of the key assumptions

of most classical problems is that one has access to all available data, which leaves

little room for interaction between multiple parties. However, interaction comes

into play for distributed statistical problems, which are becoming more and more

1
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common in the real world.

In this thesis, we investigate the role of interaction in both information

theory and statistics through three setups: distributed inference, point-to-point

channel communication, and communication over networks.

In Chapter 3, we consider the impact of interaction on distributed hypoth-

esis testing. With advances in technology, a massive amount of data are collected

and stored daily. However, the sheer amount of data stored at each data center

makes collaborative data processing and analysis across distributed data centers a

challenging task. These new challenges motivates us to revisit the classical prob-

lem of (one-way) distributed hypothesis testing with communication constraints,

where the goal is to characterize the optimal tradeoff between the testing perfor-

mance (type-II error exponent) and the communication budget (rate). In the hope

of improving the testing performance given the same communication budget, we

formulate the interactive version of this problem, in which the distributed agents

are allowed to communicate with each other in multiple rounds to perform the

hypothesis test. For testing whether the observed data at the distributed agents

are generated independently or not, we establish a computable characterization

of the optimal tradeoff, which generalizes the one-way case. It turns out that,

given the communication budget, interaction enables strictly improvement of the

testing performance over the one-way case. Moreover, based on the results of our

interactive hypothesis testing problem, we show that when the distributed agents

are allowed to stop early and make their decisions, the testing performance can be

further improved.

In Chapter 4, we study the impact of interaction on the reliability of com-

munication. In particular, we focus on a point-to-point Gaussian channel with

feedback. Instead of assuming that the sender has full access to what the receiver

observed through a noiseless feedback channel, we consider that the feedback chan-

nel is corrupted by Gaussian noise. Unlike the noiseless feedback case, the noise in

the feedback channel prevents the sender and the receiver from fully cooperating

with each other. The goal is to leverage the noisy feedback channel to improve the

reliability of communication. Our main contributions are two coding schemes that
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enable strict improvement of the reliability when the noise power in the feedback

channel is less than a certain threshold. Both schemes have their own strengths

and outperform each other for different ranges of system parameters.

In Chapter 5, we investigate the role of interaction in relay networks. In

particular, we study a broadcasting network model, in which one node broad-

casts a common message to all the other nodes in the network. Existing re-

laying schemes including decode–forward, partial decode–forward, hash–forward,

compute–forward, and compress–forward are all non-interactive. It is known that

two-round interactive relaying can outperform all the non-interactive *–forward

schemes. We investigate the benefits of interaction beyond the two-round case.

Based on recent results on interactive computing, we demonstrate via a simple

example that infinite rounds of interaction can further improve upon the existing

finite round schemes.



Chapter 2

Preliminaries

2.1 Notation

We closely follow the notation in [EGK11].

Sets, Scalars, and Vectors

We use lower case letters x, y, . . . to denote constants and values of random

variables. We use xj = (x1, x2, . . . , xj) to denote a j-sequence/vector. Sometimes

we write x,y, . . . for constant (column) vectors with specified dimension and xj

for the j-th component of x. Let x(i) be a vector indexed by time i and xj(i) be

the j-th component of x(i). The sequence of these vectors will be then written

as xn = (x(1), x(2), . . . , x(n)). Calligraphic letters X ,Y , . . . will be used for finite

sets, and |X | denotes the cardinality of the finite set X . The following notation

for common sets will be used: Rd is the d-dimensional real Euclidean space and

Cd is the d-dimensional complex Euclidean space. For a pair of integers i ≤ j, we

define [i : j] = i, i+ 1, . . . , j. For a pair of real numbers b > a, [a, b] denotes a

continuous interval.

Random Variables and Vectors

We use upper case letters X, Y, . . . to denote random variables. The random

variables may take values from finite sets X, Y, . . . or from the real line R, or

from the complex plane C. The probability of the event {X ∈ A} is denoted

by P{X ∈ A}. In accordance with the notation for constant vectors, we use the

notationXj = (X1, X2, . . . , Xj) to denote a j-sequence/vector of random variables.

4
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The subset of random variables with indices from J ⊂ [1 : n] is denoted by

X(J ) = (Xj : j ∈ J ). Similarly, given k random vectors (Xn
1 , X

n
2 , . . . , X

k
n),

Xn(J ) = (Xn
j : j ∈ J ) = (X1(J ), X2(J ), . . . , Xn(J )).

Information Measures

We use H(X) to denote the entropy of a discrete random variable X , and

h(X) to denote the differential entropy if X is continuous. The mutual information

between two random variables X and Y is denoted by I(X ; Y ). The relative

entropy (KullbackLeibler divergence) between two probability distributions P and

Q is denoted by D(P ||Q).

In particular, for X ∼ p(x) and ǫ ∈ (0, 1), we define the set of ǫ-typical

n-sequences xn (or the typical set in short) [OR01] as

T (n)
ǫ (X) = {xn : |#{i : xi = x}/n− p(x)| ≤ ǫp(x) for all x ∈ X}.

We say that X → Y → Z form a Markov chain if p(x, y, z) = p(x)p(y|x)p(z|y),
that is, X and Z are conditionally independent of each other given Y .

2.2 Hypothesis Testing

In this section, we briefly review some basic results on the hypothesis testing

problem. In particular, we focus on the simple vs. simple hypothesis testing

problem.

Suppose that one observes a sequence of n random variables Xn=(X1,

X2,. . ., Xn) that are independently and identically distributed (i.i.d.) according

to some unknown distribution, which has two possibilities

H0 : X ∼ P (x)

H1 : X ∼ Q(x),

where H0 denotes the null hypothesis and H1 denotes the alternative hypothesis.

Based on Xn, one can make a decision ĥ(Xn) ∈ {0, 1}, where 0 correspond to H0

is true and 1 to H1 is true. Let An = {xn : ĥ(xn) = 0} denote the set of xn that

H0 is accepted. We call An as acceptance region and Ac
n as rejection region.
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The two hypotheses incur two types of errors as follows. The type-I error,

denoted αn = P0(Ac
n), which is the probability that the H1 is declared to be true

when H0 is true. Similarly, we have the type-II error, denoted βn = P1(An), which

is the probability that the H0 is declared to be true when H1 is true.

In the Neyman–Pearson framework, one tries to minimize the type-II error

given that the type-I error is smaller than some small constant ǫ. The famous

Neyman–Pearson lemma says that the optimal test is the likelihood ratio test.

Instead of minimizing the type-II error for any finite n, we consider maximizing

the type-II error exponent when the n grows to infinity.

Lemma 2.1 (Stein’s lemma). For some 0 < ǫ < 1, let

β∗n(ǫ) := min
An:αn≤ǫ

βn.

Then we have

lim
n→∞

−1

n
log β∗n(ǫ) = D(P ||Q).

In the following, we provide an alternative proof of Stein’s lemma using the

(strong) typical set instead of using the relative entropy typical set as in [CT06].

When it is clear from the context, we will use T (n)
ǫ instead of T (n)

ǫ (X).

Lemma 2.2. Let P (xn) =
∏n

i=1 P (xi). Then for each xn ∈ T (n)
ǫ and any other

distribution Q on X ,

D(P ||Q)− δ(ǫ) ≤ 1

n
log

P (xn)

Q(xn)
≤ D(P ||Q) + δ(ǫ),

for some δ(ǫ) such that δ(ǫ) → 0 as ǫ → 0.

Proof. If xn ∈ T (n)
ǫ , we have by definition of T (n)

ǫ that

(1− ǫ)P (x) ≤ π(x|xn) ≤ (1 + ǫ)P (x).

Let g(x) be any function on X , define the following two sets:

X+ := {x : g(x) ≥ 0} and X− := {x : g(x) < 0}.

Thus we have,

∑

x∈X+

(1− ǫ)P (x)g(x) ≤
∑

x∈X+

π(x|xn)g(x) ≤
∑

x∈X+

(1 + ǫ)P (x)g(x) (2.1)
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and

∑

x∈X−

(1 + ǫ)P (x)g(x) ≤
∑

x∈X−

π(x|xn)g(x) ≤
∑

x∈X−

(1− ǫ)P (x)g(x). (2.2)

Summing up (2.1) and (2.2), we have

E(g(X))− δ(ǫ) ≤ 1

n

n∑

i=1

g(xi) ≤ E(g(X)) + δ(ǫ),

where δ(ǫ) = ǫ(
∑

x∈X+ P (x)g(x)−∑

x∈X− P (x)g(x)). Choose

g(x) = log(P (x)/Q(x))

and since P (xn) =
∏n

i=1 P (xi) and Q(xn) =
∏n

i=1Q(xi), we have

D(P ||Q)− δ(ǫ) ≤ 1

n
log

P (xn)

Q(xn)
≤ D(P ||Q) + δ(ǫ).

Based on Lemma 2.2, we show the following properties of the T (n)
ǫ :

• Let P (xn) =
∏n

i=1 P (xi). Then for each xn ∈ T (n)
ǫ ,

P (xn)2−n(D(P ||Q)+δ(ǫ)) ≤ Q(xn) ≤ P (xn)2−n(D(P ||Q)−δ(ǫ)).

• P (T (n)
ǫ ) > 1− ǫ for n sufficiently large.

• Q(T (n)
ǫ ) ≤ 2−n(D(P ||Q)+δ(ǫ)).

• Q(T (n)
ǫ ) ≥ (1− ǫ)2−n(D(P ||Q)+δ(ǫ)) for n sufficiently large.

The first two properties are trivial. The third one follows from

Q(T (n)
ǫ ) =

∑

xn∈T (n)
ǫ

Q(xn)

≤
∑

xn∈T (n)
ǫ

P (xn)2−n(D(P ||Q)−δ(ǫ))

= 2−n(D(P ||Q)−δ(ǫ))P (T (n)
ǫ )

≤ 2−n(D(P ||Q)−δ(ǫ)).
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The fourth one follows from

Q(T (n)
ǫ ) =

∑

xn∈T (n)
ǫ

Q(xn)

≥
∑

xn∈T (n)
ǫ

P (xn)2−n(D(P ||Q)−δ(ǫ))

= 2−n(D(P ||Q)−δ(ǫ))P (T (n)
ǫ )

≥ (1− ǫ)2−n(D(P ||Q)−δ(ǫ)),

for n sufficiently large.

Lemma 2.3. Let Bn ⊂ X n such that P (Bn) > 1 − ǫ. Then for any other distri-

bution Q on X such that D(P ||Q) < ∞, we have Q(Bn) > (1− 2ǫ)2−n(D(P ||Q)+δ(ǫ))

for n sufficiently large.

Proof. Since P (T (n)
ǫ ) > 1− ǫ for n sufficiently large and P (Bn) > 1− ǫ by assump-

tion, we have P (Bn ∩ T (n)
ǫ ) > 1− 2ǫ for n sufficiently large. Now

Q(Bn) ≥ Q(Bn ∩ T (n)
ǫ )

=
∑

xn∈Bn∩T (n)
ǫ

Q(xn)

≥
∑

Bn∩T (n)
ǫ

P (xn)2−n(D(P ||Q)+δ(ǫ))

= 2−n(D(P ||Q)+δ(ǫ))
∑

Bn∩T (n)
ǫ

P (xn)

≥ (1− 2ǫ)2−n(D(P ||Q)+δ(ǫ)).

Now we prove Stein’s lemma using the (strong) typical set instead of the

relative entropy typical set.

Proof. For achievability, we choose An as T (n)
ǫ . As proved before that P (Ac

n) < ǫ

for n sufficiently large. Also

lim
n→∞

−1

n
logQ(T (n)

ǫ ) ≥ D(P ||Q)− δ(ǫ).
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To show the converse, consider any set Bn ⊂ X n such that P (Bn) > 1− ǫ, we have

Q(Bn) > (1− 2ǫ)2−n(D(P ||Q)+δ(ǫ)) from lemma 2.3, and therefore

lim
n→∞

−1

n
logQ(Bn) < D(P ||Q) + δ(ǫ).

2.3 Technical Lemmas

In this section, we introduce three technical lemmas without proof.

2.3.1 Covering Lemma

Lemma 2.4 ([EGK11]). Let (U,X, X̂) ∼ p(u, x, x̂) and ǫ′ < ǫ and (Un, Xn) ∼
p(un, xn) be arbitrarily distributed such that

lim
n→∞

P{(Un, Xn) ∈ T (n)
ǫ′ (U,X)} = 1,

and let X̂n(m) ∼ ∏n
i=1, pX̂|U(x̂i|ui), m ∈ A, where |A| ≥ 2nR, be conditionally

independent of each other and of Xn given Un. Then, there exists δ(ǫ) → 0 as

ǫ → 0 such that

lim
n→∞

P{(Un, Xn, X̂n(m)) /∈ T (n)
ǫ for all m ∈ A} = 0,

if R > I(X ; X̂|U) + δ(ǫ).

2.3.2 Markov Lemma

We present a version of Markov lemma.

Lemma 2.5 ([Tun78] and [EGK11]). Suppose that X → Y → Z from a Markov

chain. Let (xn, yn) ∈ T (n)
ǫ′ (X, Y ) and Zn ∼ p(zn|yn), where the conditional pmf

p(zn|yn) satifies the following conditions:

lim
n→∞

P{(yn, Zn) ∈ T (n)
ǫ′ (Y, Z)} = 1
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and for every zn ∈ T (n)
ǫ′ (Z|yn) and n sufficiently large

2−n(H(Z|Y )+δ(ǫ′)) ≤ p(zn|yn) ≤ 2−n(H(Z|Y )−δ(ǫ′))

for some δ(ǫ′) that tends to zero as ǫ′ → 0. Then for some sufficiently small ǫ′ < ǫ,

lim
n→∞

P{(xn, yn, Zn) ∈ T (n)
ǫ (X, Y, Z)} = 1.

2.3.3 Blowing-up Lemma

Let xn, yn ∈ X n and d(xn, yn) be their Hamming distance. For A ⊆ X n,

define the l-neighborhood of A as

Γl(A) = {xn : min
yn∈A

d(xn, yn) ≤ l}.

Lemma 2.6. Let Xn ∼ PXn =
∏n

i=1 PXi
and ǫn → 0 as n → ∞. There exist δn

and ηn (both go to 0 as n → ∞) such that if PXn(A) ≥ 2−nǫn, then

PXn(Γnδn(A)) ≥ 1− ηn.



Chapter 3

Interactive Hypothesis Testing

with Communication Constraints

In this chapter, a hypothesis testing problem with communication con-

straints is studied, in which two nodes separately observe one of two correlated

sources and interactly communicate with each other in q rounds to decide between

two hypotheses on the joint distribution of the sources. The optimal tradeoff be-

tween the communication rates in q rounds interaction and the testing performance

is measured by the type II error exponent such that the type I error probability

asymptotically vanishes. When testing against independence, that is, the joint

distribution of the sources under the alternative hypothesis is the product of the

marginal distributions under the null hypothesis, a computable characterization of

the optimal tradeoff is obtained. An example is provided that shows that a two-

way test strictly outperforms the optimal one-way test and thus that interaction

helps for hypothesis testing.

3.1 Introduction

Berger [Ber79], in an inspiring attempt at combining information theory and

statistical inference, formulated the problem of hypothesis testing with communi-

cation constraints as depicted in Fig. 3.1. Let (Xn
1 , X

n
2 ) ∼ ∏n

i=1 pX1,X2(x1i, x2i)

be a pair of independent and identically distributed (i.i.d.) n-sequences generated

11
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by a two-component discrete memoryless source (2-DMS) (X1, X2). Suppose that

there are two hypotheses on the joint distribution of (X1, X2), namely,

H0 : (X1, X2) ∼ p0(x1, x2),

H1 : (X1, X2) ∼ p1(x1, x2).

In order to decide which hypothesis is true, nodes 1 and 2 that observe Xn
1 and

Xn
2 , respectively, compress their observed sequences into indices of rates R1 and

R2, and communicate them over noiseless links to node 3, which then makes a

decision Ĥ ∈ {H0, H1} based on the received compression indices. What is the

impact of communication constraints on the performance of hypothesis testing?

To answer this question, Berger [Ber79] studied the optimal tradeoff between the

communication rates and the testing performance that is measured by the exponent

of the type II error probability such that the type I error probability is upper

bounded by a given ǫ < 1. Despite many natural applications, however, theoretical

understanding of this problem is far from complete and a simple characterization

of this rate–exponent tradeoff remains open in general.

Xn
1

Xn
2

Ĥ

Node 1

Node 2

Node 3

R1

R2

Figure 3.1: Multiterminal hypothesis testing with communication constraints.

In their celebrated paper [AC86], Ahlswede and Csiszár studied the special

case in which the sequence Xn
2 is fully available at the destination node, i.e.,

R2 = ∞. They established single-letter inner and outer bounds on the optimal

tradeoff and showed that these bounds are tight for testing against independence,

i.e., the alternative hypothesis H1 is p1(x1, x2) = p0(x1)p0(x2). Later, Han [Han87]

and Shimokawa, Han, and Amari [SHA94] provided a new coding scheme that

improves upon the Ahlswede and Csiszar inner bound for the general hypothesis

testing problem. The Shimokawa–Han–Amari scheme is similar to the Berger–

Tung scheme [Tun78], [Ber78] for the distributed lossy source coding problem,
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where node 1 and node 2 perform joint typicality encoding followed by binning.

A more comprehensive survey on the earlier literature can be found in [HA98].

Several variations of this setup have been studied, including successive refinement

hypothesis testing [TC08] and testing against conditional independence [RW12].

This chapter studies an interactive version of hypothesis testing with com-

munication constraints. Two nodes communicate with each other in q rounds

through noiseless links and one of the nodes is to perform hypothesis testing at

the end of interactive communication. For the special case of hypothesis testing

against independence, we establish a single-letter characterization of the optimal

tradeoff between the communication rates and the type II error probability when

the type I error probability is arbitrarily small. Part of this chapter has been

reported in [XK12] and [XK13b].

The rest of the chapter is organized as follows. In Section II, we review

the problem of one-way hypothesis testing with communication constraints. In

Section III, we formulate the problem of interactive hypothesis testing with com-

munication constraints and present our main theorem. In Section IV, we compare

the interactive hypothesis testing problem with the interactive lossy source coding

problem by Kaspi [Kas85].

3.2 One-way Case

As before, let (Xn
1 , X

n
2 ) ∼

∏n
i=1 pX1,X2(x1i, x2i) be a pair of i.i.d. sequences

generated by a 2-DMS (X1, X2) and consider hypothesis testing against indepen-

dence

H0 : (X1, X2) ∼ p0(x1, x2),

H1 : (X1, X2) ∼ p1(x1, x2) = p0(x1)p0(x2).

