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Abstract: We study a decoupling limit of M-theory where the three-form gauge potential

becomes critical. This limit leads to nonrelativistic M-theory coupled to a non-Lorentzian

spacetime geometry. Nonrelativistic M-theory is U-dual to M-theory in the discrete light

cone quantization, a non-perturbative approach related to the Matrix theory description of

M-theory. We focus on the compactification of nonrelativistic M-theory over a two-torus

that exhibits anisotropic behaviors due to the foliation structure of the spacetime geometry.

We develop a frame covariant formalism of the toroidal geometry, which provides a geomet-

rical interpretation of the recently discovered polynomial realization of SL(2 ,Z) duality in

nonrelativistic type IIB superstring theory. We will show that the nonrelativistic IIB string

background fields transform as polynomials of an effective Galilean “boost velocity” on the

two-torus. As an application, we construct an action principle describing a single M5-brane

in nonrelativistic M-theory and study its compactification over the anisotropic two-torus.

This procedure leads to a D3-brane action in nonrelativistic IIB string theory that makes the

SL(2 ,Z) invariance manifest in the polynomial realization.ar
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1. Introduction

As one of the many heritages from the second superstring revolution, M-theory provides

powerful insights for probing various non-perturbative aspects of superstring theories. Con-

siderable knowledge of this conjectured unification has become accessible based on Matrix

theory and the AdS/CFT correspondence, even though a comprehensive formulation of M-

theory remains mysterious. In Matrix theory, M-theory compactified on a lightlike circle is

described by a Matrix quantum mechanical system of D0-particles [1, 2]. The study of Matrix

theory provides valuable guidance for formulating the full M-theory.

In the literature, M-theory on a lightlike compactification is called the Discrete Light

Cone Quantization (DLCQ) of M-theory [3]. DLCQ is an important non-perturbative ap-

proach in both quantum field theory [4] and string/M-theory [3, 5, 6]. Decoding the exotic

physics in DLCQ M-theory plays a central role in the Matrix theory approach to M-theory.

Intriguingly, there exists a U-dual description of DLCQ M-theory that we refer to as non-

relativistic M-theory [7, 8], where no lightlike compactification is present anymore. Instead,

nonrelativistic M-theory exhibits salient non-Lorentzian behaviors: the eleven-dimensional

spacetime develops a foliation structure with a three-dimensional longitudinal sector and

an eight-dimensional transverse sector. These two sectors are related through (membrane)

Galilean boosts. This geometry is referred to as the membrane Newton-Cartan geometry,

which naturally generalizes Newton-Cartan geometry associated with the covariantization of

Newtonian gravity to the higher-dimensional foliation structure [9, 10] (also see [11–14] for

more general p-brane Newton-Cartan geometries).

The U-duality relating DLCQ and nonrelativistic M-theory [15] is an M-theory uplift of

the T-duality relation between DLCQ and nonrelativistic string theory [7, 16, 17]. 1 Nonrel-

ativistic string theory is unitary, ultra-violet complete, and has a Galilean invariant string

spectrum [7, 17, 18] (see [19] for a review). This theory couples to the background string

Newton-Cartan geometry [20], which contains a two-dimensional longitudinal sector and an

eight-dimensional transverse sector, related to each other via (string) Galilean boosts. Under

T-duality, a spacelike longitudinal compactification in nonrelativistic string theory maps to

the lightlike circle in DLCQ string theory. Via this T-dual relation, nonrelativistic string

theory provides a first principles definition of DLCQ string theory.

In this paper, motivated to understand the relationship between nonrelativistic M-theory

and type IIB superstring theory, we analyze the toroidal compactification of nonrelativistic

M-theory. This study may also serve as a preparation for establishing the U-duality relation

between DLCQ and nonrelativistic string theory, which requires compactifying nonrelativistic

M-theory over a three-torus and will be discussed separately in [15]. This three-torus has to be

“anisotropic,” with two cycles in the longitudinal sector and the third cycle in the transverse

sector of the membrane Newton-Cartan geometry. Dimensionally reducing nonrelativistic M-

theory along one of the longitudinal cycles leads to nonrelativistic IIA string theory. Then, T-

dualizing along the other longitudinal circle produces the DLCQ of IIB string theory. Finally,

1Note that the relation to DLCQ M-theory and Matrix theory has been commented on in [17].
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we also have to T-dualize the original transverse circle to acquire the DLCQ of IIA string

theory, which uplifts to DLCQ M-theory. Generally, we refer to such a compactification over a

compact manifold that splits between the longitudinal and transverse sectors in nonrelativistic

M-theory as an anisotropic compactification. 2

To focus on the novelty brought by the anisotropy of this compactification, we per-

form in this paper a systematic study of compactifying nonrelativistic M-theory over a sim-

pler anisotropic two-torus, where novel structures already arise. Compactifying M-theory

over a two-torus leads to type IIB superstring theory in the relativistic framework. 3 In the

anisotropic compactification of nonrelativistic M-theory, we require one cycle of the two-torus

to be longitudinal and the other transverse. Depending on which cycle on the anisotropic

two-torus is taken to be the nonrelativistic M-theory circle, we arrive at different IIB string

theories that are S-dual to each other: we find nonrelativistic IIB string theory if the M-

theory circle is longitudinal, but the “one-brane limit” of relativistic IIB string theory if the