Here p0(x1) and p0(x2) are marginal distributions of p0(x1, x2). We consider the

special case of the problem depicted in Fig. 3.1, in which R2 = ∞; see Fig. 3.2.

A (2nR1, n) hypothesis test consists of

• an encoder that assigns an index m1(x
n
1 ) ∈ [1 : 2nR1] to each sequence xn

1 ∈
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Xn
1

Xn
2

Ĥ
Node 1 Node 2

R1

Figure 3.2: One-way hypothesis testing with communication constraint.

X n
1 , and

• a tester that assigns ĥ(m1, x
n
2 ) ∈ {H0, H1} to each (m1, x

n
2 ) ∈ [1 : 2nR1]×X n

2 .

The acceptance region is defined as

An := {(m1, x
n
2 ) ∈ [1 : 2nR1 ]× X n

2 : ĥ(m1, x
n
2 ) = H0}.

Then the type I error probability is

P0(Ac
n) =

∑

(xn
1 ,x

n
2 ):(m1(xn

1 ),x
n
2 )∈Ac

n

p0(x
n
1 , x

n
2 )

and the type II error probability is

P1(An) =
∑

(xn
1 ,x

n
2 ):(m1(xn

1 ),x
n
2 )∈An

p1(x
n
1 , x

n
2 ).

For ǫ ∈ (0, 1), define the optimal type II error probability as

β∗n(R1, ǫ) := minP1(An),

where the minimum is over all (2nR1, n) tests such that P0(Ac
n) ≤ ǫ. Further define

the optimal type II error exponent as

θ1(R1, ǫ) := lim
n→∞

−1

n
log β∗n(R1, ǫ).

Theorem 3.1 (Ahlswede and Csiszár [AC86]). For every ǫ ∈ (0, 1),

θ1(R1, ǫ) = max
p(u1|x1):R1≥I(U1;X1)

I(U1;X2), (3.1)

where the cardinality bound for U1 is |U1| ≤ |X1|+ 1.

We illustrate the theorem with the following.
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X1

1/2 0

1/2 1

X21/2

0 3/4

1 1/4

(a)

X2

3/4 0

1/4 1

X12/3

0 1/2

1 1/2

(b)

Figure 3.3: (a) Forward Z binary sources and (b) backward Z binary sources.

Example 3.1. Consider the following forward Z binary sources (X1, X2) depicted

in Fig. 4.4(a), where X2 is the output of X1 through a Z channel and

pX1,X2(0, 0) = 1/2, pX1,X2(0, 1) = 0,

pX1,X2(1, 0) = 1/4, pX1,X2(1, 1) = 1/4.

We now apply Theorem 3.1 and evaluate the optimal type II error exponent

in (3.1). Since |U1| ≤ |X1| + 1 = 3, we can optimize over all conditional pmfs

p(u1|x1) of the form in Fig. 3.4.

X2

0

1

0

1

2

2/3
U1

X1 a

b

c

d

0

1

Figure 3.4: Conditional pmf p(u1|x1).

Then we have

θ1(R1, ǫ) = max

(

H1 −
1

6
H2 −

3

4
H3

)

,

where the maximum is over all (a, b, c, d) such that

R1 ≥ H1 −
1

2
H4 −

1

2
H2
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and H1 through H4 are defined as

H1 := H

(
a + c

2
,
b+ d

2
,
2− a− b− c− d

2

)

,

H2 := H(c, d, 1− c− d),

H3 := H

(
a + 2c

3
,
b+ 2d

3
,
3− a− b− 2c− 2d

3

)

,

H4 := H(a, b, 1− a− b).

For example, when R1 = 1/2, we have θ1(R1, ǫ) ≈ 0.1878. The entire curve of the

optimal type II error exponent, denoted by θ→1 (R1, ǫ), is plotted in Fig. 4.4(b).

Example 3.2. Now consider the following backward Z binary sources (X1, X2)

depicted in Fig. 3.3(b), where X1 is the output of X2 through an inverted Z channel.

Since |U2| ≤ 3, we can again optimize over all conditional pmfs p(u2|x2) of the form

in Fig. 3.5, which yields

X1

0

1

0

1

2

1/2
U2

X2
a
b

c
d

0

1

Figure 3.5: Conditional pmf p(u2|x2).

θ1(R1, ǫ) = max

(

H1 −
1

2
H2 −

1

2
H3

)

,

where the maximum is over all (a, b, c, d) such that

R1 ≥ H1 −
3

4
H2 −

1

4
H4
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and

H1 := H

(
3a + c

4
,
3b+ d

4
,
4− 3a− 3b− c− d

4

)

,

H2 := H(a, b, 1− a− b),

H3 := H

(
a + c

2
,
b+ d

2
,
2− a− b− c− d

2

)

,

H4 := H(c, d, 1− c− d).

The entire curve of the optimal type II error exponent, denoted by θ←1 (R1, ǫ)

this time, is plotted in Fig. 4.4(b). Observe that for every R1 ∈ (0, 1),

θ←1 (R1, ǫ) > θ→1 (R1, ǫ). (3.2)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

θ

R1

θ→1
θ←1

Figure 3.6: The solid black curve corresponds to θ←1 (R1, ǫ) and the dotted red

curve corresponds to θ→1 (R1, ǫ).

3.3 Interactive Case

Suppose now that instead of making an immediate decision based on one

round of communication, the two nodes can interactively communicate over a

noiseless bidirectional link before one of the nodes performs hypothesis testing.

We wish to characterize the optimal tradeoff between the communication rates

and the performance of hypothesis testing.
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Xn
1

Xn
2

Ĥ
Node 1 Node 2

Ml(X
n
1 ,M

l−1)

Ml+1(X
n
2 ,M

l)

Figure 3.7: Interactive hypothesis testing with communication constraints.

As before, we consider testing against independence. Assume without loss

of generality that node 1 sends the first index and that the number of rounds of

communication q is even. A (2nR1 , . . . , 2nRq , n) hypothesis test consists of

• two encoders, one for each node, where in round lj ∈ {j, j+2, . . . , q−2+ j},
encoder j ∈ {1, 2} sends an index mlj (x

n
j , m

lj−1) ∈ [1 : 2nrlj ], that is, a

function of its sequence and all previously transmitted indices, and

• a tester that assigns ĥ(mq, xn
1 ) ∈ {H0, H1} to each (mq, xn

1 ) ∈ [1 : 2nR1] ×
· · · × [1 : 2nRq ]×X n

1 .

The type I and II error probabilities are defined similarly as in the one-way case.

In particular, the optimal type II error exponent is

θq(R1, . . . , Rq, ǫ) := lim
n→∞

−1

n
log β∗n(R1, . . . , Rq, ǫ).

We establish the optimal tradeoff between the rate constraints and the

testing performance by characterizing θq(R1, . . . , Rq, ǫ) in the limit.

Theorem 3.2.

lim
ǫ→0

θq(R1, . . . , Rq, ǫ) = max

q
∑

l=1

I(Ul;Xjl+1
|U l−1), (3.3)

where the maximum is over all
∏q

l=1 p(ul|ul−1, xjl) with |Ul| ≤ |Xjl| ·
∏l−1

j=1 |Uj |+ 1

such that

Rl ≥ I(Ul;Xjl|U l−1)

for l ∈ [1 : q] and jl = 1 if l is odd and jl = 2 if l is even.

Remark 3.1. By setting Ul = ∅ and Rl = 0 for l = 2, . . . , q, Theorem 3.2 recovers

the optimal one-way type II error exponent in Theorem 3.1.
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Remark 3.2. When q = 2 we have the following,

lim
ǫ→0

θ2(R1, R2, ǫ) = max
(
I(U1;X2) + I(U2;X1|U1)

)
,

where the maximum is over all p(u1|x1)p(u2|u1, x2) with |U1| ≤ |X1|+1 and |U2| ≤
|X2|·|U1|+ 1 such that

R1 ≥ I(U1;X1),

R2 ≥ I(U2;X2|U1).

Remark 3.3. Let θq := θq(R1, . . . , Rq, 0+) for simplicity, we can express the opti-

mal tradeoff between communication constraints and the type II error exponent by

the rate–exponent region that consists of all rate–exponent tuples (R1, . . . , Rq, θ)

such that

Rl ≥ I(Ul;Xjl|U l−1), l ∈ [1 : q],

θq ≤
q

∑

l=1

I(Ul;Xjl|U l−1)

for some pmfs
∏q

l=1 p(ul|ul−1, xjl).

X1

1/2 0

1/2 1

X21/2

0 3/4

1 1/4

Y1

3/4 0

1/4 1

Y22/3

0 1/2

1 1/2

Figure 3.8: Double Z binary sources.

Example 3.3 (Interaction helps). This example is motivated by [GA10]. We re-

visit the Z binary sources in Examples 1 and 2. Recall that θ→1 (R1, ǫ) and θ←1 (R1, ǫ)

denote the optimal type II error exponents for the forward and backward Z binary
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sources, respectively. Now consider the following double Z binary sources as de-

picted in Fig. 3.8, where (X1, X2) is independent of (Y1, Y2). Let

θ2(R, ǫ) := max
R1,R2:R1+R2=R

θ2(R1, R2, ǫ).

It can be easily verified that if R ∈ (R∗, 2R∗), where R∗ = min{R : θ←(R, ǫ) =

I(X1;X2) = 0.3113}, then

θ2(R, ǫ) ≥ 2θ←(R/2, ǫ),

while

θ1(R, ǫ) = θ←(R∗, ǫ) + θ→(R −R∗, ǫ)

(a)
< θ←(R∗, ǫ) + θ←(R− R∗, ǫ)

(b)

≤ 2θ←(R/2, ǫ),

where (a) follows by (3.2) and (b) follows by the concavity of θ←1 (R) over [0, R∗] (see,

for example, [AC86, Lemma 1]). For example, when R = 3/2, we have θ1(3/2, ǫ) ≈
0.5548 and θ2(3/2, ǫ) ≥ 0.5934. Thus there is strict improvement by using interac-

tion.

In the following two subsections, we prove Theorem 2 by establishing achiev-

ability and the weak converse.

3.3.1 Proof of Achievability

Codebook generation. Fix a conditional pmf
∏q

l=1 p(ul|ul−1, xjl) that attains

the maximum in (3.3). Let and p0(ul|ul−1) =
∑

xjl
p0(xjl)p(ul|ul−1, xjl). Randomly

and independently generate 2nRl sequences un
l (ml|ml−1), ml ∈ [1 : 2nRl ], each

according to
∏n

i=1 p0(uli|ul−1
i ). These sequences constitute the codebook C, which

is revealed to both nodes.

Encoding for round l. Given a sequence xn
jl
, node jl finds an index ml such that

(un
1(m1), u

n
2(m2|m1), . . . , u

n
l (ml|ml−1), xn

jl
) ∈ T (n)

ηl
.
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If there is more than one such index, it sends the smallest one among them. If

there is no such index, it selects an index from [1 : 2nRl] uniformly at random.

Testing. Upon receiving mq, node 1 sets the acceptance region An for H0 to

An = {(mq, xn
1 ) : (u

n
1(m1), u

n
2(m2|m1), . . . , u

n
q (mq|mq−1), xn

1 ) ∈ T (n)
η },

where T (n)
η = T (n)

η (U q, X1) is defined with respect to p0(x1, x2), p(ul|ul−1, xjl) for

all l.

Analysis of two types of error. Let Ml denote the chosen indices at node jl

and η1 < η2 < · · · < ηq < η. Node 1 chooses Ĥ 6= H0 iff one or more of the

following events occur: For l ∈ [1 : q],

El =
{
(Un

1 (M1), U
n
2 (M2|M1), . . . , U

n
l (Ml|M l−1), Xn

jl
) /∈ T (n)

ηl

for all ml ∈ [1 : 2nRl)
}
,

Ẽ =
{
(Un

1 (M1), U
n
2 (M2|M1), . . . , U

n
q (Mq|M q−1), Xn

1 ) /∈ T (n)
η

}
.

For the type I error probability, assume that H0 is true. Then

αn = P(∪q
l=1El ∪ Ẽ) ≤ P(E1) + P(E c

1 ∩ E2) + · · ·+ P(∩q
l=1E c

l ∩ Ẽ).

We now bound each term. By the covering lemma [EGK11, Section 3.7], P(E1)
tends to zero as n → ∞ if R1 ≥ I(U1;X1) + δ(η1). Now we bound the sec-

ond term. Since η2 > η1, E c
1 = {(Un

1 (M1), X
n
1 ) ∈ T (n)

η1 } and Xn
2 |{Un

1 (M1) =

un
1 , X

n
1 = xn

1} ∼ ∏n
i=1 p0(x2i|u1i, x1i) =

∏n
i=1 p0(x2i|x1i), by the conditional typical-

ity lemma [EGK11, Section 2.5], then P{(Un
1 (M1), X

n
1 , X

n
2 ) ∈ T (n)

η2 } tends to zero

as n → ∞. Therefore, again by the covering lemma, P(E c
1 ∩ E2) tends to zero as

n → ∞ if R2 ≥ I(U2;X2|U1) + δ(η2). Similarly, we have P(E c
1 ∩ · · · E c

l−1 ∩ El) tends
to zero as n → ∞ if Rl ≥ I(Ul;Xjl|U l−1) + δ(ηl) for l ∈ [1 : q].

To bound the last term, we use a version of the Markov lemma [Tun78]

in [EGK11, Section 12.1]. Let

(xn
1 , x

n
2 , u

n
1 , · · · , un

q−1) ∈ T (n)
ηq
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and consider

P{Un
q (Mq|M q−1) = un

q |Xn
1 = xn

1 , U
n
q−1(Mq−1|M q−2) = un

q−1, . . . , U
n
1 (M1) = un

1 ,

Xn
2 = xn

2}
= P{Un

q (Mq|M q−1) = un
q |Un

q−1(Mq−1|M q−2) = un
q−1, . . . , U

n
1 (M1) = un

1 , X
n
2 = xn

2}
= p(un

q |un
q−1, . . . , u

n
1 , x

n
2 ).

First note that by the covering lemma,

P{Un
q (Mq|M q−1) ∈ T (n)

ηq (Un
q |un

q−1, . . . , u
n
1 , x

n
2 ) |

Un
q−1(Mq−1|M q−2) = un

q−1, . . . , U
n
1 (M1) = un

1 , X
n
2 = xn

2}

tends to one as n → ∞, that is, p(un
q |un

q−1, . . . , u
n
1 , x

n
2 ) satisfies the first condition

in the Markov lemma. For the second condition, the following is proved in the

Section 3.6.1.

Lemma 3.1. For every un
q ∈ T (n)

ηq (Un
q |un

q−1, . . . , u
n
1 , x

n
2 ) and n sufficiently large,

p(un
q |un

q−1, . . . , u
n
1 , x

n
2 )

.
= 2−nH(Uq|Uq−1,X2).

Hence, by the Markov lemma,

lim
n→∞

P{(xn
1 , x

n
2 , u

n
1 , . . . , u

n
q−1, U

n
q (Mq|M q−1)) ∈ T (n)

η |

Xn
1 = xn

1 , X
n
2 = xn

2 , U
n
1 (M1) = un

1 , . . . , U
n
q−1(Mq−1|M q−2) = un

q−1} = 0,

if (un
1 , . . . , u

n
q−1, x

n
1 , x

n
2 ) ∈ T (n)

ηq (U1, . . . , Uq−1, X1, X2) and ηq < η is sufficiently

small. Therefore we have,

lim
n→∞

P(∩q
l=1E c

l ∩ Ẽ) = 0.

For the type II error probability, assume in this case that H1 is true. Then

βn = P(∩q
l=1E c

l ∩ Ẽ c) = P(E c
1)P(E c

2|E c
1) · · ·P(E c

q | ∩q−1
l=1 E c

l )P(Ẽ c| ∩q
l=1 E c

l ). (3.4)

We now bound each factor. By the covering lemma, P(E c
1) tends to one as n → ∞

if R1 ≥ I(U1;X1) + δ(η1). Let

Ẽl := {(Un
1 (M1), . . . , U

n
l−1(Ml−1|M l−2), Xn

jl
) /∈ T (n)

ηl
}, for l ∈ [2 : q].
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We have for l ∈ [2 : q] that

P(E c
l | ∩l−1

k=1 E c
k) = P(E c

l ∩ Ẽl
c| ∩l−1

k=1 E c
k) + P(E c

l ∩ Ẽl| ∩l−1
k=1 E c

k)

= P(E c
l ∩ Ẽl

c| ∩l−1
k=1 E c

k)

= P(E c
l |Ẽl

c ∩ ∩l−1
k=1E c

k) · P(Ẽl
c| ∩l−1

k=1 E c
k). (3.5)

By the covering lemma, the first term in (3.5) tends to one as n → ∞ if Rl ≥
I(Uk;Xjl|U l−1) + δ(ηl). To bound the second term, we first make the following

observation and the proof can be found in Section 3.6.2.

Lemma 3.2. If H1 is true, we have

p1(u
n
l−1, x

n
jl
|un

1 , u
n
2 , . . . , u

n
l−2) = p1(u

n
l−1|un

1 , u
n
2 , . . . , u

n
l−2)p1(x

n
jl
|un

1 , u
n
2 , . . . , u

n
l−2).

The second term in (3.5) can be upper bounded as follows,

P(Ẽl
c| ∩l−1

k=1 E c
k) =

∑

(un
1 ,...,u

n
l−1,xjl

)∈T (n)
ηl

p1(u
n
l−1|un

1 , . . . , u
n
l−2)p1(u

n
1 , . . . , u

n
l−2, x

n
jl
)

≤ 2n(H(U l−1,Xjl
)+δ(ηl)) · 2−n(H(Ul−1|U l−2)−δ(ηl−1)) · 2−n(H(U l−2,Xjl

)−δ(ηl−1))

= 2−n(I(Ul−1;Xjl
|U l−2)−δ(ηl)).

The last factor in (3.4) can be upper bounded similarly and we have

P(Ẽ c| ∩q
l=1 E c

l ) ≤ 2−n(I(Uq;X1|Uq−1)−δ(ηq )).

In summary, the type I error probability averaged over all codebooks is

upper bounded by η if Rl ≥ I(Ul;Xjl|U l−1) for l ∈ [1 : q], while the type II error

probability averaged over all codebooks is upper bounded by

2−n(
∑q

l=1 I(Ul;Xjl+1
|U l−1)−δ(ηq )).

Therefore, there exists a codebook such that

θq(R1, . . . , Rq, ǫ) ≥
q

∑

l=1

I(Ul;Xjl+1
|U l−1).

This completes the achievability proof.
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3.3.2 Proof of the Converse

Consider q is odd and let jl = 1 if l is odd and jl = 2 if l is even. Given

a (2nR1 , . . . , 2nRq , n) test characterized by the encoding functions ml, l = 1, . . . , q,

and the acceptance regionAn, we have by the data processing inequality for relative

entropy that

D
(
p0(x

n
1 , m

q)||p1(xn
1 , m

q)
)
≥ (1− α) log

1− α

β
+ α log

α

1− β
,

where α := P0(Ac
n), β := P1(An),

p0(x
n
1 , m

q) :=
∑

xn
2

p0(x
n
1 , x

n
2 )

q
∏

l=1

p(ml|ml−1, xn
jl
)

=

(

p0(x
n
1 )

q
∏

l=1
l odd

p(ml|ml−1, xn
1 )

)

·
∑

xn
2

(

p0(x
n
2 |xn

1 )

q
∏

l=1
l even

p(ml|ml−1, xn
2 )

)

,

and

p1(x
n
1 , m

q) :=
∑

xn
2

p0(x
n
1 )p0(x

n
2 )

q
∏

l=1

p(ml|ml−1, xn
jl
)

=

(

p0(x
n
1 )

q
∏

l=1
l odd

p(ml|ml−1, xn
1 )

)

·
∑

xn
2

(

p0(x
n
2 )

q
∏

l=1
l even

p(ml|ml−1, xn
2 )

)

.

Let Mlj = mlj (x
n
j ,M

lj−1) in round lj ∈ {j, j+2, . . . , q−2+ j} for j ∈ {1, 2}. Then
by the definition of β∗n(R1, . . . , Rq, ǫ), we must have

H(Ml) ≤ nRl for l ∈ [1 : q],

α ≤ ǫ,

β ≤ β∗n(R1, . . . , Rq, ǫ).

Then,

(1− α) log
1− α

β
+ α log

α

1− β
= (1− α) log

1

β
+ α log

1

1− β
−H(α)

≥ (1− α) log
1

β
−H(α)

≥ (1− ǫ) log
1

β
−H(α).



25

Thus we have the following multiletter expression upper bound as

lim
ǫ→0

θ(R1, . . . , Rq, ǫ) ≤ lim
n→∞

1

n
D
(
p0(x

n
1 , m

q)||p1(xn
1 , m

q)
)
.

It is easy to verify that

q
∏

l=1
l even

p0(ml|ml−1, xn
1 ) =

∑

xn
2

(

p0(x
n
2 |xn

1 )

q
∏

l=1
l even

p(ml|ml−1, xn
2 )

)

,

q
∏

l=1
l even

p1(ml|ml−1, xn
1 ) =

∑

xn
2

(

p0(x
n
2 )

q
∏

l=1
l even

p(ml|ml−1, xn
2 )

)

.

We now prove that

D
(
p0(x

n
1 , m

q)||p1(xn
1 , m

q)
)
≤

q
∑

l=1

I(Ml;X
n
jl+1

|M l−1). (3.6)

To show this, we expand the relative entropy term in (3.6) as follows.

D
(
p0(x

n
1 , m

q)||p1(xn
1 , m

q)
)

=
∑

xn
1 ,m

q

p0(x
n
1 , m

q) log
p0(mq|mq−1, xn

1 )p0(mq−2|mq−3, xn
1 ) · · ·p0(m1|xn

1 )

p1(mq|mq−1)p1(mq−2|mq−3) · · ·p1(m1)

=
∑

xn
1 ,m

q

p0(x
n
1 , m

q) log

(
p0(mq|mq−1, xn

1 )

p0(mq|mq−1)

p0(mq|mq−1)

p1(mq|mq−1)

p0(mq−2|mq−3, xn
1 )

p0(mq−2|mq−3)

· p0(mq−2|mq−3)

p1(mq−2|mq−3)
· · · p0(m1|xn

1 )

p0(m1)

p0(m1)

p1(m1)

)

=

q
∑

l=1
l even

I(Ml;X
n
1 |M l−1) +

∑

ml

l even

p0(m
l) log

p0(ml|ml−1)

p1(ml|ml−1)
, (3.7)

The second term in (3.7) can be upper bounded as

∑

ml

p0(m
l) log

p0(ml|ml−1)

p1(ml|ml−1)

=
∑

ml−2

p0(m
l−2)

∑

ml,ml−1

p0(ml, ml−1|ml−2) log
p0(ml|ml−1)

p1(ml|ml−1)

=
∑

ml−2

p0(m
l−2)D

(
p0(ml|ml−1)p0(ml−1|ml−2)||p1(ml|ml−1)p0(ml−1|ml−2)

)

=
∑

ml−2

p0(m
l−2)D

(
p0(ml−1|ml−2)

∑

xn
2

p0(ml|ml−1, xn
2 )p0(x

n
2 |ml−1)

∣
∣
∣
∣p0(ml−1|ml−2)
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·
∑

xn
2

p0(ml|ml−1, xn
2 )p0(x

n
2 |ml−2)

)

≤
∑

ml−2

p0(m
l−2)D

(
p0(ml−1|ml−2)p0(ml|ml−1, xn

2 )p0(x
n
2 |ml−1)

∣
∣
∣
∣p0(ml−1|ml−2)

· p0(ml|ml−1, xn
2 )p0(x

n
2 |ml−2)

)

= I(Ml−1;X
n
2 |M l−2). (3.8)

Thus we have established (3.6). To complete the proof, we single-letterize the

upper bound in (3.6) as

I(Ml;X
n
1 |M l−1) =

n∑

i=1

I(Ml;X1i|M l−1, X i−1
1 )

=
n∑

i=1

I(Ml;X1i|M l−1, X i−1
1 , X i−1

2 )

+ I(Ml;X
i−1
2 |M l−1, X i−1

1 )− I(Ml;X
i−1
2 |M l−1, X i

1)

(a)

≤
n∑

i=1

I(Ml;X1i|M l−1, X i−1
1 , X i−1

2 ),

where (a) follows from

I(Ml;X
i−1
2 |M l−1, X i−1

1 )− I(Ml;X
i−1
2 |M l−1, X i

1)

= H(X i−1
2 |M l−1, X i−1

1 )−H(X i−1
2 |M l, X i−1

1 )

−H(X i−1
2 |M l−1, X i

1) +H(X i−1
2 |M l, X i

1)

= I(X i−1
2 ;X1i|M l−1, X i−1

1 )− I(X i−1
2 ;X1i|M l, X i−1

1 )

≤ 0.

To bound the rate constraints, consider for l even,

nRl ≥ H(Ml)

≥ I(Ml;X
n
1 , X

n
2 |M l−1)

=

n∑

i=1

I(Ml;X1i, X2i|M l−1, X i−1
1 , X i−1

2 )

≥
n∑

i=1

I(Ml;X2i|M l−1, X i−1
1 , X i−1

2 ).
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When l > 1 is odd, the rate constraints and the terms in (3.6) can be bounded

similarly. The case of l = 1 needs to be considered separately and it can be easily

verified that

nR1 ≥
n∑

i=1

I(M1, X
i−1
1 , X i−1

2 ;X2i)

I(M1;X
n
1 ) ≤

n∑

i=1

I(M1, X
i−1
2 , X i−1

1 ;X1i).

Identify U1i = (M1, X
i−1
1 , X i−1

2 ) and Uli = Ml for l ≥ 2. Define the time-

sharing random variable Q to be uniformly distributed over [1 : n] and independent

of (M q, Xn
1 , X

n
2 ), and let Ul = (Q,UlQ), X1 = X1Q, and X2 = X2Q. Clearly,

Ul → (U l−1, Xjl) → Xjl+1
form Markov chains. Finally, the cardinality bounds

on Ul follow the standard technique, in particular, the one used in the 2-round

interactive lossy source coding problem [Kas85]. This completes the converse proof.

3.4 An Equivalent Characterization of the Opti-

mal Rate–exponent Tradeoff

In this section, we give an alternative characterization of the rate-exponent

region, which reveals an interesting connection between the interactive hypothe-

sis testing problem and the interactive lossy source coding problem described in

Section 3.4.1.

First denote the rate–exponent region in remark 3.3 as R1, which consists

of rate–exponent tuples (R1, . . . , Rq, θq) such that

Rl ≥ I(Ul;Xjl|U l−1), l ∈ [1 : q],

θq ≤
q

∑

l=1

I(Ul;Xjl|U l−1)

for some pmfs
∏q

l=1 p(ul|ul−1, xjl), where jl = 1 if l is odd and jl = 2 if l is

even. Define a rate–exponent region R2 that consists of rate–exponent triples
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(R1, . . . , Rq, θq) such that

θq ≤
q

∑

l=1

I(Ul;Xjl|U l−1),

Rl ≥ I(Ul;Xjl|U l−1)− I(Ul;Xjl+1
|U l−1), l ∈ [1 : q],

q
∑

l=1

Rl − θq ≥
q

∑

l=1

(
I(Ul;Xjl|U l−1)− I(Ul;Xjl|U l−1)

)

for some
∏q

l=1 p(ul|ul−1, xjl), where jl = 1 if l is odd and jl = 2 if l is even. We

can show the following, the proof of which can be found in Section 3.6.3.

Proposition 3.1. The two regions are equivalent, i.e.,

R1 = R2.

3.4.1 Relationship to Interactive Lossy Compression

In this section, we compare the two-round interactive hypothesis testing

problem with the two-round interactive lossy source coding problem. Consider the

interactive lossy source coding problem depicted in Fig. 3.9. Here two nodes inter-

actively communicate with each other so that each node can reconstruct the source

observed by the other node with prescribed distortions. Kaspi [Kas85] established

the optimal tradeoff between communication constraints and the distortion pair

(D1, D2). (See also Ma and Ishwar [MI11] for an ingenious example demonstrating

that interactive lossy compression can strictly outperforms one-way lossy compres-

sion.)

The optimal tradeoff between communication and distortion is character-

ized by the rate–distortion region, the formal definition of which can be found in

[Kas85] or [EGK11, Section 20.3].

Xn
1 Xn

2

(X̂n
2 , D2) (X̂n

1 , D1)

Node 1 Node 2

Ml(X
n
1 ,M

l−1)

Ml+1(X
n
2 ,M

l)

Figure 3.9: Interactive lossy compression.
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Theorem 3.3 (Kaspi [Kas85]). The two-round rate–distortion region is the set of

all rate pairs (R1, R2) such that

R1 ≥ I(X1;U
q|X2),

R2 ≥ I(X2;U
q|X1)

for some conditional pmf
∏q

l=1 p(ul|ul−1, xjl) with |Ul| ≤ |Xjl| · (
∏l

j=1 |Uj|) + 1 and

functions x̂1(u
q, x2) and x̂1(u

q, x1) that satisfy E(dj(Xj , X̂j)) ≤ Dj, j = 1, 2, where

jl = 1 if l is odd and jl = 2 if l is even.

Achievability is established by performing Wyner–Ziv coding [WZ76] in

each round, i.e., joint typicality encoding followed by binning. By contrast, the

scheme we used for the interactive hypothesis testing problem is joint typicality

encoding in each round (without binning). It turns out, however, that this dis-

tinction between binning and no binning is not fundamental. In fact, by using

Wyner–Ziv coding in the interactive hypothesis testing problem, we can estab-

lish that R2 characterizes the tradeoff between communication constraints and the

testing performance. The proof for the two-round case (q = 2) can be found in

Section 3.4.2 and the general case follows straightforwardly. Therefore, the coding

scheme for q-round interactive lossy source coding leads to an essentially identical

scheme for q-round interactive hypothesis testing. It is refreshing to note that the

same scheme is optimal for both problems.

Remark 3.4. For the one-way case, Shimokawa, Han, and Amari [SHA94] showed

that, by using binning, the the testing performance can be strictly improved given

the same rate. The necessity of binning is also investigated by Rahman and Wag-

ner [RW12] in a slightly different setup, where the test is testing against conditional

independence (the distributed nodes share a common random variable) and they

showed that binning is necessary to achieve the optimal rate–exponent tradeoff.

3.4.2 Proof of Achievability

Codebook generation. Fix the conditional pmf p(u1|x) and let p(u1) =
∑

x

p(x)p(u1|x). Randomly and independently generate 2nR̃1 sequences un
1(l1), l1 ∈
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[1 : 2nR̃1], each according to
∏n

i=1 pU1(u1i). Partition the set of indices l1 ∈ [1 :

2nR̃1] into equal-size subsets referred to as bins B(m1) = [(m1 − 1)2n(R̃1−R1) + 1 :

m12
n(R̃1−R1)], m1 ∈ [1 : 2nR1]. Fix the conditional pmf p(u2|u1, y) and let p(u2) =

∑

u1,y
p(u1, y)p(u2|u1, y). Randomly and independently generate 2nR̃2 sequences

un
2(l2|l1), l2 ∈ [1 : 2nR̃2 ], each according to

∏n
i=1 pU2|U1(u2i|u1i). Partition the

set of indices l2 ∈ [1 : 2nR̃2] into equal-size subsets referred to as bins B(m2) =

[(m2 − 1)2n(R̃2−R2) + 1 : m22
n(R̃2−R2)], m2 ∈ [1 : 2nR2]. The codebook C is revealed

to both the encoder and decoder.

Encoding. We use joint typicality encoding. Given a sequence xn, find an index

l1 such that (xn, un
1(l1)) ∈ T (n)

ǫ . If there is more than one such index, it sends the

smallest one among them. If there is no such index, it selects an index from [1 :

2nR̃1] uniformly at random. Node 1 sends the bin index m1 such that l1 ∈ B(m1).

Given a sequence yn, find an index l2 such that (yn, un
1(l1), u

n
2 (l2)) ∈ T (n)

ǫ . If there

is more than one such index, it sends the smallest one among them. If there is no

such index, it selects an index from [1 : 2nR̃2 ] uniformly at random. Node 2 sends

the bin index m2 such that l2 ∈ B(m2).

Decoding. Let ǫ > ǫ′. The decoder first compute the T (n)
ǫ (U1, Y ) with respect

to PX,Y (x, y) and p(u1|x) and T (n)
ǫ (U2, X, Y ) with respect to PX,Y (x, y), p(u1|x)

and p(u2|u1, y). Then set Ĥ = H0 if there is a unique l̂2 ∈ B(m2) such that

(un
1(l̂1), u

n
2(l̂2), x

n) ∈ T (n)
ǫ , otherwise set Ĥ = H1.

Analysis of two types of error. Let (L1, L2,M1,M2) denote the chosen indices.

The decoder choose Ĥ 6= H0 iff one or more of the following events occur:

E1 = {(Un
1 (l1), X

n) /∈ T (n)
ǫ′ for all l1 ∈ [1 : 2nR̃1)},

E2 = {∄! l1 ∈ B(M1) s.t. (U
n
1 (l1), Y

n) ∈ T (n)
ǫ },

E3 = {(Un
2 (l), U

n
1 (l1), Y

n) /∈ T (n)
ǫ′ for all l2 ∈ [1 : 2nR̃2)},

E4 = {∄! l2 ∈ B(M2) s.t. (U
n
2 (l2), U

n
1 (L1), X

n) ∈ T (n)
ǫ }.

For the type I error, in this case, H0 is true. Following similar steps from
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the proof of the Wyner-Ziv coding scheme, we have αn → 0 if

R̃1 ≥ I(X ;U1) + δ(ǫ′),

R̃1 −R1 ≤ I(Y ;U1)− δ(ǫ),

R̃2 ≥ I(U2; Y |U1) + δ(ǫ′),

R̃2 −R2 ≤ I(U2;X|U1)− δ(ǫ)

For the type II error, in this case, H1 is true.

βn = P(E c
1 ∩ E c

2 ∩ E c
3 ∩ E c

4)

= P(E c
1)P(E c

2|E c
1)P(E c

3|E c
2 ∩ E c

1)P(E c
4|E c

3 ∩ E c
2 ∩ E c

1).

By the covering lemma, P(E c
1) tends to one as n → ∞ if R̃1 ≥ I(U1;X) + δ(ǫ′).

Let

E ′(l) = {(Un
1 (l), Y

n) ∈ T (n)
ǫ },

we have

P(E c
2|E c

1) ≤
∑

l1∈B(M1)

P(E ′(l1) ∩
⋂

k 6=l1

E ′(k)c)

=
∑

l1∈B(M1)

P(E ′(l1))
∏

k 6=l1

(1− P(E ′(k)))

≤ 2n(R̃1−R1)2−n(I(U1;Y )−δ(ǫ))(1− 2−n(I(U1;Y )+δ(ǫ)))2
n(R̃1−R1)

(a)

≤ 2−n(I(U1;Y )+R1−R̃1−δ(ǫ))e−2
n(R̃1−R1−I(U1;Y )−δ(ǫ))

(b)

≤ 2−n(I(U1;Y )+R1−R̃1−δ′(ǫ)),

where (a) follows by the joint typical lemma and the inequality (1−x)k ≤ e−kx, and

(b) follows since R̃1 − R1 − I(U1; Y ) < 0. By the covering lemma, P(E c
3|E c

1, E c
2) =

P(E c
3) tends to one as n → ∞ if R̃2 ≥ I(U2; Y |U1) + δ(ǫ′). Let

E ′′(l) = {(Un
2 (l), U

n
1 (L1), X

n) ∈ T (n)
ǫ },
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we have

P(E c
4|E c

1 ∩ E c
2 ∩ E c

3) ≤
∑

l2∈B(M2)

P(E ′′(l2) ∩
⋂

k 6=l2

E ′′(k)c)

=
∑

l2∈B(M2)

P(E ′′(l2))
∏

k 6=l2

(1− P(E ′′(k)))

(a)

≤ 2n(R̃2−R2)2−n(I(U2;X|U1)−δ(ǫ))

· (1− 2−n(I(U2;X|U1)+δ(ǫ)))2
n(R̃2−R2)

(b)

≤ 2−n(I(U2;X|U1)+R2−R̃2−δ(ǫ))e−2
n(R̃2−R2−I(U2;X|U1)−δ(ǫ))

(c)

≤ 2−n(I(U2;X|U1)+R2−R̃2−δ′(ǫ)),

where (a) follows since U2 → U1 → X forms a Markov chain when H1 is true,

(b) follows by the joint typical lemma and the inequality (1− x)k ≤ e−kx, and (c)

follows since R̃2−R2 < I(U2;X|U1). Thus the following type-II error is achievable,

2−n(I(U2;X|U1)+R2−R̃2−δ′(ǫ))2−n(I(U1;Y )+R1−R̃1−δ′(ǫ)).