M-theory circle is transverse. While nonrelativistic string theory arises from a critical Kalb-

Ramond field limit, the one-brane limit is associated with a critical Ramond-Ramond (RR)

two-form field. These corners associated with the critical Kalb-Ramond and RR two-forms

are closely related to Matrix string theory [17, 22–24]. The T-duality connection to general

p-brane limits associated with different critical RR fields has been studied in [17, 25] and will

be further explored in [15, 26], which reveal a duality web unifying a zoo of decoupling limits

of string/M-theory, including Matrix (gauge) theories.

It is famously known that the S-duality in type IIB superstring theory extends to the

SL(2 ,Z) duality [27–29], which acquires a simple geometric interpretation in M-theory as the

isometry group of the two-torus over which M-theory compactifies. Shown in [30, 31], the

SL(2 ,Z) duality can also be realized in nonrelativistic IIB string theory. To be more precise,

we define the SL(2 ,Z) transformation matrix to be

Λ =

(
α β

γ δ

)
, α δ − β γ = 1 , α , β , γ , δ ∈ Z . (1.1)

We define the RR zero-form in nonrelativistic IIB theory as C(0) . When γ C(0) + δ = 0 ,

nonrelativistic string theory gets mapped to the one-brane limit of IIB string theory, and

the Z2 part of this set of transformations is the S-duality that we have discussed in the

previous paragraph. Instead, when γ C(0) + δ ̸= 0 , in terms of a set of properly chosen

variables, the background fields transform under the SL(2 ,Z) duality as a polynomial of a

quantity κ formed by the group parameters and the modulus of the two-torus (see Eq. (3.27)).

2In terms of this terminology, the conventional toroidal compactification would be referred to as an “isotropic

compactification,” implying that different cycles are treated equally on the same footing.
3The seeming mismatch between dimensions has been elucidated in [21]: Compactifying M-theory over

a two-torus can be equivalently viewed as compactifying type IIA superstring theory over a spatial circle of

radius R , which is T-dual to type IIB superstring theory over the dual circle of radius α′/R , with α′ the

Regge slope. Therefore, shrinking the torus corresponds to taking a small R , which decompactifies the dual

circle in the T-dual IIB theory.
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We refer to this realization of the global SL(2 ,Z) symmetry in nonrelativistic IIB string

theory as a polynomial realization [31]. This novel mathematical structure bears an intriguing

connection to the classical invariant theory of binary forms (homogeneous polynomials in two

variables) in algebra and provides a useful formalism for classifying SL(2 ,Z) invariants in

nonrelativistic IIB string theory. For example, in [31], the complete set of field strengths

describing nonrelativistic IIB supergravity, together with their SL(2 ,Z) transformation rules,

are encoded by a quadratic and quartic binary form. Our study of anisotropic compactification

of nonrelativistic M-theory in this paper will provide a natural geometric interpretation of

the polynomial realization of SL(2 ,Z) duality. We will find that the parameter κ , in terms of

which the background fields transform polynomially, acquires a physical meaning in M-theory

as an effective Galilean boost velocity on the two-torus. See section 3.2 for details.

As an application of the formalism developed in this paper, we will consider an anisotropic

toroidal compactification of a single M5-brane in nonrelativistic M-theory. The action of the

nonrelativistic M5-brane will be derived in Eq. (4.43) for the first time, 4 which is essential for

furthering the understanding of nonrelativistic M-theory. This advance also provides a con-

crete starting point for revisiting open membrane theory [25, 33]. Finally, compactifying the

M5-brane action leads to a manifestly SL(2 ,Z) invariant formalism of the D3-brane in non-

relativistic IIB superstring theory. 5 We will show that the associated D3-brane action (4.62)

makes the polynomial realization manifest and significantly simplifies the rather complicated

SL(2 ,Z)-invariant D3-brane action derived in [30].

The organization of this paper is as follows. In section 2, we review nonrelativistic string

theory and its uplift to nonrelativistic M-theory. We then define the anisotropic toroidal

compactification of nonrelativistic M-theory and explain its dual relation to DLCQ M-theory.

In section 3, we develop the zweibein formalism to describe a toroidal geometry, using which

we provide a geometric interpretation of the polynomial realization of SL(2 ,Z) in nonrela-

tivistic type IIB superstring theory. In section 4, we apply this formalism developed in the

previous two sections to compactify a single M5-brane in nonrelativistic M-theory. First, we

review the Pasti-Sorokin-Tonin (PST) formalism [36–38] of M5-brane and its compactification

over a torus in relativistic M-theory [34]. Then, we construct the M5-brane action (4.43) in

nonrelativistic M-theory and study its toroidal compactification. We conclude the paper and

give outlooks in section 5. Appendix A discusses the Iwasawa decomposition of SL(2 ,R) in

connection to the zweibein formalism of the two-torus. Appendix B contains an expansion of

the nonrelativistic M5-brane action to the quadratic order with respect to the worldvolume

U(1) gauge field strength. Appendix C includes a derivation of the dual D3-brane action in

section 4.3.