Therefore, we have the following conditions

I(U1;X) ≤ R̃1 ≤ I(U1; Y ) +R1,

I(U2; Y |U1) ≤ R̃2 ≤ I(U2;X|U1) +R2,

R1 +R2 ≤ R̃1 + R̃2 ≤ I(U1; Y ) + I(U2;X|U1)− θ2 +R1 +R2,

Eliminating R̃1 and R̃2 by the Fourier-Motzkin procedure yields the following char-

acterization

R2 =
⋃

p(u1|x),p(u2|u1,y)

{(R1, R2, θ2) :

θ2 ≤ I(U1; Y ) + I(U2;X|U1),

R1 ≥ I(U1;X)− I(U1, Y ),

R2 ≥ I(U2; Y |U1)− I(U2;X|U1),

I(U1;X) + I(U2; Y |U1) ≤ I(U1; Y ) + I(U2;X|U1)− θ2 +R1 +R2}.
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3.5 Discussions

In this section, we first present one interesting variant of the interactive

hypothesis testing problem and then a few open questions.

3.5.1 Variable-length Setting

In this section, we discuss a variant of the interactive hypothesis testing

problem. We still focus on the testing against independence case. A (2nR0, 2nR1, n)

test consists of two testers, one for each node. In each round, tester can either

declare that H0 or H1 is true and terminate the communication or continue the

communication.

More precisely, in round lj ∈ {j, j + 2, j + 4, . . .}, tester j ∈ {1, 2} assigns

ĥ(xn
j , m

lj ) ∈ {H0, H1, C} to its sequence and all previously transmitted indices,

• if ĥ(xn
j , m

lj ) = C, communication continues and tester assigns mlj (x
n
j , m

lj−1)

∈ [1 : 2nrlj ],

• if ĥ(xn
j , m

lj ) ∈ {H0, H1}, communication terminates.

The stopping time τn is defined as the first time that H0 or H1 is declared, i.e.,

τn := min

{

l : ĥ( xn
lo , m

l) ∈ {H0, H1}
}

,

where lo := (l mod 2) + 1. We focus on the tests that terminate in T < ∞ rounds

under both hypotheses, i.e.,

P0(τn ≤ T ) = 1 and P1(τn ≤ T ) = 1, for all n,

where P0 and P1 denote the probability measure under H0 and H1, respectively.

The expected sum rate constraints under both hypotheses are

lim
n→∞

E0

[ τn∑

l=1

rl

]

≤ R0 when H0 is true ,

lim
n→∞

E1

[ τn∑

l=1

rl

]

≤ R1 when H1 is true ,
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where E0 and E1 denote the expectation underH0 andH1, respectively. LetAk,n(l),

k ∈ {0, 1}, be defined as

Ak,n(l) :=

{

(xn
lo , m

l) : ĥ( xn
lo , m

l) = Hk

}

, k ∈ {0, 1}

and An(l) := A0,n(l) ∪ A1,n(l). Then the type I error probability is

P0(A1,n) =
∑

(xn
1 ,x

n
2 ):(x

n
1 ,x

n
2 ,{m})∈A1,n

p0(x
n
1 , x

n
2 ),

where {m} := {m1, m2, . . .} and {(xn
1 , x

n
2 ) : (x

n
1 , x

n
2 , {m}) ∈ A1,n} is defined as the

set of (xn
1 , x

n
2 ) such that

∨

l≥1

{
∧

l′<l

{

(xn
l′o
, ml′) ∈ An(l

′)c
}

∧
{

(xn
lo , m

l) ∈ A1,n(l)

} }

.

The type II error probability is defined similarly as

P1(A0,n) =
∑

(xn
1 ,x

n
2 ):(x

n
1 ,x

n
2 ,{m})∈A0,n

p1(x
n
1 , x

n
2 ).

A tuple (R0(θ), R1(θ), θ) is said to be achievable if there exists a (2nR0(θ), 2nR1(θ), n)

test such that

lim
ǫ→0

lim
n→∞

−1

n
log

(

minP1(A0,n)

)

≥ θ,

where the minimum is over all tests such that P0(A1,n) ≤ ǫ. The rate exponent

region is defined as the closure of all achievable tuples.

Consider the fixed-length setting for some error exponent θ > 0 with q

rounds communication and denote the sum rate as Rsum,q(θ), then the theorem 2

can be rewritten as follows.

Corollary 3.1.

R
sum,q(θ) = min

q
∑

l=1

I(Ul;Xjl|U l−1),

where the minimum is over all
∏q

l=1 p(ul|xjl, u
l−1), s.t.

q
∑

l=1

I(Ul;Xjl|U l−1) ≥ θ.
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From the formulation of our variable-length setting, we are bound to have

R0(θ) ≤ Rsum,q(θ) and R1(θ) ≤ Rsum,q(θ). The benefit of the variable-length setting

can be reflected by the following result.

Theorem 3.4. For any fixed error exponent θ > 0,

R0(θ) ≤ R
sum,q(θ) and 0 = R1(θ) < R

sum,q(θ).

Proof. Fix a fixed-length q-round test T for θ, i.e., fix an acceptance region A′n
such that

P0(A′cn) → 0 and − 1

n
logP1(A′n) → θ.

Fix a p(u1|x1) such that I(U1;X1) ≤ ǫ0 for ǫ0 arbitrarily small. Generate un
1(m1),

m1 ∈ [1 : 2nr1], each according to
∏n

i=1 pU1(u1i).

Testing for round 1. Encoder 1 looks for un
1(m1) such that (un

1(m1), x
n
1 ) ∈ T (n)

ǫ′ .

If there exists one, it sends m1 to node 2. Otherwise, set m1 = 0

Testing for round 2. Let ǫ > ǫ′. Upon receiving un
1 (m1), if (u

n
1(m1), x

n
2 ) /∈ T (n)

ǫ ,

it declares H1 is true. Otherwise, send 1-bit notification m2 to node 1. Thus

A0,n(1) = ∅ and A1,n(1) = {(xn
2 , m1) : (u

n
1(m1), x

n
2 ) /∈ T (n)

ǫ }.

Testing for round 3 until round (q+2). If it receives the 1-bit notification

m2, it applies the fixed test T in the following q rounds. Thus

A0,n(q + 2) = A′n and A1,n(q + 2) = A′cn .

Analysis. Let

E1 := {(Un
1 (m1), X

n
1 ) /∈ T (n)

ǫ′ for all m1 ∈ [1 : 2nr1 ]},
E2 := {(Un

1 (m1), X
n
1 , X

n
2 ) /∈ T (n)

ǫ }.

If H0 is true, the sum rate is

lim
n→∞

E

[ τn∑

l=1

rl

]

= r1 +Rsum,q(θ) · lim
n→∞

P{(Un
1 (m1), X

n
2 ) ∈ T (n)

ǫ }.
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By the covering lemma [EGK11, Section 3.7], we have P(E1) tends to zero as

n → ∞, if r1 ≥ I(U1;X1) + δ(ǫ′). Since ǫ > ǫ′, by the conditional typicality

lemma [EGK11, Section 2.5], we have that P(E c
2) tends to one as n → ∞ and thus

P{(Un
1 (m1), X

n
2 ) ∈ T (n)

ǫ } tends to one as n → ∞. Thus R0(θ) = r1 + Rsum,q(θ).

Type I error is

P0(A1,n) = P0

(

A1,n(1) ∪
(

A1,n(1)
c ∩A1,n(q + 2)

))

≤ P0(A1,n(1)) + P0

(

A1,n(1)
c ∩A1,n(q + 2)

)

≤ P0(A1,n(1)) + P0(A1,n(q + 2)) = P{(Un
1 (m1), X

n
2 ) /∈ T (n)

ǫ }+ P0(A
′c
n ).

Thus by the assumption of the T and the covering lemma, we have that P0(A1,n)

tends to zero if r1 ≥ I(U1;X1) + δ(ǫ′).

If H1 is true, the sum rate is

r1 +Rsum,q(θ) · lim
n→∞

P{(Un
1 (m1), X

n
2 ) ∈ T (n)

ǫ } (a)
= r1,

where (a) follows since P{(Un
1 (m1), X

n
2 ) ∈ T (n)

ǫ } ≤ 2−nI(U1;X2) by the jointly typi-

cality lemma [EGK11, Section 2.5]. Type II error is P1(A0,n) = P1(A0,n(q + 2)) =

P1(A′n). Since ǫ0 can be arbitrarily small, thus we have shown that (Rsum,q(θ), 0, θ)

is achievable in the variable-length setting.

Remark 3.5. It is easy to see that the above result holds for general hypothesis

testing problem.

Proposition 3.2. For two hypotheses on the joint distribution of (X1, X2):

H0 : p0(x1, x2) and H1 : p1(x1, x2),

and any fixed error exponent θ > 0, we have R0(θ) ≤ R
sum,q(θ) and 0 = R1(θ) <

R
sum,q(θ).

It is still unknown whether there is a strict separation between the fixed-

length scheme and the variable-length scheme.
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3.5.2 Guassian Source

In this section, we discuss the Gaussian source case. It is unknown whether

in this case, the interaction is strictly helpful or not. Let X = Y + Z, where

Y ∼ N(0, P ) and Z ∼ N(0, N) is independent of Y . For the one-round case, the

rate-exponent function is

R(θ) = min
p(u|y):I(U ;X)≥θ

I(U ; Y ).

It is easy to see that R(θ) is equivalent to the following function

r(α) = max
p(u|y):h(X|U)≤α

h(Y |U),

where α = h(X) − θ and r(α) = h(Y ) − R(θ). Applying the entropy power

inequality, we have

22h(Y |U) ≤ 22h(X|U) − 22h(Z|U) ≤ 22α − 22h(Z) = 22α − 2πeN.

Thus we have

h(Y |U) ≤ 1

2
log(2πe(P +N)2−2θ − 2πeN)

and

R(θ) ≥ 1

2
log

P

(P +N)2−2θ −N
. (3.9)

Now we show that the lower bound of R(θ) in (3.9) can be achieved. Let

U = Y + V with V ∼ N(0, Q). It is easy to obtain the following

I(X ;U) =
1

2
log

(P +N)(P +Q)

PQ+ PN +NQ
, (3.10)

I(Y ;U) =
1

2
log

(

1 +
P

Q

)

. (3.11)

With I(Y ;U) = R, we have

Q =
P

22R − 1
. (3.12)

Plugging (3.12) into the right hand side of (3.10), we have

R(θ) ≤ 1

2
log

P

(P +N)2−2θ −N
.
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For the two-round case, the rate-exponent function is

R(θ) = max I(U1;X) + I(U2; Y |U1),

where the maximum is over all p(u1|x) and p(u2|u1, y) such that

I(U1; Y ) + I(U2;X|U1) ≥ θ.

It is equivalent to

r(α) = maxh(X|U1)− h(Y |U1) + h(Y |U1, U2),

where the maximum is over all p(u1|x) and p(u2|u1, y) such that

h(Y |U1)− h(X|U1) + h(X|U1, U2) ≤ α

with α = h(Y ) − θ and r(α) = h(X) − R(θ). However, it is no known how to

provide a closed form expression for the two-round case.

As a comparison, in the following, we consider the interactive lossy source

coding problem as a comparison with the interactive hypothesis testing problem.

More specifically, we consider the same quadratic Gaussian source described at the

beginning of this section.

Let X = Y + Z, where Y ∼ N(0, P ) and Z ∼ N(0, N) is independent of Y .

For the one-way case, the rate distortion function is

R1(D) = min
ŷ(u,x),p(u|y):E[d(Y,Ŷ )]≤D

I(Y ;U |X).

Similar to the converse proof of the quadratic Gaussian lossy source coding prob-

lem, we have

I(Y ;U |X) = h(Y |X)− h(Y |U,X)

=
1

2
log(2πeVar(Y |X))− h(Y − Ŷ |U,X, Ŷ )

≥ 1

2
log(2πeVar(Y |X))− 1

2
log(2πeD) (3.13)

=
1

2
log

Var(Y |X)

D
,
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where (3.13) follows since Ŷ is a function of (U,X). Thus we have

R1(D) ≥ 1

2
log

Var(Y |X)

D
.

The achievability can be shown as in [EGK11, Example 11.2] by choosing U = X+

V , where V ∼ N(0, Q) in independent of (X, Y ) andQ = Var(Y |X)D/(Var(Y |X)−
D). For the two-round case, the rate distortion function is

R2(D) = min
p(u1|x),p(u2|u1,y),ŷ(x,u1,u2):E[d(Y,Ŷ )]≤D

I(X ;U1|Y ) + I(Y ;U2|U1, X).

Now we show that R2(D) ≥ R1(D), which implies that R2(D) = R1(D).

I(X ;U1|Y ) + I(Y ;U2|U1, X)

= h(X|Y )− h(X|U1, Y ) + h(Y |U1, X)− h(Y |U1, U2, X)

≥ h(Y |X)− h(Y − Ŷ |U1, U2, X) (3.14)

≥ h(Y |X)− h(Y − Ŷ )

≥ R1(D),

where (3.14) follows since

I(X ;U1|Y ) ≥ I(Y ;U1|X) = 0

implies

h(X|Y )− h(X|U1, Y ) + h(Y |U1, X) ≥ h(Y |X)

and Ŷ is a function of (U1, U2, X).

3.5.3 Strong Converse

The strong converse of the interactive hypothesis problem is still open. The

strong converse proof of the one-way case is due to Ahlswede and Csiszár [AC86].

In this section, we provide a streamlined proof of their result. We need to introduce

the following notation:

• Pxn: type of a sequence xn, i.e.,

Pxn(x) :=
|i : xi = x|

n
, x ∈ X .
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• Pn: the set of all possible types of xn ∈ X n.

• T n
P : the set of sequences of type P , i.e.,

T n
P := {xn : Pxn = P}.

• (X, η)-essentail type: given a random variable X and η > 0, we call P ∈ Pn

an (X, η)-essentail type if

max
x

|P (x)− PX(x)| ≤ η.

• T n
η (X): (X, η)-typical sequences, i.e.,

T n
η (X) :=

⋃

(X,η)-essentail type P

T n
P .

Theorem 3.5 ([AC86]). For any 0 < λ < ǫ < 1, α > 0, and R′ ≥ R + α,

θ(R, ǫ) ≤ θ(R′, λ) + α.

Note that from the theorem, we have

θ(R, ǫ) ≤ lim
λ→0

lim
α→0

(
θ(R′, λ) + α

)

= lim
λ→0

θ(R, λ)

≤ max
p(u|x):R≥I(U ;X)

I(U ; Y ).

Combined with the achievability proof, we have

θ(R, ǫ) = max
p(u|x):R≥I(U ;X)

I(U ; Y ), ∀ǫ ∈ (0, 1).

Outline of the proof of Theorem 3.5:

• Based on the type I error constraint and rate constraint, construct sets E ⊆
{xn : m(xn) = i0} ⊆ X n and F ∈ Yn such that for any xn ∈ E,

P0(Y
n ∈ F |Xn = xn) ≥ δ > 0

P1(Y
n ∈ F |Xn = xn) ≤ βn(R, ǫ)2nδ.
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• Blow up E to C := ΓkE ∩ T n
η (X) since the size of E is not big enough to

cover the typical sequences

{xn ∈ T n
η (X) : m(xn) = i0}.

• Blow up F to D := Γk+lF so that P0(Y
n ∈ Γk+lF |Xn = xn) ≈ 1.

• Construct a test from C and D to construct a (2nR
′
, n) test with R′ ≥ R to

upper bound θ(R, ǫ).

Proof of Theorem 3.5. • Step 1: construct sets E ∈ X n and F ∈ Yn.

Consider any m : X n → [1 : 2nR] and set A ⊆ [1 : 2nR]×Yn such that

P0(A) ≥ 1− ǫ, (3.15)

P1(A) = βn(R, ǫ). (3.16)

The acceptance region can be written as

A =

2nR
⋃

i=1

i×Gi, Gi ⊂ Yn and i = 1, 2, . . . , 2nR.

Then (3.15) and (3.16) imply

P0(Y
n ∈ Gm(Xn)) ≥ 1− ǫ,

P1(Y
n ∈ Gm(Xn)) = βn(R, ǫ).

Fix δ and η which will be decided later. For xn ∈ T n
η (X), let

s(xn) := P0(Y
n /∈ Gm(Xn)|Xn = xn),

t(xn) := P1(Y
n ∈ Gm(Xn)|Xn = xn),

and

B :=
{
xn ∈ T n

η (X) : s(xn) ≤ 1− δ, t(xn) ≤ βn(R, ǫ)2nδ
}
.

Since

∑

xn∈T n
η (X)

P0(X
n = xn)s(xn) = P0(X

n ∈ T n
η (X), Y n /∈ Gm(Xn)) ≤ ǫ,

∑

xn∈T n
η (X)

P1(X
n = xn)t(xn) = P1(X

n ∈ T n
η (X), Y n /∈ Gm(Xn)) ≤ βn(R, ǫ).
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By the Markov inequality and the union bound, for n sufficiently large , we

have

P0(X
n ∈ B) ≥ P0(X

n ∈ T n
η (X))− ǫ

1− δ
− 2−nδ

(a)

≥ 1− ǫ

2
,

where (a) follows by choosing δ ∈ (0, (1− ǫ)/2).

Let

i0 = argmin
i

P0(X
n ∈ B,m(Xn) = i),

and choose

E := B ∩m−1(i0),

F := Gi0.

The sets E and F have the following properties, for every xn ∈ E,

P0(X
n ∈ E) ≥ 1− ǫ

2nR+1
, (3.17)

P0(Y
n ∈ F |Xn = xn) = 1− s(xn) ≥ δ, (3.18)

P1(Y
n ∈ F |Xn = xn) = t(xn) ≤ βn(R, ǫ)2nδ. (3.19)

• Step 2: blow up E and F to get C and D.

Now we blow up E and F as follows,

C := ΓkE ∩ T n
η (X),

D := Γk+lF,

where k and l will be specified later.

Note that (3.17) implies that there exists a (X, η)-essential type P̄ ∈ Pn such

that

|E ∩ T n
P̄ | ≥ 1− ǫ

2nR+1
|TP̄ |.

Let P ∈ Pn be any other (X, η)-essentail type. Then

max
x

|P (x)− P̄ (x)| ≤ 2η.
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Then η and k are chosen such that for every (X, η)-essential P ∈ Pn,

|C ∩ T n
P | = |ΓkE ∩ T n

P | ≥ 1

2nR
2(n(H(X)−2δ)).

For any x̄n ∈ C and xn ∈ E,

P0(Y
n ∈ ΓkF |Xn = x̄n) ≥ |Y|−2k P0(Y

n ∈ F |Xn = xn)

(a)

≥ |Y|−2kδ,

where (a) follows from (3.18).

Then by the blowing up lemma, there exists l such that for any x̄n ∈ C,

P0(Y
n ∈ Γk+lF |Xn = x̄n) ≥ 1− λ

2
.

Finally, for any x̄n ∈ C,

P1(Y
n ∈ D|Xn = x̄n) = P1(Y

n ∈ Γk+lF |Xn = x̄n)

≤ P1(Y
n ∈ F |Xn = xn)22nδ

(a)

≤ βn(R, ǫ)24nδ,

where (a) follows from (3.19).

Thus, the sets C and D satisfies the following properties, for any xn ∈ C,

|C ∩ T n
P | ≥ 1

2nR
2(n(H(X)−2δ)), ∀(X, η)-essential type P ∈ Pn,

(3.20)

P0(Y
n ∈ D|Xn = xn) ≥ 1− λ

2
, (3.21)

P1(Y
n ∈ D|Xn = xn) ≤ βn(R, ǫ)24nδ. (3.22)

• Step 3: construct a (2nR
′
, n) test based on C and D, where R′ ≥ R + 3δ.

Because of (3.20), by the covering lemma, for any (X, η)-essential type P ∈
Pn, there exists permutations π1,P , . . . , πN,P such that

T n
P ⊂

N⋃

i=1

πi,P (C), N ≤ 2n(R
′−δ/2).
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Let π1, . . . , πM be all permutations selected as P runs over all the (X, η)-

essential types. Then

T n
η (X) ⊂

M⋃

i=1

πi(C), M ≤ (n + 1)|X |2n(R
′−δ/2).

Define an encoder m′ : X n → [1 : M ] as

m′(xn) =







0, if xn /∈ T n
η (X),

smallest i with xn ∈ πi(C), if xn ∈ T n
η (X).

Note that the rate constraint is satisfied, we want to find A′ ∈ [1 : M ]× Yn

such that

P0(A
′) ≥ 1− λ, (3.23)

P1(A
′) ≤ βn(R, n)24nδ2nδ. (3.24)

We now show that

A′ :=

M⋃

i=1

{i} × πi(D)

satisfies both (3.23) and (3.24).

For (3.23),

P0(A
′) = P0

(
(m(Xn), Y n) ∈ A′

)

=

M∑

i=1

P0

(
Y n ∈ πm(Xn)(D), m(Xn) = i

)

=

M∑

i=1

∑

xn

P0

(
Y n ∈ πi(D), m(Xn) = i

∣
∣Xn = xn)P0(X

n = xn)

=
M∑

i=1

∑

xn∈m−1(i)

P0

(
Y n ∈ πi(D)

∣
∣Xn = xn)P0(X

n = xn).

Since (Xn, Y n) is a pair of i.i.d. sequence,

P0

(
Y n ∈ πi(D)

∣
∣Xn = xn) = P0

(
Y n ∈ D

∣
∣Xn = π−1i (xn)),
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and by the definition of m′, we have π−1i (xn) ∈ C. Thus

P0(A
′) ≥ P0

(

Xn ∈
M⋃

i=1

m′−1(i)

)

(1− λ/2)

= P0

(
Xn ∈ T n

η (X)
)
(1− λ/2)

≥ 1− λ.

Similarly, we have

P1(A
′) =

M∑

i=1

∑

xn∈m−1(i)

P1

(
Y n ∈ D

∣
∣Xn = π−1i (xn))P1(X

n = xn)

≤ P1

(
Xn ∈ T n

η (X)
)
βn(R, ǫ)24nδ

≤ βn(R, ǫ)24nδ2nδ.

Therefore

βn(R
′, λ) ≤ βn(R, ǫ)25nδ

for n sufficiently large and R′ > R + 3δ.

3.6 Technical Proofs

3.6.1 Proof of Lemma 3.1

To simplify the notation, let T (n)
ηq := T (n)

ηq (Un
q |un

q−1, . . . , u
n
1 , x

n
2 ) and Un

l :=

Un
l (Ml|M l−1). Then for every un

q ∈ T (n)
ηq ,

P{Un
q = un

q |Un
q−1 = un

q−1, . . . , U
n
1 = un

1 , X
n
2 = xn

2}
= P{Un

q = un
q , U

n
q ∈ T (n)

ηq |Un
q−1(Mq−1|M q−2) = un

q−1, . . . , U
n
1 = un

1 , X
n
2 = xn

2}
= P{Un

q ∈ T (n)
ηq |Un

q−1 = un
q−1, . . . , U

n
1 = un

1 , X
n
2 = xn

2}
· P{Un

q = un
q |Un

q−1 = un
q−1, . . . , U

n
1 = un

1 , X
n
2 = xn

2 , U
n
q ∈ T (n)

ηq }
≤ P{Un

q = un
q |Un

q−1 = un
q−1, . . . , U

n
1 = un

1 , X
n
2 = xn

2 , U
n
q ∈ T (n)

ηq }
=

∑

mq

P{Un
q = un

q ,M
q = mq |Un

q−1 = un
q−1, . . . , U

n
1 = un

1 ,
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Xn
2 = xn

2 , U
n
q ∈ T (n)

ηq }
=

∑

mq

P{M q = mq |Un
q−1 = un

q−1, . . . , U
n
1 = un

1 , X
n
2 = xn

2 , U
n
q ∈ T (n)

ηq }

· P{Un
q = un

q |Un
q−1 = un

q−1, . . . , U
n
1 = un

1 ,

Xn
2 = xn

2 , U
n
q ∈ T (n)

ηq ,M q = mq}
(a)
=

∑

mq

P{M q = mq |Un
q−1 = un

q−1, . . . , U
n
1 = un

1 , X
n
2 = xn

2 , U
n
q ∈ T (n)

ηq }

· P{Un
q = un

q |Un
q ∈ T (n)

ηq }
(b)

≤
∑

mq

P{M q = mq |Un
q−1 = un

q−1, . . . , U
n
1 = un

1 , X
n
2 = xn

2 , U
n
q ∈ T (n)

ηq }

· 2−n(H(Uq |Uq−1,X2)−δ(ηq))

= 2−n(H(Uq |Uq−1,X2)−δ(ηq )),

where (a) follows since Un
q (mq|mq−1) is independent of Xn

2 and Un
2 (m

′
q|mq−1)

for m′q 6= mq and is conditionally independent of M q given (Xn
2 , U1(m1),. . .,

Uq−1(mq−1|mq−2)) and the indicator variables of the event Un
q (mq|mq−1) ∈ T (n)

ηq ,

mq ∈ [1 : 2nRq ], which implies that the event {Un
q (mq|mq−1) = un

q} is conditionally

independent of {Xn
2 , U1(m1), . . . , Uq−1(mq−1|mq−2),M q = mq} given Un

q (mq|mq−1)

∈ T (n)
ηq . Step (b) follows from the properties of typical sequences. Similarly, for

every for every un
q ∈ T (n)

ηq and n sufficiently large,

P{Un
q (Mq|M q−1) = un

q |Un
q−1(Mq−1|M q−2) = un

q−1, . . . , U1(M1)
n = un

1 , X
n
2 = xn

2}
≥ (1− ηq)2

−n(H(Uq|Uq−1,X2)+δ(ηq)).

This completes the proof of Lemma 1.

3.6.2 Proof of Lemma 3.2

We have

p1(u
n
l−1, x

n
jl
|un

1 , u
n
2 , . . . , u

n
l−2)

=
∑

xn
jl−1

p1(u
n
l−1, x

n
jl
, xn

jl−1
|un

1 , u
n
2 , . . . , u

n
l−2)
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(a)
=

∑

xn
jl−1

p1(x
n
jl
, xn

jl−1
|un

1 , u
n
2 , . . . , u

n
l−2)p1(u

n
l−1|un

1 , u
n
2 , . . . , u

n
l−2, x

n
jl−1

)

(b)
=

∑

xn
jl−1

p1(x
n
jl
|xn

jl−1
, un

1 , u
n
2 , . . . , u

n
l−2)p1(x

n
jl−1

|un
1 , u

n
2 , . . . , u

n
l−2)

· p1(un
l−1|un

1 , u
n
2 , . . . , u

n
l−2, x

n
jl−1

)

=
∑

xn
jl−1

p1(x
n
jl
|un

1 , u
n
2 , . . . , u

n
l−2)p1(u

n
l−1, x

n
jl−1

|un
1 , u

n
2 , . . . , u

n
l−2)

= p1(x
n
jl
|un

1 , u
n
2 , . . . , u

n
l−2)p1(u

n
l−1|un

1 , u
n
2 , . . . , u

n
l−2),

where (a) follows since Un
l−1 is conditionally independent of Xn

jl
given

(Un
1 , U

n
2 , . . . , U

n
l−2, X

n
jl−1

)

and (b) follows since Xn
jl−1

and Xn
jl
are independent under H1.

3.6.3 Proof of Proposition 3.1

In this section, we focus on the two-round case and the q-round case follows

straightforwardly. Define the two regions as

R1 =
⋃

p(u1|x),p(u2|u1,y)

{(R1, R2, θ) : R1 ≥ I1, R2 ≥ I2, θ ≤ I3 + I4},

R2 =
⋃

p(u2|x),p(u2|u1,y)

{(R1, R2, θ) : R1 ≥ I1 − I3, R2 ≥ I2 − I4,

θ ≤ I3 + I4, R1 +R2 − θ ≥ I1 + I2 − I3 − I4},

where for fixed p(u1|x) and p(u2|u1, y), let

I1 := I(U1;X),

I2 := I(U2; Y |U1),

I3 := I(U1; Y ),

I4 := I(U2;X|U1).

We now show that R1 = R2 as follows. The corner points of R1 are

c1 := (I1, I2, 0) and c2 := (I1, I2, I3 + I4).
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The corner points of R2 are

d1 := (I1 − I3, I2 − I4, 0) and d2 := (I1, I2, I3 + I4).

It is easy to see that R1 ⊆ R2. Since d1 ∈ R1 by choosing U = ∅ and

d2 ∈ R1 by choosing the fixed p(u1|x) and p(u2|u1, y), thus R2 ⊆ R1.

Chapter 3, in part, includes the material in Yu Xiang and Young-Han Kim,

“Interactive hypothesis testing with communication constraints,” Annual Aller-

ton Conference on Communication, Control, and Computing, Monticello, IL, pp.

1065–1072, Monticello, IL, October 2012, and Yu Xiang and Young-Han Kim,

“Interactive hypothesis testing against independence,” IEEE International Sym-

posium on Information Theory, pp. 2840–2844, Istanbul, Turkey, July 2013. The

dissertation author was the primary investigator and author of this paper.



Chapter 4

Gaussian Channel with Noisy

Feedback

In this chapter, the optimal coding over the additive white Gaussian noise

channel under the peak energy constraint is studied when there is noisy feedback

over an orthogonal additive white Gaussian noise channel. As shown by Pinsker,

under the peak energy constraint, the best error exponent for communicating an

M-ary message, M ≥ 3, with noise-free feedback is strictly larger than the one

without feedback. In this chapter, we extend Pinsker’s result and show that if

the noise power in the feedback link is sufficiently small, the best error exponent

for communicating an M-ary message can be strictly larger than the one without

feedback. The proof involves two feedback coding schemes. One is motivated by

a two-stage noisy feedback coding scheme of Burnashev and Yamamoto for binary

symmetric channels, while the other is a linear noisy feedback coding scheme that

extends Pinsker’s noise-free feedback coding scheme. When the feedback noise

power α is sufficiently small, the linear coding scheme outperforms the two-stage

(nonlinear) coding scheme, and is asymptotically optimal as α tends to zero. By

contrast, when α is relatively larger, the two-stage coding scheme performs better.

49
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Encoder Decoder
Xi

Ỹi

W

Z̃i ∼ N(0, α)

Zi ∼ N(0, 1)

Yi Ŵ

Figure 4.1: Gaussian channel with noisy feedback.

4.1 Introduction

We consider a communication problem for an additive white Gaussian noise

(AWGN) forward channel with feedback over an orthogonal additive white Gaus-

sian noise backward channel as depicted in Fig. 1. Suppose that the sender wishes

to communicate a message W ∈ [1 : M ] := {1, 2, . . . ,M} over the (forward) addi-

tive white Gaussian noise channel

Yi = Xi + Zi,

where Xi, Yi, and Zi respectively denote the channel input, channel output, and

additive Gaussian noise. The sender has a causal access to a noisy version Ỹi of Yi

over the feedback (backward) additive white Gaussian noise channel

Ỹi = Yi + Z̃i,

where Z̃i is the Gaussian noise in the backward link. We assume that the forward

noise process {Zi}∞i=1 and the backward noise process {Z̃i}∞i=1 are independent of

each other, and respectively white Gaussian N(0, 1) and N(0, α).

We define an (M,n) code with the encoding functions xi(w, ỹ
i−1), i ∈ [1 : n],

and the decoding function ŵ(yn). We assume a peak energy constraint

P

{ n∑

i=1

x2
i (w, Ỹ

i−1) ≤ nP

}

= 1 for all w. (4.1)
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The probability of error of the code is defined as

P (n)
e = P{W 6= Ŵ (Y n)}

=
1

M

M∑

w=1

P{W 6= Ŵ (Y n)|W = w},

whereW is distributed uniformly over {1, 2, . . . ,M} and is independent of (Zn, Z̃n).

As is well known, the capacity of the channel (the supremum of (logM)/n

such that there exists a sequence of (M,n) codes with limn→∞ P
(n)
e → 0) stays

the same with or without feedback. Hence, our main focus is the reliability of

communication, which is captured by the error exponent

lim
n→∞

−1

n
lnP (n)

e

of the given code. The error exponent is sensitive to the presence of noise in the

feedback link. Schalkwijk and Kailath showed in their celebrated work [SK66]

that noise-free feedback can improve the error exponent dramatically under the

expected energy constraint

n∑

i=1

E[x2
i (w, Ỹ

i−1)] ≤ nP for all w, (4.2)

(in fact, P
(n)
e decays much faster than exponentially in n). Kim, Lapidoth, and

Weissman [KLW07] studied the optimal error exponent under the expected energy

constraint and noisy feedback, and showed that the error exponent is inversely

proportional to α for small α.

Another important factor that affects the error exponent is the energy con-

straint on the channel inputs—the peak energy constraint in (4.1) vs. the expected

energy constraint in (4.2). Wyner [Wyn68] showed that the error probability of

the Schalkwijk–Kailath coding scheme [SK66] degrades to an exponential form un-

der the peak energy constraint. In fact, Shepp, Wolf, Wyner, and Ziv [SWWZ69]

showed that for the binary-message case (M = 2), the best error exponent under

the peak energy constraint is achieved by simple nonfeedback antipodal signaling,

regardless of the presence of feedback. This negative result might lead to an im-

pression that under the peak energy constraint, even noise-free feedback does not
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improve the reliability of communication. Pinsker [Pin68] proved the contrary by

showing that the best error exponent for sending an M-ary message does not de-

pend on M and, hence can be strictly larger than the best error exponent without

feedback for M ≥ 3.

In this chapter, we show that noisy feedback can improve the reliability of

communication under the peak energy constraint, provided that the feedback noise

power α is sufficiently small. Let

EM(α) := lim sup
n→∞

−1

n
lnP ∗e (M,n),

where P ∗e (M,n) denotes the best error probability over all (M,n) codes for the

AWGN channel with the noisy feedback. Thus, EM(∞) denotes the best error

exponent for communicating an M-ary message over the AWGN channel without

feedback. Shannon [Sha59] showed that

EM(∞) =
M

4(M − 1)
P. (4.3)

This follows by first upper bounding the error exponent with the sphere packing

bound and then achieving this upper bound by using a regular simplex code on

the sphere of radius
√
nP , that is, each codeword xn(w) satisfies

∑n
i=1 x

2
i (w) = nP

and is at the same Euclidean distance from every other codeword. In particular,

for M = 3,

xn(1) =
√
nP · ( 0, 1, 0, . . . , 0),

xn(2) =
√
nP · (−1/2,−

√
3/2, 0, . . . , 0),

xn(3) =
√
nP · ( 1/2,−

√
3/2, 0, . . . , 0),

and

E3(∞) =
3

8
P.

At the other extreme, EM(0) denotes the best error exponent for communicating an

M-ary message over the AWGN channel with noise-free feedback. Pinsker [Pin68]

showed that

EM (0) ≡ P

2
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for all M . In particular,

E3(0) =
P

2
.

Clearly, EM(α) is decreasing in α and

EM(∞) ≤ EM(α) ≤ EM(0)

for every α and M .

Is EM(α) strictly larger than EM(∞) (i.e., is noisy feedback better than

no feedback)? Does EM(α) tend to EM(0) as α → 0 (i.e., does the performance

degrade gracefully with small noise in the feedback link)? What is the optimal

feedback coding scheme that achieves EM(α)? To answer these questions, we

establish the following results.

Theorem 4.1. For 0 ≤ s ≤ 1,

EM(α∗(s)) ≥ P

2

(

1− 3(M − 2)

M(s2 − 2s+ 4) + 3(M − 2)

)

,

where

α∗(s) =
3s2

4(s2 − 2s+ 4)
.

By comparing the lower bound with (4.3) and identifying the critical point

α = α∗(1) = 1/4, we obtain the following.

Corollary 4.1.

EM(α) > EM(∞) for α <
1

4
.

Thus, if the noise power in the feedback link is sufficiently small, then

the noisy feedback improves the reliability of communication even under the peak

energy constraint. The proof of Theorem 1 is motivated by recent results of Burna-

shev and Yamamoto in a series of papers [BY08a], [BY08b], where they considered

a communication model with a forward BSC(p) and a backward BSC(αp), and

showed that when α is sufficiently small, the best error exponent is strictly larger

than the one without feedback.

The lower bound in Theorem 1 shows that lim infα→0EM(α) ≥ 2PM/(7M−
6), which is strictly less than EM(0) = P/2. To obtain a better asymptotic behavior

for α → 0, we establish the following.



54

Theorem 4.2.

EM(α) ≥ P

2

1

1 + α + 4(⌊M/2⌋)2α + 4(⌊M/2⌋)
√

α(1 + α)

≥ P

2

1

(
√
αM +

√
1 + α)2

.

This theorem leads to the following.

Corollary 4.2.

lim
α→0

EM(α) = EM(0).

Thus, the lower bound in Theorem 2 is tight for α → 0. The proof of

Theorem 2 extends Pinsker’s linear noise-free feedback coding scheme [Pin68] to

the noisy case.

Fig. 4.2 compares the two bounds for the M = 3 case. The linear noisy

feedback coding scheme performs better when α is sufficiently small, while the two-

stage noisy feedback coding scheme performs better when α is relatively larger.