4The construction of nonrelativistic M5-brane has been attempted in [32], where an expansion in the

presence of a critical three-form gauge field is considered. However, the expansion in [32] is invalid as it

contains the inverse of an identically zero determinant. This determinant is over the longitudinal metric,

which is of rank three, being pulled back to the six-dimensional M5-brane worldvolume.
5See [34, 35] for an M5-brane on a two-torus and its relation to D3-brane in relativistic M-theory.
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2. Basic Elements of Nonrelativistic M-Theory

We start by reviewing nonrelativistic string theory and its uplift to nonrelativistic M-theory.

Then, we introduce the concept of anisotropic compactification in nonrelativistic M-theory

and illustrate the dual relation between nonrelativistic and DLCQ M-theory.

2.1. The M-Theory Uplift of Nonrelativistic String Theory

Nonrelativistic string theory arises as a stringy limit of relativistic string theory, which re-

quires reparametrizing the target space background fields in terms of a constant parameter

ω followed by an infinite ω limit. In the following, we use the hatted letters to denote quan-

tities in relativistic string theory and unhatted ones for nonrelativistic string theory. We will

focus on the bosonic sector of type II superstring theories, where the relativistic closed-string

background fields include the metric ĜMN , Kalb-Ramond field B̂MN , dilaton field Φ̂ , and

RR potentials Ĉ(q) , with M = 0 , · · · , 9 . Note that the superscript “(q)” implies that the

quantity is a differential q-form. We will work in the Einstein frame, where the metric ĜMN

is related to the string-frame metric Ĝ string
MN via

ĜMN = e−Φ̂/2 Ĝ string
MN . (2.1)

It is useful to introduce the vielbein fields ÊM
A and ÊM

A′
, such that

ĜMN = ÊM
A ÊN

B ηAB + ÊM
A′

ÊN
A′

, (2.2)

where we artificially split the frame index into the longitudinal sector labeled by a two-

dimensional Minkowski index A = 0 , 1 and the transverse sector by an eight-dimensional

index A′ . We then rescale the associated vielbein fields as

ÊM
A = ω3/4 τM

A , ÊM
A′

= ω−1/4EM
A′

. (2.3)

In the ω → ∞ limit, the target space develops an induced codimension-two foliation structure

[20]. The longitudinal and transverse geometries are encoded by the vielbein fields τM
A and

EM
A′

, respectively. The spacetime Poincaré group breaks down into the spacetime string

Galilean group, where the local, finite string Galilean boost parametrized by the Lie group

parameter λAA′ is

δGτM
A = 0 , δGEM

A′
= −λA

A′
τM

A , (2.4)

which relates the transverse sector to the longitudinal sector.

Moreover, we reparametrize the remaining background fields as [10, 39]

B̂(2) = −ω2 eΦ/2 ℓ(2) + B(2) , Φ̂ = Φ + lnω , (2.5a)

Ĉ(q) = ω2 eΦ/2 ℓ(2) ∧ C(q−2) + C(q) , (2.5b)
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where B(2), Φ , and C(q) are respectively the Kalb-Ramond, dilaton, and RR fields in nonrel-

ativistic string theory. Note that q is odd for type IIA string theory and is even for type IIB

string theory. We also defined

ℓ(2) =
1

2
τA ∧ τB ϵAB . (2.6)

Here, the Levi-Civita symbol ϵAB with frame indices is defined via ϵ01 = 1 . The spacetime

geometry in the ω → ∞ limit is the (torsional) string Newton-Cartan geometry [40, 41],

which is required to be supplement with intrinsic torsional constraints due to supersymmetry

[42] and quantum consistency [43, 44]. In the resulting parametrization of the string Newton-

Cartan geometry, B(2) and C(q) transform non-trivially under the local string Galilean boost

(2.4), with

δGB
(2) = ϵAB λB

A′ eΦ/2 τA ∧ EA′
, (2.7a)

δGC
(q) = −ϵAB λB

A′ eΦ/2 τA ∧ EA′ ∧ C(q−2) . (2.7b)

Moreover, the one-form gauge potential Â(1) coupled to relativistic open strings remains the

same under the above reparametrization, i.e., Â(1) = A(1) . In relativistic IIB superstring

theory, this one-form gauge potential can be extended to the Born-Infeld vector Â(1) =(
ÂB , ÂC

)⊺
, where ÂB and ÂC are associated with the Kalb-Ramond field B̂(2) and RR two-

form Ĉ(2), respectively. Accordingly,

ÂB = AB , ÂC = AC , (2.8)

define the Born-Infeld vector in nonrelativistic IIB theory. Since the Born-Infeld vector is

unaffected by the nonrelativistic string limit, we will omit the hat for U(1) gauge potentials

in relativistic string theory and write them respectively as AB and AC .

In the ω → ∞ limit of the relativistic string action, the Kalb-Ramond field is fine-tuned

to cancel the string tension, which leads to the defining worldsheet theory for nonrelativistic

string theory [7]. The beta functions associated with the open string background fields were

derived in [45], from which the effective Dp-brane actions in nonrelativistic string theory

are constructed. In particular, performing an S-duality transformation of the U(1) gauge

field on a single D2-brane in nonrelativistic string theory gives rise to the M2-brane action

in nonrelativistic M-theory [10]. Intriguingly, the resulting M2-brane couples to spacetime

equipped with a codimension-three foliation structure.

The above duality relation determines the limiting prescription for deriving nonrela-

tivistic M-theory from relativistic M-theory, which we detail below. The closed membrane

background fields in relativistic M-theory include a metric ĜMN , M = 0 , 1 , · · · , 10 , a three-

form gauge potential Ĉ(3) , and a six-form gauge potential Ĉ(6) . As in the string case, it is

also helpful to introduce the vielbein formalism for the M-theory metric ĜMN , with

ĜMN = Ê M
u ÊN

v ηuv + Ê M
A′

ÊN
A′

, (2.9)
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where the longitudinal u index extends the two-dimensional index A in nonrelativistic string

theory to be three-dimensional. The appropriate rescalings of the vielbein fields are

ÊM
u = ω2/3 γM

u , ÊM
A′

= ω−1/3 EM
A′

. (2.10)

After performing the ω → ∞ limit, γM
u (EM

A′
) encodes the geometry in the three-dimensional

(eight-dimensional) longitudinal (transverse) sector. These sectors are related to each other

via a local, finite membrane Galilean boost parametrized by the Lie group parameter λuA′ ,

δGγM
u = 0 , δGEM

A′
= −λu

A′
γM

u . (2.11)

Moreover, the higher-form gauge potentials Ĉ(3) and Ĉ(6) from eleven-dimensional supergrav-

ity [46, 47] are reparametrized as

Ĉ(3) = −ω2 Γ(3) + C(3) , (2.12a)

Ĉ(6) = ω2 Γ(3) ∧ C(3) + C(6) , (2.12b)

where

Γ(3) =
1

3!
γu ∧ γv ∧ γw ϵuvw . (2.13)

The spacetime geometry in the ω → ∞ limit is the membrane Newton-Cartan geometry

[9, 10]. In terms of the above prescriptions, the higher-form gauge potentials transform under

the membrane Galilean boost as follows:

C(3) → C(3) − 1

2
ϵuvw λu

A′ γv ∧ γw ∧ EA′
, (2.14a)

C(6) → C(6) + ϵuvw λu
A′ γv ∧ γw ∧ EA′ ∧ C(3) . (2.14b)

We refer to this ω → ∞ limit of relativistic M-theory as the nonrelativistic membrane limit.

Just like the string case, the two-form gauge potential A(2) coupled to open membranes is

unaffected by the limit.

Upon compactifying nonrelativistic M-theory over a longitudinal spatial circle, it reduces

to nonrelativistic type IIA superstring theory coupled to a ten-dimensional string Newton-

Cartan geometry and equips to a codimension-two foliation structure. The Kaluza-Klein

reduction map from nonrelativistic M-theory to IIA superstring theory is given by

γM
u = e2Φ/3

(
e−Φ/2 τM

A CM

0 1

)
, EM

A′
= eΦ/6

(
EM

A′
0

0 0

)
. (2.15a)

Moreover,

CMNL = CMNL , CM0···M4,10
= 2 CM0···M4

, (2.15b)

CMN,10 = BMN , AM,10 = AM , (2.15c)
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nonrelativistic M-theory

3D

8D× ×

2D

8D

nonrelativistic IIB superstring theory

×

Figure 1. We show the relation between nonrelativistic M-theory over an anisotropic two-torus and

nonrelativistic IIB superstring theory. The figure on the left displays nonrelativistic M-theory cou-

pled to an eleven-dimensional membrane Newton-Cartan geometry containing a three-dimensional

longitudinal sector and an eight-dimensional transverse sector. The figure on the right depicts nonrel-

ativistic IIB superstring theory coupling to a ten-dimensional string Newton-Cartan geometry with a

two-dimensional longitudinal sector and an eight-dimensional transverse sector. Here, nonrelativistic

M-theory compactified over an anisotropic torus with the blue cycle in the longitudinal sector and the

green cycle in the transverse sector. While the blue cycle is the M-theory circle, the green cycle is

T-dualized to the transverse circle in nonrelativistic IIB superstring theory.

where

C(5) = C(5) +
1

2
C(3) ∧B(2) . (2.16)

Note that the above reduction rules take the same form as the Kaluza-Klein reduction rules

from relativistic M-theory to IIA theory. Moreover, the component CM0···M5
gives rise to the

magnetic dual of the B-field in ten dimensions.