10
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10
−2

10
0
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0.48
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0.52

E′3(α)

E3(0)

E′′3 (α)

E3(∞)

α

E
3
(α

)

5.6× 10−3 0.25

Figure 4.2: Comparison of the two noisy feedback coding scheme for M = 3.

The rest of the chapter is organized as follows. In Section II, we study a two-

stage noisy feedback coding scheme motivated by recent results of Burnashev and

Yamamoto and establish Theorem 1. In Section III, we extend Pinsker’s noise-free

linear feedback coding scheme to the noisy feedback case and establish Theorem 2.

Section IV concludes this chapter.
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4.2 Two-stage Noisy Feedback Scheme

4.2.1 Background

It is instructive to first consider a two-stage noise-free feedback coding

scheme for M = 3. This two-stage scheme has been studied by Schalkwijk and

Barron [SB71] and Yamamoto and Itoh [YI79] for a general M .

Encoding. Fix some λ ∈ (0, 1). For simplicity of notation, assume throughout

that λn is an integer. To send message w ∈ [1 : 3], during the transmission time

interval [1 : λn] (namely, stage 1), the encoder uses the simplex signaling:

xλn(w) =







√
λnP · ( 0, 1, 0, . . . , 0) for w = 1,

√
λnP · (−1/2,−

√
3/2, 0, . . . , 0) for w = 2,

√
λnP · ( 1/2,−

√
3/2, 0, . . . , 0) for w = 3.

(4.4)

Based on the feedback yλn, the encoder then chooses the two most probable

message estimates ŵ1 and ŵ2, where

p(ŵ1|yλn) ≥ p(ŵ2|yλn) ≥ p(ŵ3|yλn) (4.5)

and in case of a tie the one with the smaller index is chosen. Since the channel is

Gaussian and W is uniform, (4.5) can be written as

||xλn(ŵ1)− yλn|| ≤ ||xλn(ŵ2)− yλn|| ≤ ||xλn(ŵ3)− yλn||,

where || · || denotes the Euclidean distance. During the transmission time interval

[λn + 1 : n] (stage 2), the encoder uses antipodal signaling for w if w ∈ {ŵ1, ŵ2}
and transmits all-zero sequence otherwise:

xn
λn+1(w)

=







√

(1− λ)nP · (1, 0, 0, . . . , 0) if w = min{ŵ1, ŵ2},
√

(1− λ)nP · (−1, 0, 0, . . . , 0) if w = max{ŵ1, ŵ2},

(0, 0, 0, . . . , 0) otherwise.
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Decoding. At the end of stage 1, the decoder chooses the two most probable

message estimates ŵ1 and ŵ2 based on Y λn as the encoder does. At the end of

stage 2, the decoder declares that ŵ is sent if

ŵ = arg min
w∈{ŵ1,ŵ2}

||xn(w)− yn||

= arg min
w∈{ŵ1,ŵ2}

(
||xλn(w)− yλn||2 + ||xn

λn+1(w)− ynλn+1||2
)1/2

.

Analysis of the probability of error. Let Ŵ1 and Ŵ2 denote the two most

probable message estimates at the end of stage 1. The decoder makes an error if

and only if one of the following events occurs:

E1 =
{
W 6= Ŵ1 and W 6= Ŵ2

}
,

E2 =
{
W ∈ {Ŵ1, Ŵ2} and Ŵ 6= W

}
.

Thus, the probability of error is

P (n)
e = P(E1) + P(E2).

By symmetry, we assume without loss of generality thatW = 1 is sent. For brevity,

we do not explicitly condition on the event {W = 1} in probability expressions in

the following, whenever it is clear from the context. Referring to Fig. 4.3, let

A23 =
{
yλn : ||xλn(1)− yλn|| ≥ ||xλn(2)− yλn||

and ||xλn(1)− yλn|| ≥ ||xλn(3)− yλn||
}
,

we have

P(E1) = P{Y λn ∈ A23}
≤ Q(d1)

(a)

≤ 1

2
exp

(

− λnP

2

)

,

where (a) follows since Q(x) ≤ (1/2) exp(−x2/2) for x ≥ 0 (see [WJ65, Problem

2.26]).
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1

2 3

A12 A13

A23

d1

Figure 4.3: The error event E1 when W = 1. Here d1 =
√
λnP and 1, 2, and 3

denote xλn(1), xλn(2), and xλn(3), respectively.

1

2 3

d2

(a)

ŵ1 ŵ2

d3

(b)

Figure 4.4: The error event E2. Here d2 =
√
3λnP and d3 =

√

4(1− λ)nP .

On the other hand, P(E2) is determined by the distance between the simplex

signaling in stage 1 and the distance between the antipodal signaling in stage 2

(see Fig. 4.4). In particular,

||Xn(Ŵ1)−Xn(Ŵ2)|| =
√

d22 + d23 =
√

(4− λ)nP .

Thus,

P(E2) = Q

( ||Xn(Ŵ1)−Xn(Ŵ2)||
2

)

= Q

(
√
(

1− λ

4

)

nP

)

≤ 1

2
exp

(

− 1

2

(

1− λ

4

)

nP

)

.
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Therefore, the error exponent of the two-stage feedback coding scheme is lower

bounded as

E ′3(0) = lim sup
n→∞

−1

n
lnP (n)

e

= lim sup
n→∞

−1

n
max{lnP(E1), lnP(E2)}

≥ min

{
λP

2
,
P

2

(

1− λ

4

)}

.

Now let λ = 4/5. Then it can be readily verified that both terms in the

minimum are the same and we have

E3(0) ≥ E ′3(0) ≥
2P

5
.

Remark 4.1. Since E3(0) = P/2, this two-stage noise-free feedback coding scheme

is strictly suboptimal.

Remark 4.2. We need only three transmissions: two for stage 1 and one for

stage 2. Thus λ actually divides only the total energy nP , not the block length n.

4.2.2 Coding Scheme and Performance Analysis

Based on the two-stage noise-free feedback coding scheme in the previous

subsection and a new idea of signal protection introduced by Burnashev and Ya-

mamoto [BY08a], [BY08b], we present a two-stage noisy feedback coding scheme

for M = 3. The coding scheme for an arbitrary M is given in the Appendix.

In the two-stage noise-free feedback coding scheme, the encoder and decoder

agree on the same set of message estimates ŵ1 and ŵ2 at the end of stage 1. When

there is noise in the feedback link, however, this coordination is not always possible.

To solve this problem, we assign a signal protection region Bw, w ∈ [1 : 3], to each

signal xλn(w) as depicted in Fig. 4.5. Let xλn and yλn denote the transmitted

and received signals, respectively, and ỹλn denote the feedback sequence at the

encoder. Let d′ = ||xλn(1) − xλn(2)|| =
√
3λnP and the signal protection region
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Bw for xλn(w), w ∈ [1 : 3], is defined as

Bw =
{
yλn : ||xλn(w)− yλn|| ≤ ||xλn(w′)− yλn||

for w′ 6= w,
∣
∣||xλn(w′)− yλn|| − ||xλn(w′′)− yλn||

∣
∣ ≤ td′

for w′, w′′ 6= w
}

(4.6)

which means that message w is the most probable and the other messages w′ and

w′′ are of approximately equal posterior probabilities. Here t ∈ [0, (
√
3− 1)/2] is a

fixed parameter which will be optimized later in the analysis.

Encoding. In stage 1, the encoder uses the same simplex signaling as in the

noise-free feedback case (see (4.4)). Then based on the noisy feedback ỹλn, the

encoder chooses w̃1 and w̃2 such that

||xλn(ŵ1)− ỹλn|| ≤ ||xλn(ŵ2)− ỹλn|| ≤ ||xλn(ŵ3)− ỹλn||,

In stage 2, the encoder uses antipodal signaling for w if w ∈ {w̃1, w̃2} and transmits

all-zero sequence otherwise.

Decoding. The decoder makes a decision immediately at the end of stage 1 if

the received signal lies in one of the signal protection regions, i.e., yλn ∈ Bw for

w ∈ [1 : 3]. Otherwise, it chooses the two most probable message estimates ŵ1 and

ŵ2 and wait for the transmission in stage 2. At the end of stage 2, the decoder

declares that ŵ is sent if

ŵ = arg min
w∈{ŵ1,ŵ2}

||xn(w)− yn||

= arg min
w∈{ŵ1,ŵ2}

(
||xλn(w)− yλn||2 + ||xn

λn+1(w)− ynλn+1||2
)1/2

.

Remark 4.3. The signal protection region corresponds to the case in which the

two least probable messages are of approximately equal posterior probabilities, i.e.,

||xλn(w)− yλn|| ≪ ||xλn(w′)− yλn|| ≈ ||xλn(w′′)− yλn||.

Analysis of the probability of error. Let (W̃1, W̃2) and (Ŵ1, Ŵ2) denote the

pairs of the two most probable message estimates at the encoder and the decoder,
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A′12 A′13

A′23

B1

B2 B3

1

2 3

d1

d4

d′

Figure 4.5: Signal protection regions. The shaded areas Bw for w = 1, 2, 3 are

the signal protection regions for xλn(1), xλn(2), and xλn(3), respectively. Here

d4 = sd1/2 = (s/2)
√
λnP for some parameter s = s(t) ∈ [0, 1] to be optimized

later.

respectively. As before, we assume that W = 1 is sent. Referring to Fig. 4.5, let

A′ww′ = Aww′\(∪w′′Bw′′), w, w′ ∈ [1 : 3]

where

Aww′ = {yλn : max{||yλn − xλn(w)||, ||yλn − xλn(w′)||}
≤ ||yλn − xλn(w′′)||, w′′ 6= w,w′}.

The decoder makes an error only if one or more of the following events

occur:

• decoding error at the end of stage 1

E1 =
{
Y λn ∈ B2 ∪B3 ∪A′23

}
,

• miscoordination due to the feedback noise

Ẽ12 =
{
Y λn ∈ A′12, Ỹ

λn ∈ A13 ∪ A23

}
,

Ẽ13 =
{
Y λn ∈ A′13, Ỹ

λn ∈ A12 ∪ A23

}
,
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• decoding error at the end of stage 2

E2 =
{
W ∈ {Ŵ1, Ŵ2} = {W̃1, W̃2} and Ŵ 6= W

}
.

Thus, the probability of error is upper bounded as

P (n)
e ≤ P(E1) + P(Ẽ12) + P(Ẽ13) + P(E2)

= P(E1) + 2P(Ẽ12) + P(E2).

To simplify the analysis, we introduce a new parameter s ∈ [0, 1] such that d4 =

sd1/2 = (s/2)
√
λnP . It can be easily checked that s ∈ [0, 1] corresponds to

t ∈ [0, (
√
3− 1)/2] and that this constraint guarantees that

d5 = min
yλn∈A′

23∪B2∪B3

||xλn(1)− yλn|| (see Fig. 4.6(a)).

Hence, for the first term

P(E1) = P
{
Y λn ∈ A′23 ∪ B2 ∪ B3

}

≤ 2Q(d5) (4.7)

≤ exp

(

− λnP

8
(s2 − 2s+ 4)

)

.

The second term P(Ẽ12) can be upper bounded (see Fig. 4.6(b)) as

P(Ẽ12) = P
{
Y λn ∈ A′12, Ỹ

λn ∈ A13 ∪ A23

}

≤ P
{
Ỹ λn ∈ A13 ∪ A23|Y λn ∈ A′12

}

≤ 2Q

(
d6√
α

)

(4.8)

≤ exp

(

− 3s2λnP

32α

)

.

Finally, the third term P(E2) can be upper bounded in the exactly same manner

as in the noise-free feedback case:

P(E2) ≤
1

2
exp

(

− 1

2

(

1− λ

4

)

nP

)

.

Therefore, the error exponent of the two-stage noisy feedback coding scheme is

lower bounded as

E ′3(α) = lim sup
n→∞

−1

n
lnP (n)

e
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≥ lim sup
n→∞

−1

n
max{lnP(E1), lnP(Ẽ12), lnP(E2)}

≥ min

{
λP

8
(s2 − 2s+ 4),

3λs2P

32α
,
P

2

(

1− 1

4
λ

)}

.

A′12 A′13

A′23

B1

B2 B3

1

2 3

d1

d4

d5

(a)

A′12 A13

A23

1

2 3

d4

d6

(b)

Figure 4.6: (a) The error event E1 when W = 1. Since 0 ≤ s ≤ 1, we have

d5 =
√

d21 + d24 − d1d4 =
√

(λnP/4)(s2 − 2s+ 4). (b) The error event Ẽ12 when

W = 1 and {W̃1, W̃2} = {1, 3}. Here d6 = (
√
3/2)d4 = s

√

(3λnP/16).
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Now let

α = α∗(s) =
3s2

4(s2 − 2s+ 4)

and

λ = λ∗(s) =
4

s2 − 2s+ 5
.

Then it can be readily verified that all the three terms in the minimum are the

same and we have

E ′3(α
∗(s)) ≥ P

2

s2 − 2s+ 4

s2 − 2s+ 5
=: φ(s). (4.9)

Note that if s < 1,

φ(s) >
3

8
P = E3(∞),

and α∗(s) is monotonically increasing over s ∈ [0, 1]. Thus

E3(α) > E3(∞) for α < α∗(1) =
1

4
.

This completes the proof of Theorem 1 for the M = 3 case.

Remark 4.4. It can be easily checked that the lower bound in (4.9) is tight and

characterizes the exact error exponent E ′3(α) of the two-stage noisy feedback coding

scheme.

4.3 Linear Noisy Feedback Coding Scheme

4.3.1 Background

It is instructive to revisit (a slightly simplified version of) the linear noise-

free feedback coding scheme by Pinsker [Pin68], which shows that EM (0) ≥ E2(∞)

= P/2 for all M ≥ 2. This lower bound is tight since E2(0) = E2(∞) [SWWZ69]

and EM(0) is nonincreasing in M .

Encoding. To send message w ∈ [1 : M ], the encoder transmits

X1(w) =







L+1−w
L

√
P if M = 2L+ 1,

L+1/2−w
L

√
P if M = 2L.

(4.10)
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Because of the feedback Y1, the encoder can learn the noise Z1 = Y1 −X1. Subse-

quently it transmits

Xi = (1 + δ)Zi−1, i ∈ [2 : η],

and Xi = 0 afterwards, where δ > 0 will be optimized later and the random time

η = η(w,Zn) is the largest k ≤ n̄ =
√
n such that

k∑

i=1

X2
i ≤ nP.

Decoding. Upon receiving Y n, the decoder estimates X1 by

X̂1 =
n̄∑

i=1

(−1)i−1
Yi

(1 + δ)i−1

and declares that ŵ is sent if

ŵ = arg min
w∈[1:M ]

|X1(w)− X̂1|.

Remark 4.5. It can be easily checked that each time i ∈ [2 : η], the encoder

transmits the error

i−1∑

j=1

(−1)j−1
Yj

(1 + δ)j−1
−X1 = (−1)i−2

Zi−1
(1 + δ)i−2

in the decoder’s current estimate of the initial transmission (up to scaling). Thus,

Pinsker’s coding scheme is another instance of iterative refinement used in the

Schalkwijk-Kailath coding scheme [SK66] for the Gaussian channel and the Horstein

coding scheme [Hor63] for the binary symmetric channel.

Analysis of the probability of error. For simplicity of notation, assume

throughout that n̄ =
√
n is an integer. We use ǫn to denote a generic sequence of

nonnegative numbers that tends to zero as n → ∞. When there are multiple such

functions ǫ
(1)
n , ǫ

(2)
n , · · · , ǫ(k)n , we denote them all by ǫn with the understanding that

ǫn = max{ǫ(1)n , ǫ
(2)
n , · · · , ǫ(k)n }. It is easy to see that decoding error occurs only if

|X1(w)− X̂1| >
√
P/(2L). The probability of error is thus upper bounded as

P (n)
e = P{W 6= Ŵ} ≤ P

{

|X1 − X̂1| >
√
P

2L

}

.
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The key idea in the analysis is to introduce a “virtual” transmission

X ′i =







X1 if i = 1,

(1 + δ)Zi−1 if i ∈ [2 : n̄],

0 otherwise.

(4.11)

Let

Y ′i = X ′i + Zi (4.12)

and define the estimate X̂ ′1 of X ′1 as

X̂ ′1 =

n̄∑

i=1

(−1)i−1
Y ′i

(1 + δ)i−1
. (4.13)

Then, it can be easily shown that

X̂ ′1 = X1 + (−1)n̄−1
Zn̄

(1 + δ)n̄−1
.

Thus we have

P

{

|X1 − X̂1| >
√
P

2L

}

≤ P

{

|X1 − X̂ ′1|+ |X̂ ′1 − X̂1| >
√
P

2L

}

≤ P

{

|X1 − X̂ ′1| >
√
P

2L

}

+ P{|X̂ ′1 − X̂1| > 0}

=: P1 + P2.

Now we upper bound the two terms. For the first term, we have

P1 = P

{∣
∣
∣
∣

Zn̄

(1 + δ)n̄−1

∣
∣
∣
∣
>

√
P

2L

}

= 2Q

(√
P (1 + δ)n̄−1

2L

)

≤ exp

(

− P (1 + δ)2(n̄−1)

8L2

)

.
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For the second term, note that Xi = X ′i for all i ∈ [1 : n] if and only if
∑n̄

i=1X
2
i ≤

nP (i.e., n̄ = η), and thus that X̂ ′1 6= X̂1 only if
∑n̄

i=1X
2
i > nP . Therefore,

P2 ≤ P

{ n̄∑

i=1

X2
i > nP

}

(a)

≤ P

{ n̄∑

i=2

(1 + δ)2Z2
i−1 > (n− 1)P

}

= P

{

χ2
n̄−1 >

(n− 1)P

(1 + δ)2

}

,

where (a) follows since X2
1 ≤ P (recall (4.10)) and χ2

n̄−1 denotes a chi-square ran-

dom variable with n̄−1 degrees of freedom. By upper bounding the tail probability

of the chi-square random variable [IL06] as

P{χ2
k > x} ≤ exp

(

− x

2
+

k

2
log

ex

k

)

for any k ≥ 1 and x ≥ k, (4.14)

we have

P2 ≤ P

{

χ2
n̄−1 >

(n− 1)P

(1 + δ)2

}

≤ exp

(

− 1

2

(n− 1)P

(1 + δ)2
+

n̄− 1

2
log

e(n− 1)P

(n̄− 1)(1 + δ)2

)

≤ exp

(

− 1

2

(n− 1)P

(1 + δ)2
+

n̄− 1

2
log

e(n− 1)P

(n̄− 1)

)

≤ exp

(

− 1

2

nP

(1 + δ)2
+ nǫn

)

,

where ǫn tends to zero as n → ∞. Therefore, the error exponent of the linear

feedback coding scheme is lower bounded as

E ′′M(0) ≥ lim sup
n→∞

−1

n
lnP (n)

e

= lim sup
n→∞

−1

n
max{lnP1, lnP2}

≥ lim sup
n→∞

min

{
P (1 + δ)2(n̄−1)

8nL2
,

P

2(1 + δ)2

}

.

for any δ > 0. Now let

δ = δ(n) =
ln(4nL2)

2n̄
,
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which tends to zero as n → ∞. Then the limits of both terms in the minimum are

the same. Therefore,

E ′′M(0) ≥ lim sup
n→∞

P

2(1 + δ(n))2
=

P

2
,

which completes the proof of achievability.