2.2. Anisotropic Two-Torus and SL(2 ,Z) Duality

In this subsection, the global SL(2 ,Z) duality in type IIB superstring theory gains a geometric

interpretation as the isometry group on the two-torus over which M-theory compactifies.

In nonrelativistic M-theory, the analog of this toroidal compactification has an intriguing

interplay with the codimension-three foliation structure.

We already discussed in section 2.1 that compactifying nonrelativistic M-theory coupled

to membrane Newton-Cartan geometry over a longitudinal spatial direction gives rise to non-

relativistic IIA superstring theory coupling to string Newton-Cartan geometry. To consider

the SL(2 , Z) duality in nonrelativistic IIB superstring theory, we further compactify nonrel-

ativistic IIA superstring theory over a second spatial circle. Performing a T-duality along

this second spatial circle gives rise to IIB superstring theory. If this extra spatial circle is in

the longitudinal sector, the two-torus is isotropic, and the resulting description is the DLCQ

– 8 –



v̂

ê

large ω

x̂m
xm

v

e

Figure 2. Reparametrization of a two-torus. The blue cycle lies along a longitudinal direction, while

the green cycle lies along a transverse direction. In the ω → ∞ limit, the longitudinal cycle becomes

infinitely large while the transverse cycle shrinks to zero size. This limit implies that the metric on

the two-torus becomes singular, and one has to describe the toroidal geometry using vielbein fields.

of relativistic IIB string theory. Instead, if this second circle is in the transverse sector, the

two-torus is anisotropic, and the resulting theory is nonrelativistic IIB string theory. This

latter configuration with a transverse compactification is what we are interested in. There-

fore, compactifying nonrelativistic M-theory over an anisotropic torus leads to nonrelativistic

IIB string theory.

The above observation implies that the SL(2 , Z) duality in nonrelativistic IIB theory

originates from compactifying nonrelativistic M-theory over an anisotropic torus that strad-

dles between the longitudinal and transverse sectors in the target space membrane Newton-

Cartan geometry. It is illustrative to consider the two-torus in the flat limit with γM
u = δuM

and EM
A′

= δA
′

M . In this flat case, the anisotropic torus arises from rescaling the coordi-

nates on a Riemannian torus. Define the target space coordinates in relativistic M-theory

to be X̂M = (x̂µ , x̂m) , where x̂m , m = 9 , 10 are coordinates on the internal torus and x̂µ

are spacetime coordinates in relativistic type IIB superstring theory. The rescalings of the

vielbein fields in Eq. (2.10) imply

x̂0 , 1 , 9 = ω2/3 x0 , 1 , 9 (2.17)

in the three-dimensional longitudinal sector and

x̂2 , ··· , 8 , 10 = ω−1/3 x2 , ··· , 8 , 10 (2.18)

in the eight-dimensional transverse sector of the membrane Newton-Cartan geometry. There-

fore, on the compactified torus, at large ω , the longitudinal cycle is enlarged while the trans-

verse cycle shrinks. In the ω → ∞ limit, the toroidal geometry becomes singular: one seems

to find a ring-like object of an infinite radius. Nevertheless, this singularly limiting behavior

does not indicate any sickness of the geometry but only implies that it is inappropriate to use

a metric description anymore. In fact, in the ω → ∞ limit, the toroidal geometry becomes

non-Riemannian and should be described using vielbein fields. See figure 2 for an illustration.

In the next section, we quantify this non-Riemannian geometry on the anisotropic torus.

We have seen that compactifying nonrelativistic M-theory over an anisotropic two-torus

leads to nonrelativistic IIB string theory. This relation implicitly assumes that we regard

– 9 –



nonrelativistic M-theory

3D

8D

lightlike×

DLCQ M-theory

2D

9D×

×

×

membrane
Galilean boost

Figure 3. We illustrate the anisotropic compactification over a three-torus and duality between DLCQ

and nonrelativistic M-theory. While the spacetime geometry in DLCQ M-theory is Riemannian, the

membrane Newton-Cartan geometry in nonrelativistic M-theory is non-Riemannian and consequently

does not admit any global metric.

the longitudinal cycle on the two-torus to be the M-theory circle. However, it is physically

equivalent if we instead take the transverse cycle on the two-torus be the M-theory circle. In

this latter case, we find the one-brane limit of relativistic IIB superstring theory, where the

RR two-form fine-tunes to cancel the D1-brane tension. The one-brane limit of the D1-brane

is closely related to Matrix string theory [17] (also see [15] for further discussions). This

limit implies that nonrelativistic IIB superstring theory is S-dual to the one-brane limit of

relativistic IIB superstring theory. As we will see later in section 3.4, there is a fraction of the

SL(2 ,Z) group transformations that map nonrelativistic IIB theory to the one-brane limit.

2.3. Anisotropic Three-Torus and Matrix Theory

Until now, we have been focusing on the anisotropic compactification over a two-torus. In

this subsection, we will instead consider an anisotropic compactification of nonrelativistic

M-theory over a three-torus, which is mandatory for constructing the dual relation between

nonrelativistic and DLCQ M-theory. We illustrate this duality relation below and sketch how

Matrix theory arises in this context. See [15] for the associated U-duality relation in eleven

dimensions, where concrete relationships to Matrix (gauge) theories are studied.

We start with nonrelativistic M-theory. For simplicity, we focus on flat spacetime. As

described in §2.1, the spacetime directions are factorized into a three-dimensional longitudi-

nal sector containing x0, 1, 9 and an eight-dimensional transverse sector containing x2, ··· , 8, 10 .

We consider a compactification of the target space over a three-torus, with two cycles in the

longitudinal x1, 9 directions and the remaining cycle in the transverse x10 direction. Per-
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forming a dimensional reduction along the x9 circle, we find nonrelativistic IIA superstring

theory. Next, performing a longitudinal T-duality transformation along the x1 circle gives

rise to the DLCQ of relativistic IIB superstring theory, where the original spacelike x1 circle

in nonrelativistic IIB superstring theory now maps to a dual circle that is lightlike. Finally,

we perform a transverse T-duality transformation along the x10 circle, which gives rise to

the DLCQ of relativistic IIA superstring theory. Uplifting this resulting DLCQ IIA theory

to relativistic M-theory, we recover DLCQ M-theory. See figure 3 for an illustration. The

above prescriptions essentially form a U-duality relation between nonrelativistic and DLCQ

M-theory, where the latter corresponds to Matrix theory [15].

To see how matrix theory arises from the M2-branes in nonrelativistic M-theory, at

least in a schematic way, we start with the bosonic action describing a single M2-brane in

nonrelativistic M-theory [48, 49],

SM2 ∼ −1

2

∫
d3σ

√
−γ γαβ ∂αX

M ∂βX
N EMN −

∫
C(3) . (2.19)

The worldvolume fields XM define the embedding coordinates. We also defined the pullback

γαβ = ∂αX
M ∂βX

N γMN , with γαβ the inverse of γαβ and γ = det γαβ . Moreover, the Chern-

Simons term C(3) denotes the pullback of the three-form gauge potential to the worldvolume.

We require that the M2-brane is localized in the x9 circle. Perform a duality transformation

of the Nambu-Goldstone boson that perturbs the shape of the M2-brane in x9 gives rise to

the following D2-brane action in nonrelativistic string theory [10]:

SD2 ∼ −
∫

d3σ e−Φ

√√√√−det

(
0 τβ

0 + τβ
1

τα
0 − τα

1 Eαβ + Fαβ

)
−
∫ (

C(3) + C(1) ∧ F
)
. (2.20)

Note that the collective coordinate x9 is dualized to be the U(1) gauge potential Aα on the

D2-brane in Eq. (2.20). Note that the size of the longitudinal circle along x10 controls the

size of the string coupling e⟨Φ⟩ . Here, F (2) = B(2) + dA(1) , and the background fields are

pulled back from spacetime to the worldvolume. The reduction map, which establishes the

correspondence between the components in Eq.(2.20) and their counterparts in Eq.(2.19),

is provided in Eq. (2.15). Next, we perform a longitudinal T-duality transformation along

the x1 circle. This T-duality leads to a dual D1-string action in the DLCQ of relativistic

IIB string theory, where there is a lightlike compactification along x+ that is T-dual to x1 .

The dual D1-string is localized in the lightlike x+ circle. Finally, performing a transverse

T-duality transformation along the transverse x10 circle, we are led to the action describing

a single D0-brane in the DLCQ of relativistic IIA superstring theory, which in flat spacetime

reads:

S ∼
∫

dt
√
ẋ− ẋ+ + ẋA′ ẋA′ . (2.21)

Here, the lightlike direction x+ is compactified . Näively, the Hamiltonian associated with

the action (2.21) is zero, which is due to the existence of the worldline diffeomorphism.
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To compute the spectrum of the system, we impose the gauge fixing condition x− = t .

Furthermore, we note that the momenta p+ and pA′ , which are conjugate to the lightlike

coordinate x+ and the transverse coordinates xA
′

are, respectively,

p+ =
1

2
√
ẋ+ + ẋA′ ẋA′ , pA′ = 2 p+ ẋA

′
. (2.22)

The Hamiltonian is

H ∼
∫

dt
pA′ pA′ − 1

4 p+
, (2.23)

which one uplifts to the Kaluza-Klein modes in DLCQ M-theory. When considering a stack

of D0-branes, the Hamiltonian (2.23) is generalized to describe Matrix theory. Ultimately,

understanding Matrix theory using nonrelativistic M-theory requires considering a stack of

nonrelativistic M2-branes and possibly some limiting version of ABJM superconformal field

theory [50].