4.3.2 Coding Scheme and Performance Analysis

Now we formally describe and analyze a linear noisy feedback coding scheme

based on Pinsker’s noise-free feedback coding scheme.

Encoding. Fix some λ ∈ (0, 1). To send message w ∈ [1 : M ], the encoder

transmits

X1(w) =







L+1−w
L

√
λnP if M = 2L+ 1,

L+1/2−w
L

√
λnP if M = 2L.

(4.15)

Because of the noisy feedback Ỹ1, the encoder can learn Z1 + Z̃1 = Ỹ1 − X1.

Subsequently it transmits

Xi = (1 + δ)(Zi−1 + Z̃i−1), i ∈ [2 : η],

where δ > 0 will be optimized later and the random time η = η(w,Zn, Z̃n) is the

largest k ≤ n̄ =
√
n such that

k∑

i=1

X2
i ≤ nP.

Decoding. Upon receiving Y n, the decoder estimates X1 by

X̂1 =
n̄∑

i=1

(−1)i−1
Yi

(1 + δ)i−1

and declares that ŵ is sent if

ŵ = arg min
w∈[1:M ]

|X1(w)− X̂1|.
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Remark 4.6. The main difference between this noisy feedback coding scheme and

Pinsker’s noise-free feedback coding scheme in the previous subsection is that we let

the power of the initial transmission grow linearly with the block length n (exploiting

the peak energy constraint in (4.1)) and thus that the initial transmission contains

much more information about the message than in Pinsker’s scheme. This makes

the coding scheme more robust to combat the noise in the feedback link.

Analysis of the probability of error. As before we assume that n̄ =
√
n is an

integer. Let

X ′i =







X1 if i = 1,

(1 + δ)(Zi−1 + Z̃i−1) if i ∈ [2 : n̄],

0 otherwise,

(4.16)

and let Y ′i and X̂ ′1 be defined as in (4.12) and (4.13). Then, it can be easily shown

that

X̂ ′1 = X1 + (−1)n̄−1
Zn̄

(1 + δ)n̄−1
+

n̄−1∑

i=1

(−1)i
Z̃i

(1 + δ)i−1
.

Thus we have

P (n)
e = P{W 6= Ŵ}

≤ P

{

|X1 − X̂1| >
√
λnP

2L

}

≤ P

{

|X1 − X̂ ′1|+ |X̂ ′1 − X̂1| >
√
λnP

2L

}

≤ P

{

|X1 − X̂ ′1| >
√
λnP

2L

}

+ P{|X̂ ′1 − X̂1| > 0}

=: P1 + P2.

Now we upper bound the two terms. For the first term we have

P1 = P

{∣
∣
∣
∣
(−1)n̄−1

Zn̄

(1 + δ)n̄−1
+

n̄−1∑

i=1

(−1)i
Z̃i

(1 + δ)i−1

∣
∣
∣
∣
>

√
λnP

2L

}

= 2Q

(√

λnP/N

2L

)

≤ exp

(

− λnP

8L2N

)

,
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where

N =

n̄−1∑

i=1

α

(1 + δ)2(i−1)
+

1

(1 + δ)2(n̄−1)

=

α

(

1− 1
(1+δ)2(n̄−2)

)

1− 1
(1+δ)2

+
1

(1 + δ)2(n̄−1)

≤ α(1 + δ)2

(1 + δ)2 − 1
+ ǫn,

where ǫn tends to zero as n → ∞. Thus

P1 ≤ exp

(

− λnP

8L2

(
α(1 + δ)2

(1 + δ)2 − 1
+ ǫn

)−1)

. (4.17)

For the second term, we have

P2 ≤ P

{ n̄∑

i=1

X2
i > nP

}

(a)

≤ P

{ n̄∑

i=2

(1 + δ)2(Zi−1 + Z̃i−1)
2 > (1− λ)nP

}

= P

{

χ2
n̄−1 >

(1− λ)nP

(1 + δ)2(1 + α)

}

,

where (a) follows since X1 ≤ λnP (recall (4.15)). By (4.14), we have

P2 ≤ P

{

χ2
n̄−1 >

(1− λ)nP

(1 + δ)2(1 + α)

}

≤ exp

(

− 1

2

(1− λ)nP

(1 + δ)2(1 + α)

+
n̄− 1

2
log

e(1− λ)nP

(n̄− 1)(1 + δ)2(1 + α)

)

≤ exp

(

− 1

2

(1− λ)nP

(1 + δ)2(1 + α)
+ nǫn

)

, (4.18)

where ǫn tends to zero as n → ∞. Therefore, the error exponent of the linear noisy

feedback coding scheme is lower bounded as

E ′′M (α) = lim sup
n→∞

−1

n
lnP (n)

e

= lim sup
n→∞

−1

n
max{lnP1, lnP2}

≥ min

{
λP

8L2α

(1 + δ)2 − 1

(1 + δ)2
,

(1− λ)P

2(1 + δ)2(1 + α)

}

.
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Now let

δ = δ(α) =

(

1 +

√

4L2α

1 + α

)1/2

− 1

and

λ = λ(α) =

(

1 +

√

1 + α

4L2α

)−1
.

Then it can be readily verified that both terms in the minimum are the same and

we have

E ′′M(α) ≥ P

2

1

1 + α + 4(⌊M/2⌋)2α + 4(⌊M/2⌋)
√

α(1 + α)
,

which completes the proof of Theorem 2.

4.4 Discussion

When α is very small, the linear feedback coding scheme (which is opti-

mal for noise-free feedback) outperforms the two-stage (nonlinear) feedback cod-

ing scheme. When α is relatively large, however, linear feedback coding scheme

amplifies the feedback noise, while the two-stage scheme achieves a more robust

performance via signal protection. While this dichotomy agrees with the usual

engineering intuition, it would be aesthetically more pleasing if a single feedback

coding scheme performs uniformly better over all ranges of α, and the search for

such a coding scheme invites further investigation. We finally note that α∗ = 1/4

is the threshold for all M in the two-stage noisy feedback coding scheme (see the

Appendix). In both schemes, the error exponents are strictly larger than those

for the no feedback case only when α is sufficiently small. Thus it is natural to

ask whether the noisy feedback is useful for all α or there exists a fundamental

threshold beyond which noisy feedback becomes useless.

Following Yamamoto and Burnashev’s work [BY10] on noisy feedback com-

munication over the binary symmetric channel at positive rates, we can extend

our result to a positive rate, i.e., M = enR with R > 0. Let E(R;α) denote the

maximum error exponent, namely, the reliability function. Although the E(R;∞)
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is not known for all R ∈ [0, C] (see, e.g., [ABL00]), Shannon [Sha59] showed that

E(0+;∞) := lim
R→0

E(R;∞) =
P

4
.

We can easily adapt the analysis of our two-stage noisy feedback coding scheme in

the Appendix to show that

lim
α→0

E(0+;α) =
2

7
P > E(0+;∞).

Moreover, we have the following.

Proposition 4.1.

E(R;α) > E(R;∞) for R <
P

24
and α < α(s),

where s ∈ [0, 1] is the root of (s− 1)2 = 24R/P .

Thus, the best error exponent can be strictly larger than the one without

feedback if the rate and the feedback noise power are sufficiently small.

Finally, we note that our discussion has been limited to the peak energy

constraint (4.1). In some practical systems, however, it would be more relevant to

consider peak power constraints

P
{
x2
i (w, Ỹ

i−1) ≤ P
}
= 1 for all w and i,

or

E[x2
i (w, Ỹ

i−1)] ≤ P for all w and i.

It remains to be seen whether noisy feedback still improves the reliability under

these more stringent conditions.

4.5 Technical Proofs

4.5.1 Proof of Theorem 1 for the General Case

Encoding. In stage 1, the encoder uses the simplex signaling for an M-ary mes-

sage:

xλn(w) = A

(

ew − 1

M

M∑

w=1

ew

)

for w ∈ [1 : M ],
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where A =
√

MλnP/(M − 1) and

ew = (0, · · · , 0
︸ ︷︷ ︸

w−1

, 1, 0, · · · , 0).

Then based on the noisy feedback ỹλn, the encoder chooses the two most probable

message estimates w̃1 and w̃2 among M candidates. In stage 2, the encoder uses

antipodal signaling for w if w ∈ {w̃1, w̃2} and transmits all-zero sequence otherwise.

Decoding. The signal protection region for the M-ary message is defined as in

(4.6) (with w, w′, w′′∈ [1 : M ]). The decoder makes a decision immediately at the

end of stage 1 if the received signal yλn lies in one of the signal protection regions.

Otherwise, it chooses the two most probable message estimates ŵ1 and ŵ2, and

wait for the transmission in stage 2. At the end of stage 2, the decoder declares

that ŵ is sent if

ŵ = arg min
w∈{ŵ1,ŵ2}

(
||xλn(w)− yλn||2 + ||xn

λn+1(w)− ynλn+1||2
)1/2

.

Analysis of the probability of error. Let (W̃1, W̃2) and (Ŵ1, Ŵ2) denote the

pairs of the two most probable message estimates at the encoder and the decoder,

respectively. The decoder makes an error only if one or more of the following events

occur:

• decoding error at the end of stage 1

E1 =
{
Y λn ∈ ∪w 6=1Bw ∪ (∪w,w′ 6=1A

′
ww′)

}
,

• miscoordination due to the feedback noise

Ẽ1w =
{
Y λn ∈ A′1w and Ỹ λn ∈ ∪{w′,w′′}6={1,w}Aw′w′′

}
,

• decoding error at the end of stage 2

E2 =
{
W ∈ {Ŵ1, Ŵ2} = {W̃1, W̃2} and Ŵ 6= W

}
.

Thus, the probability of error is upper bounded as

P (n)
e ≤ P(E1) +M P(Ẽ1w) + P(E2).
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As before, we assume that W = 1 was sent. For the first term, by the union

of events bound,

P(E1) = P
{
Y λn ∈ ∪w 6=1Bw ∪ (∪w,w′ 6=1A

′
ww′)

}

≤ M2
P
{
Y λn ∈ B2 ∪A′23

}
.

For P(Ẽ1w), again by the union of events bound,

P(Ẽ1w) = P
{
Y λn ∈ A′1w and Ỹ λn ∈ ∪{w′,w′′}6={1,w}Aw′w′′

}

≤ M2
P
{
Y λn ∈ A′1w and Ỹ λn ∈ Aw′w′′

}
.

We use d′j, j ∈ [1 : 6], to denote the distances corresponding to dj in the M = 3

case (see Fig. 4.6). It can be easily checked that d′j = dj
√

3(M − 1)/(2M). Thus

by replacing d5 by d′5 in (4.7) and d6 by d′6 in (4.8), we have

P(E1) ≤ M2Q(d′5)

≤ M2

2
exp

(

− M

12(M − 1)
λnP (s2 − 2s+ 4)

)

and

P(Ẽ12) ≤ M2Q

(
d′6√
α

)

≤ M2

2
exp

(

− s2M

16(M − 1)α
λnP

)

.

The third term P(E2) can be upper bounded in the same manner as for the M = 3

case,

P(E2) = Q

(

−
√
(

1− M − 2

2(M − 1)
λ

)

nP

)

≤ 1

2
exp

(

− nP

2

(

1− M − 2

2(M − 1)
λ

))

.

Therefore,

E ′M(α) = lim sup
n→∞

−1

n
lnP (n)

e

≥ lim sup
n→∞

−1

n
max{lnP(E1), ln

(
M P(Ẽ12)

)
, lnP(E2)}

≥ min

{
λMP

12(M − 1)
(s2 − 2s+ 4),

s2λMP

16(M − 1)α
,

P

2

(

1− M − 2

2(M − 1)
λ

)}

.
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Now let

α = α∗(s) =
3s2

4(s2 − 2s+ 4)

and

λ = λ∗(s) =

(
M

6(M − 1)
(s2 − 2s+ 4) +

M − 2

2(M − 1)

)−1
.

Then it can be readily verified that all the three terms in the minimum are the

same and we have

E ′M(α∗(s)) ≥ P

2

(

1− 3(M − 2)

M(s2 − 2s+ 4) + 3(M − 2)

)

=: φ(s).

Note that if s < 1,

φ(s) >
M

4(M − 1)
P = EM(∞),

and α∗(s) is monotonically increasing over s ∈ [0, 1]. Thus

E ′M(α) > EM(∞) for α < α∗(1) =
1

4
.

This completes the proof of Theorem 1 for the general case.

Remark 4.7. Note that E ′M(α) is decreasing in M , while α∗(s) is still independent

of M .

4.5.2 Proof of Proposition 4.1

Following the analysis in the Appendix from the chapter and replacing M

with enR, the error exponent of the two-stage feedback coding scheme is lower

bounded as

E ′(R;α) ≥ min

{

−2R +
λP

12
(s2 − 2s+ 4), −3R +

s2λP

16α
,
P

2

(

1− λ

2

)}

.

Now let

α = α∗(s, R) =
3s2(P + 4R)

4((s2 − 2s+ 4)P + 6(s2 − 2s+ 5)R)

and

λ = λ∗(s, R) =
6(P + 4R)

P (s2 − 2s+ 7)
.
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Then it can be readily verified that all the three terms in the minimum are the

same and we have

E(R′;α∗(s, R)) ≥ s2 − 2s+ 4

2(s2 − 2s+ 7)
P − 6R

s2 − 2s+ 7
.

Thus

E ′(0+; 0) =
2

7
P >

1

4
P = E(0+;∞).

Moreover, we have

E(R′;α) > E(0+;∞) ≥ E(R;∞) for
(s− 1)2

R
>

24

P
.

Note that α∗(s, R) is monotonically increasing over s ∈ [0, 1] for fixed R. We have,

E(R′;α) > E(R;∞) for R <
P

24
and α < α(s0),

where s0 ∈ [0, 1] is the root of (s− 1)2 = 24R/P .

Chapter 4, in part, includes the material in Yu Xiang and Young-Han Kim,

“On the AWGN channel with noisy feedback and peak energy constraint,” IEEE

International Symposium on Information Theory, pp. 256–259, Austin, TX, June

2010, and Yu Xiang and Young-Han Kim, “Gaussian channel with noisy feedback

and peak energy constraint,” IEEE Transaction on Information Theory, vol.59,

no.8, pp.4746–4756, August 2013. The dissertation author was the primary inves-

tigator and author of this paper.



Chapter 5

Interactive Relaying over

Networks

In this chapter, we studies the problem of broadcasting a common mes-

sage over a relay network as the canonical platform to investigate the utilities

and limitations of traditional relay coding schemes. For a few special classes of

networks, such as the 3-node relay channel and the 4-node diamond network, the

decode–forward coding scheme by Cover and El Gamal, and its generalization

to networks by Xie and Kumar, and Kramer, Gastpar, and Gupta achieve the

cutset bound, establishing the capacity. When the network has cycles, however,

decode–forward is suboptimal in general and is outperformed by partial decode–

forward, compress–forward, or more generally, interactive relaying built upon these

∗–forward coding schemes. In particular, it is demonstrated via a simple example

that a coding scheme based on interactive computing by Orlitsky and Roche, and

its infinite-round generalization by Ma and Ishwar can strictly outperform existing

noninteractive or finite-round interactive coding schemes. Roughly speaking, when

the network is to be flooded with information, it is more efficient for the relays to

spray tiny droplets of the information back and forth than to splash a huge amount

at a time.
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5.1 Introduction

Consider the discrete memoryless network (DMN) model (X1×X2×· · ·×XN ,

p(yN |xN ), Y1 × Y2 × · · · × YN) that consists of N sender-receiver alphabet pairs

(Xk,Yk), k ∈ [1 : N ] := {1, 2 . . . , N}, and a collection of channel conditional pmfs

(probability mass functions) p(yN |xN ) := p(y1, y2, . . . , yN |x1, x2, . . . , xN). Suppose

that source node 1 wishes to communicate a common message M to the rest

of the network, as depicted in Figure 5.1. Compared to the unicast (one node

wishes to recover M) or multicast (some nodes wishes to recover M), this problem

is relatively simpler since every node in the network has the symmetric goal of

recovering the same message.

p(y1, . . . , yN |x1, . . . , xN )M

M̂j

M̂k

M̂N

M̂3

M̂2

1

2

3

j

k

N

Figure 5.1: Common message broadcasting over a noisy network.

When the nodes in the network cannot adapt their transmissions based

on its received sequence (that is, no relaying or feedback is allowed), then the

problem reduces to common message communication over a broadcast channel

and the capacity is

CBC = max
p(x1),x2,...,xN

min
k∈[2:N ]

I(X1; Yk).

Now suppose that each node in the network can adapt its transmission

based on the received sequence (that is, relaying is allowed) and thus help other

nodes recover the message as well. Despite its relative simplicity, this problem still

captures the essential richness of relaying over networks. This chapter attempts to

demonstrate the inherent complexity in relaying by studying the information flow



78

questions on broadcasting:

• What is the capacity?

• What is the optimal relaying coding scheme that achieves the capacity?

We are now ready to define the common-message broadcasting problem

formally. A (2nR, n) broadcast code for the DMN p(yN |xN) consists of

• a message set [1 : 2nR],

• a source encoder that assigns a symbol x1i(m, yi−11 ) to each message m ∈ [1 :

2nR] and received sequence yi−11 for i ∈ [1 : n],

• a set of relay encoders, where encoder k ∈ [2 : N ] assigns a symbol xki(y
i−1
k )

to every received sequence yi−1k for i ∈ [1 : n], and

• a set of decoders, where decoder k ∈ [2 : N ] assigns m̂k to each ynk .

We assume that the message M is uniformly distributed over the message

set. The average probability of error is defined as P
(n)
e = P{M̂k 6= M for some k ∈

[2 : N ]}. A rate R is said to be achievable if there exists a sequence of (2nR, n)

broadcast codes such that limn→∞ P
(n)
e = 0. The broadcast capacity of the DMN

is the supremum of all achievable rates.