3. Anisotropic Torus and Branched SL(2 ,Z) Duality

We now formulate the compactification of nonrelativistic M-theory over an anisotropic two-

torus. We have shown that nonrelativistic M-theory arises as an ω → ∞ limit of relativistic M-

theory with the reparametrization of the target space vielbein fields in Eq. (2.10). Moreover,

we require that the torus lies in the isometry longitudinal x9 and transverse x10 direction.

The reparametrization (2.10) of the vielbein fields becomes

Êu = ω2/3 γu , u = 0 , 1 , 9 ; (3.1a)

ÊA′
= ω−1/3 EA′

, A′ = 2 , · · · , 8 , 10 . (3.1b)

Before sending ω to infinity, there is a well-defined metric describing the Riemannian geometry

of the torus. However, the metric description becomes invalid after performing the ω → ∞
limit. In the following, we will first develop the zweibein formalism of the toroidal geometry in

the Riemannian case. This zweibein formalism will help facilitate with the ω → ∞ limit. We

will then use this formalism to provide the M-theory interpretation of the SL(2 ,Z) duality

in nonrelativistic IIB string theory. This procedure will naturally lead to the polynomial

realization of SL(2 ,Z) discovered in [31], which we will review in section 3.3.

3.1. Zweibein Formalism of Torus Geometry

We first consider the compactification of relativistic M-theory over a two-torus. The eleven-

dimensional target space in M-theory equips to a metric background field GIJ such that

I ,J = 0 , 1 , · · · , 10 , for which we take the following dimension-reduction ansatz:

ĜIJ =

(
Ĝµν 0

0 ĝmn

)
, µ = 0 , 1 , · · · , 8 , m = 9 , 10 . (3.2)
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We have excluded any Kaluza-Klein modes for simplicity. Here, Ĝµν is the metric in the target

space of ten-dimensional superstring theory compactified over S1 , and ĝmn is the metric on

the torus, with

ĝmn =
Γ

τ̂2

(
1 −τ̂1

−τ̂1 τ̂21 + τ̂22

)
, (3.3)

where τ̂ = τ̂1 + i τ̂2 is the torus modulus. The second fundamental form of the torus is

ds2 =
Γ

τ̂2

∣∣∣dx̂9 − τ̂ dx̂10
∣∣∣2 , (3.4)

where Γ is the surface area of the torus. For now, we set Γ = 1 for convenience. Later, when

we consider the dimensional reduction to IIB superstring theory, the dependence on Γ will

be recovered, as the limit Γ → 0 is required. Note that x̂m satisfies the periodic boundary

condition

x̂9 , 10 ∼ x̂9 , 10 + 1 . (3.5)

The isometry group on the two-torus is SL(2 ,Z) , which acts on the coordinates x̂m and the

modulus τ̂ as

x̂m → Λm
n x̂

n , τ̂ → α τ̂ + β

γ τ̂ + δ
. (3.6)

See Eq. (1.1) for the definition of Λ . Note that the group parameters must be integers to obey

the periodic boundary conditions in Eq. (3.5). The unimodularity condition α δ − β γ = 1

in Eq. (1.1) is imposed such that ds2 remains invariant under Eq. (3.6). After the toroidal

compactification, in IIB superstring theory, the modulus becomes

τ̂ = Ĉ(0) + i e−Φ̂ (3.7)

where τ̂1 = Ĉ(0) is the RR zero-form and τ̂2 = e−Φ̂ is the inverse string coupling.

To facilitate the nonrelativistic membrane limit, performed via rescaling the vielbein fields

in spacetime as in Eq. (3.1), we introduce a zweibein formalism of the toroidal geometry by

rewriting the torus metric (3.3) as

ĝmn = êm
a ên

b δab = v̂m v̂n + êm ên , (3.8)

where we defined

êm
a =

(
v̂m

êm

)
, v̂m ≡ êm

9 =
1√
τ̂2

(
1

−τ̂1

)
, êm ≡ êm

10 =
√
τ̂2

(
0

1

)
. (3.9)

The SL(2 ,Z) transformations of êm
a are not particularly illuminating at first sight. However,

it is intriguing to consider the SL(2 ,Z) transformation of the quantities

v̂ = v̂m dx̂m , ê = êm dx̂m . (3.10)
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Using the transformations in Eq. (3.6), we find(
v̂

ê

)
→

sgn
(
γ τ̂1 + δ

)
√

1 + κ̂2

(
1 −κ̂

κ̂ 1

)(
v̂

ê

)
, κ̂ =

γ τ̂2
γ τ̂1 + δ

. (3.11)

Note that κ̂ depends both on the parameters of the Lie group γ and δ and the modulus

τ̂ = τ̂1 + i τ̂2 . We further define

θ = arctan κ̂ +
π

2

[
sgn
(
γ τ̂1 + δ

)
− 1
]
, (3.12)

which implies that

κ̂ = tan θ . (3.13)