El Gamal [EG81] established the cutset upper bound on the capacity:

C ≤ max
p(xN )

min
k∈[2:N ]

min
S: 1∈S, k∈Sc

I(X(S); Y (Sc) | X(Sc)). (5.1)

Xie and Kumar [XK05] and Kramer, Gastpar, and Gupta [KGG05] generalized the

decode–forward coding scheme by Cover and El Gamal [CEG79] and established

the network decode–forward lower bound on the capacity:

C ≥ max
p(xN )

min
k∈[1:N−1]

I(Xk; Yk+1|XN
k+1). (5.2)

These two bounds coincide and establish the broadcast capacity when the network

is degraded, i.e.,

p(yNk+2|xN , yk+1) = p(yNk+2|xN
k+1, yk+1) (5.3)
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for k ∈ [1 : N − 2] (up to relabeling of nodes).

In the following section, we discuss two other special cases—3-node relay

channels and layered networks—for which the decode–forward lower bound is tight.

Decode–forward, however, is suboptimal for general networks. We demonstrate

gradually through simple examples that optimal relaying can be more sophisti-

cated than simple decode–forward and require partial decode–forward, compress–

forward, or interactive relaying built upon these ∗–forward coding schemes. Our

discussion will culminate with the binary broadcast relay channel example for

which not only interactive communication between relays strictly outperforms the

existing noninteractive coding schemes, but also the number of communication

rounds needs to go to infinity to fully enjoy the benefit of interaction.

5.2 Formulation and Existing Schemes

5.2.1 Decode–Forward

It is already mentioned that the decode–forward coding scheme is optimal

when the network is degraded; see (5.3). Another case in which decode–forward is

natural is when the network is acyclic, i.e.,

p(yN |xN) =
N∏

k=1

p(yk|xk, yk−1)

(up to relabeling of nodes). For this case, node k does not receive any signal from

its downstream (nodes j ∈ [k + 1 : N ]). Thus it is natural to decode its received

signal at once and forward the recovered message downstream. In the following,

we revisit a few special classes of acyclic networks for which this decode–forward

coding scheme is optimal.

We first consider the relay channel p(y2, y3|x1, x2) [vdM71, CEG79] depicted

in Figure 5.2. It is well known that decode–forward is optimal and the capacity is

C = max
p(x1,x2)

min
{
I(X1; Y2|X2), I(X1, X2; Y3)

}
.
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1

2

3

M̂2

M̂3M

Figure 5.2: Relay channel.

Consider the diamond network p(y2, y3|x1)p(y4|x2, x3) [SG00] depicted in

Figure 5.3. Again, decode–forward is optimal and the capacity is

C = max
p(x1)p(x2,x3)

min
{
I(X1; Y2), I(X1, Y3), I(X2, X3; Y4)

}
.

To prove the converse, simplify the cutset bound in (5.1) as

C ≤ max
p(x3)

min
{
I(X1, X3; Y2|X2), I(X1, X2; Y3|X3),

I(X1, X2, X3; Y4)
}

(a)

≤ max
p(x3)

min
{
I(X1; Y2), I(X1; Y3), I(X2, X3; Y4)

}

(b)
= max

p(x1)p(x2,x3)
min

{
I(X1; Y2), I(X1; Y3), I(X2, X3; Y4)

}
,

where (a) follows since (X2, X3) → X1 → Y2, (X2, X3) → X1 → Y3, and X1 →
(X2, X3) → Y4, respectively, form Markov chains, and (b) follows since the mutual

information terms I(X1; Y2), I(X1; Y3), and I(X2, X3; Y4) depend on the channel

input pmf p(x1, x2, x3) only through the marginals p(x1) and p(x2, x3). The achiev-

1
M

2
M̂2

3 M̂3

4
M̂4

Figure 5.3: Diamond network.
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ability follows by simplifying the decode-forward lower bound in (5.2) as

C ≥ max
p(x3)

min
{
I(X1; Y2|X2, X3), I(X1, X2; Y3|X3),

I(X1, X2, X3; Y4)
}

(a)

≥ max
p(x1)p(x2,x3)

min{I(X1; Y2|X2, X3), I(X1; Y3|X3),

I(X2, X3; Y4)}
(b)

≥ max
p(x1)p(x2,x3)

min
{
I(X1; Y2), I(X1; Y3), I(X2, X3; Y4)

}
,

where (a) follows since the maximum is over a smaller set and (b) follows since X1

is independent of (X2, X3).

This result can be easily generalized to layered network

p(yN |xN) =

λ∏

l=1

p(y(Ll)|x(Ll−1))

depicted in Figure 5.4, where the layers of nodes L0 = {1} and Lj, j ∈ [1 : λ]

partition the network, i.e.,

L0 ⊎ L1 ⊎ · · · ⊎ Lλ = [1 : N ].

The capacity of the layered network is

C = max∏λ
l=1 p(x(Ll−1))

min
l∈[1:λ]

min
j∈Ll

I(X(Ll−1); Yj).

1
M

L0 L1 Lλ

Figure 5.4: Layered network.
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1
M

2
M̂2

3 M̂3

4
M̂4

Figure 5.5: Diamond network with direct link.

Now we consider the variant of the diamond network depicted in Figure 5.5,

which is defined as

p(y2, y3, y4|x1, x2, x3) = p(y2, y3|x1)p(y4|x1, x2, x3).

For this case, the cutset bound simplifies to

C ≤ max
p(x3)

min
{
I(X1; Y2|X2), I(X1; Y3|X3),

I(X1, X2, X3; Y4), I(X1; Y2, Y3|X2, X3)
}
,

while the decode–forward lower bound simplifies to

C ≥ max
p(x3)

min
{
I(X1; Y2|X2, X3), I(X1; Y3|X3),

I(X1, X2, X3; Y4)
}
.

Thus, it is not known whether decode–forward is optimal for acyclic networks in

general, even though it seems to be the only reasonable coding scheme when there

is no cycle in the information flow.

5.2.2 Partial Decode–Forward

In general, when the network has cycles, it is more advantageous to re-

cover only part of the message at the beginning and recover the rest with the

help of other nodes. This idea is best explained by a 3-node cyclic graphical

network example depicted in Figure 5.6. Here the network is modeled by a
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weighted directed cyclic graph G = (N , E), where N = {1, 2, 3} is the set of nodes,

E = {(1, 2), (1, 3), (2, 3), (3, 2)} is the set of edges, each of which models an or-

thogonal communication link that can carry 1 bit per transmission. Note that the

corresponding conditional pmf p(y3|x3) is given byX1 = (X12, X13), Y2 = (X12, X3)

and Y3 = (X13, X2), where X12, X13, X2, and X3 are binary.

It can be easily verified that the cutset bound simplifies to C ≤ 2 and the

decode–forward lower bound simplifies to C ≥ 1. But by simply routing one bit

along the path 1 → 2 → 3 and another bit along the path 1 → 3 → 2, we can

easily achieve 2 bits per transmission.

This observation can be readily generalized to any graphical networks, for

which the capacity is achieved by routing as in the unicast case [FF56, EFS56].

Note that unlike the multicast case, network coding [ACLY00] is unnecessary for

broadcasting. When the network suffers noise, the partial decode–forward cod-

ing scheme by Cover and El Gamal [CEG79] and its extension to networks by

Aref [Are80] provide a means of splitting the message into independent parts and

forwarding them along multiple paths.

1

1

1 1
1

M

2

3

M̂2

M̂3

Figure 5.6: Cyclic graphical network.

5.2.3 Compress–Forward

In some cases, decoding is actually impossible at the beginning and more

sophisticated coding schemes are necessary. To illustrate the depth of this problem,

throughout the rest of the chapter we focus on a simple 3-node cyclic network

model depicted in Figure 5.7, which is commonly referred to as the broadcast

relay channel. Here the message is sent over a broadcast channel p(y2, y3|x1). In
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addition, nodes 2 and 3 are connected via two noiseless links of rates R2 and R3,

respectively, that are orthogonal to the main broadcast channel. Let C(R) be the

broadcast capacity as a function of the sum R = R2 + R3 of the link capacities

between nodes 2 and 3.

M Encoder
Xn

1 p(y2, y3|x1)

Y n
2

Y n
3

Decoder 2

Decoder 3

R2 R3

M̂2

M̂3

Figure 5.7: Broadcast relay channel.

To be more specific, we consider the Gaussian broadcast relay channel de-

picted in Figure 5.8. The channel outputs corresponding to the input X1 are

X1

Z2 ∼ N(0, 1)

Z3 ∼ N(0, 1)

Y2

Y3

R2 R3

Figure 5.8: Gaussian broadcast relay channel.

Y2 = X1 + Z2,

Y3 = X1 + Z3,
(5.4)

where Z2 are Z3 are jointly Gaussian with zero mean, equal variance E(Z2
2) =

E(Z2
3) = 1, and correlation coefficient ρ = E(Z2Z3). Note that the capacity without
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the two noiseless links between the two receivers is

C(0) =
1

2
log(1 + P ).

In the following, we focus on the case of ρ = 0.

By the cutset bound, the capacity is upper bounded as

C(R) ≤ C(0) +
R

2
, (5.5)

where the optimal R2 = R3 = R/2 by symmetry. In comparison, since both re-

ceivers are symmetric, i.e., FY2|X1(y|x) = FY3|X1(y|x), one recovers exactly what

the other can recover about the message. Thus, any decoding-based relaying

scheme (decode–forward, partial decode–forward, or compute–forward [NG07])

cannot achieve more than C(0), which tends to zero as P → 0.

Now we consider the compress–forward coding scheme for the relay channel

by Cover and El Gamal [CEG79], which can be readily extended to the current

setup. It can be easily shown [Kim07] that the corresponding lower bound (with

the optimal rate splitting R2 = R3 = R/2) simplifies to

C(R) ≥ max
F (x1)F (ŷ2|y2)F (ŷ3|y3)

min{I1, I2, I3, I4}, (5.6)

where

I1 = I(X1; Y2, Ŷ3),

I2 = I(X1; Ŷ2, Y3),

I3 = I(X1; Y2)− I(Y3; Ŷ3|X1, Y2) +R/2,

I4 = I(X1; Y3)− I(Y2; Ŷ2|X1, Y3) +R/2.

Evaluated with the Gaussian input distribution and test channels, this lower bound

simplifies to

C(R) ≥ 1

2
log

(

1 +
2P (P + 1)(2R − 1) + P (2P + 1)

(P + 1)(2R − 1) + (2P + 1)

)

,

which is strictly larger than C(0) for every R > 0. Thus, compress–forward strictly

improves upon decoding-based relaying schemes. Note that when ρ = −1, the

corresponding compress–forward lower bound coincides with the cutset bound

in (5.5). This lower bound can be also achieved by the hash–forward coding

scheme [CK07, Kim08].
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5.3 Interactive Relaying

In the relay coding schemes we have discussed so far—(partial) decode–

forward, compress–forward, compute–forward, hash–forward, each node summa-

rizes its received signal and forwards it to other nodes. It turns out, however,

that interactive cooperation between nodes can achieve higher rates, as demon-

strated by Draper, Frey, and Kschschang [DFK03] for the broadcast relay channel

consisting of two binary erasure channels.

In this section, we adapt their interactive relaying scheme to the Gaussian

broadcast relay channel in (5.4) studied in the previous section. Suppose that

node 2 first uses compress–forward to help node 3 recover the message and node 3

then uses decode–forward to help node 2 recover the message. It can be easily

shown that this “compress–forward-followed-by-decode–forward” coding scheme

yields the following lower bound on the capacity:

C(R) ≥ max
F (x1)F (ŷ2|y2)

min{I2, I ′3}, (5.7)

where

I2 = I(X1; Ŷ2, Y3),

I ′3 = I(X1; Y2)− I(Y2; Ŷ2|Y3) +R.

By symmetry, it can be shown that this lower bound strictly improves upon the

compress–forward lower bound in (5.6). Thus, two-round interactive relaying is

sometimes better than noninteractive relaying. When evaluated with the Gaussian

input distribution and test channels, the lower bound in (5.7) simplifies to

C(R) ≥ max
σ2

min

{
1

2
log

(

1 +
2P + Pσ2

1 + σ2

)

,

R +
1

2
log(1 + P )− 1

2
log

(

1 +
2P + 1

(P + 1)σ2

)}

.

Figure 5.9 compares the cutset bound and the (partial) decode–forward, compress–

forward, and compress–forward decode–forward lower bounds.

As shown in the previous section, interactive relaying can outperform non-

interactive ∗–forward coding schemes. It is natural to ask the following:
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Figure 5.9: Comparison of the capacity bounds for the Gaussian broadcast

relay channel when P = 10.

• Would more than two rounds of interactive relaying further outperform two

rounds of interactive relaying?

• If so, how many rounds would be necessary?

In this section, we study a simple binary broadcast relay channel that consists of

two correlated Z channels as depicted in Figure 5.10, and show that infinite rounds

of interactive relaying can strictly outperform known finite-round coding schemes.

As before, we focus on the capacity C(R) as a function of the sum-rate R of

communication between two receivers. In particular, we will focus on the optimal

rate of interaction

R∗ = min{R : C(R) = 1}.

It is easy to see that C(0) = 0.3941, which is the capacity of the Z channel, while

C(R) = 1 for R ≥ 2, which is the capacity of the DMC from X1 to (Y2, Y3). In

other words, R∗ ≤ 2. Note further thatX1 = Y2 ·Y3 and that when X ∼ Bern(1/2),

Y2 and Y3 are independent and identically distributed Bern(1/
√
2).
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Figure 5.10: Two correlated Z channels.

We now compare the existing bounds on the capacity. First, the cutset

bound simplifies (under the optimal choice R2 = R3 = R/2) to

C(R) ≤ max
p(x1)

min{I(X1; Y2) +R/2, I(X1; Y2, Y3)}

= max
α∈[0:1]

min{H((2−
√
2)α)− αH(

√
2− 1) +R/2, H(α)}.

In particular, C(R) < 1 for R < 1.2338; in other words, R∗ ≥ 1.2338.

Since the channel is symmetric as in the Gaussian case, decoding-based

coding schemes are useless and the (partial) decode–forward lower bound simplifies

as

C(R) ≥ C(0) = 0.3941.

The capacity C(R) lies between two simple bounds as plotted in Figure 5.11.

While the compress–forward lower bound in (5.6) can be evaluated only
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Figure 5.11: Optimal C(R) curve.

numerically, one extreme point can be calculated analytically. Let R∗CF be the

minimum R such that the compress–forward lower bound CCF(R) = 1. Then, the

inverse problem of finding R∗CF is equivalent to finding the minimum sum-rate of

noninteractive communication between nodes 2 and 3 so that each of the nodes

can losslessly compute X1 = Y2 ·Y3 ∼ Bern(1/2). Thus, we can apply Orlitsky and

Roche’s result on coding for computing [OR01] and conclude that

R∗CF = HG(Y2|Y3) +HG(Y3|Y2)

= H(Y2) +H(Y3)

= 2H

(
1√
2

)

= 1.7449,

where HG(Y2|Y3) and HG(Y3|Y2) denote the conditional graph entropies that char-

acterize the minimum rates to compute X1 at node 3 and node 2, respectively.

In other words, C(R) = 1 for R ≥ 1.7449. Note that noninteractive extensions

of compress–forward including hash–forward [CK07, Kim08], noisy network cod-

ing [LKEGC11], and hybrid coding [KLM11] do not perform better than compress–

forward.

Compress–forward can be improved instead by making communication be-

tween nodes 2 and 3 interactive. Suppose that node 2 first uses the regular

compress–forward to help node 3 recover the message and then node 3 uses a
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modified version of compress–forward that incorporates the signal from node 2 as

side information to help node 2 recover the message; see Kaspi [Kas85] for the

origin of this idea in two-way lossy source coding. While this modification does

not improve upon the noninteractive compress–forward lower bound in (5.6) for

the Gaussian case (since the quadratic Gaussian rate–distortion function is the

same with or without side information at the encoder [WZ76]), it provides strict

improvements in general, for example, in the current setup of the binary broadcast

relay channel. As before, the inverse problem of finding the corresponding mini-

mum sum-rate R∗
CF2 of this coding scheme can be recast into the problem of finding

the minimum sum-rate for computing X1 at nodes 2 and 3 via two-round commu-

nication. Following the results on interactive coding for computing by Orlitsky

and Roche [OR01], and Ma and Ishwar [MI08], it can be shown that

R∗CF2 = H(Y2) +H(X1|Y3)

= H

(
1√
2

)

+
1√
2
H

(
1√
2

)

= 1.4893.

In other words, C(R) = 1 for R ≥ 1.4893.

As for the Gaussian case in Section 5.3, we can adapt the coding scheme

by Draper, Frey, and Kschischan [DFK03], in which compress–forward is followed

by decode–forward. This interactive relaying scheme in general yields a tighter

lower bound than the two-round interactive compress–forward lower bound, since

it is more efficient to use full knowledge of the message (decode–forward) for the

second-round communication. At the extreme point of the 1-bit message, however,

there is no gain since computing X1 is equivalent to decoding the message itself.

Hence, compress–forward followed by decode–forward yields the same upper bound

on the minimum sum-rate R∗ as

R∗ ≤ 1− I(X1; Y2) +HG(Y2|Y3)

= H(Y2) +H(X1|Y3)

= 1.4893.
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Now we further generalize the idea of interactive relaying to q-round inter-

active compress–forward. Again at the extreme point of the 1-bit message, the

inverse problem of finding the minimum sum-rate R∗CFq is equivalent to q-round

interactive coding for computing, in which nodes 2 and 3 exchange messages in

q rounds of communication to losslessly recover X1. While the exact characteri-

zation of this minimum sum-rate for q-round computing seems to be intractable,

using ingenious techniques Ma and Ishwar [MI08], [MI09] characterized its limiting

behavior as

lim
q→∞

R∗CFq = (1 + p)H(p) + p log(pe1−p)
∣
∣
p=1/

√
2

= 1.4346.

They further showed that for the natural coding scheme that achieves this lim-

iting behavior, the corresponding sum-rate RCFq is strictly larger than R∗CF∞ =

limq→∞R∗CFq . Thus, C(R) = 1 for R ≥ 1.4346, and among all known relay cod-

ing schemes this can be achieved only by infinite rounds of interactive relaying!

Therefore, roughly speaking, when the network is to be flooded with information,

it is more efficient for the relays to spray tiny droplets of the information back and

forth than to splash a huge amount at a time.

Chapter 5, in part, includes the material in Yu Xiang, Lele Wang, and

Young-Han Kim, “Information flooding,” Annual Allerton Conference on Com-

munication, Control, and Computing, pp. 45–51, Monticello, IL, September 2011.

The dissertation author was the primary investigator and author of this paper.
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