Here, arctan κ̂ ∈
(
−π/2 , π/2

)
denotes the principal value. Note that the quantity κ̂ depends

on both the group parameters and modulus τ̂ . Applying Eqs. (3.12) and (3.13) to Eq. (3.11),

we find (
v̂

ê

)
→

(
cos θ − sin θ

sin θ cos θ

)(
v̂

ê

)
. (3.14)

Geometrically, if the zweibein êm
a is arbitrary, then the transformation (3.14) can be inter-

preted as a local rotation on the torus. What we have done above is essentially a mapping

of the global SL(2 ,Z) group within a local SL(2 ,R) group. For the quantity v̂ and ê defined

in Eq. (3.10), the curved indices m’s are contracted, which implies that the local diffeomor-

phisms on the two-torus are automatically satisfied. Therefore, the only remaining gauge

symmetry is the local SO(2) rotation in Eq. (3.14). Furthermore, it follows that the vector

(v̂m ∂m , êm ∂m)⊺ transforms as(
v̂m

êm

)
∂

∂x̂m
→

(
cos θ sin θ

− sin θ cos θ

)(
v̂m

êm

)
∂

∂x̂m
, (3.15)

where the inverse vielbein fields are

v̂m =
√

τ̂2

(
1

0

)
, êm =

1√
τ̂2

(
τ̂1

1

)
, (3.16)

such that the following orthogonality conditions hold:

v̂m v̂m = êm êm = 1 , v̂m êm = êm v̂m = 0 , v̂n v̂m + ên êm = δnm . (3.17)

Note that the branching factor sgn
(
γ τ̂1 + δ

)
in Eq. (3.11) does not have any physical sig-

nificance here. The reason is that the zweibein formalism developed here is an alternative

rewriting of the metric formalism on the two-torus. In the metric formalism, the branching

factor cancels. However, after taking the membrane limit later in section 3.2, the metric

formalism becomes invalid, and the anisotropic toroidal geometry is only accessible via the
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vielbein fields. In this latter case of anisotropic compactification, the branching factor be-

comes physical and is responsible for the branched SL(2 ,Z) duality in nonrelativistic IIB

superstring theory [31].

As a simple example for illustrating how the above zweibein formalism generates the

SL(2 ,Z) transformations of all the background fields in type IIB superstring theory, we

consider the gauge theory to arise from the system with open M2-branes ending on M5-

branes. The open membrane gauge potential is a two-form field A(2) . We also define the

three-form field strength F(3) = dA(2). Compactifying over a two-torus, the vector mode of

A(2) gives rise to the Born-Infeld vector (AB , AC)⊺ and their field strengths F B, C = dAB, C,

A(2)
m =

(
Aµ 9

Aµ10

)
=

(
AB

µ

AC
µ

)
, F(3)

m =

(
Fµν 9

Fµν10

)
=

(
F B
µν

F C
µν

)
. (3.18)

Here, AB and AC are gauge potentials associated with the Kalb-Ramond field B̂(2) and the

RR two-form Ĉ(2) , respectively. We also fix the gauge such that Amn = 0 . In M-theory,

F(3)
m acts as ∂m under the SL(2 ,Z) transformation on the compactified torus. According to

Eq. (3.15), we find (
F̂B

F̂C

)
→

(
cos θ sin θ

− sin θ cos θ

)(
F̂B

F̂C

)
, (3.19)

where (
F̂B

F̂C

)
=

v̂m F(3)
m

êm F̂(3)
m

 =

 τ̂
1/2
2 F B

τ̂
−1/2
2

(
F C + τ̂1 F

B
)
 . (3.20)

In terms of the complex field strength Ŵ = F̂C + i F̂B , the SL(2 ,Z) transformations in

Eq. (3.19) become Ŵ → eiθ Ŵ . Therefore, the quantity Ŵ∗ Ŵ = τ̂−1
2

∣∣τ̂ F B + F C
∣∣2 is mani-

festly SL(2 ,Z) invariant. This observation is nothing new from the metric formalism of the

toroidal geometry as Ŵ∗ Ŵ = ĝmn Fm Fn , where ĝmn is the inverse of the toroidal metric ĝmn

in Eq. (3.3).

Similarly, the two-form fields B̂(2) and Ĉ(2) arise from dimensionally reducing the three-

form gauge potential C(3) in M-theory, with Ĉ(3)
m =

(
B̂(2), Ĉ(2)

)⊺
. Analogous to Eqs. (3.19)

and (3.20), we have (
B̂(2)

Ĉ(2)

)
→

(
cos θ sin θ

− sin θ cos θ

)(
B̂(2)

Ĉ(2)

)
, (3.21)

where (
B̂(2)

Ĉ(2)

)
=

v̂m Ĉ(3)
m

êm Ĉ(3)
m

 =

 τ̂
1/2
2 B̂(2)

τ̂
−1/2
2

(
Ĉ(2) + τ̂1 B̂

(2)
)
 . (3.22)

We discover a new basis for the background fields, as shown in Eq. (3.22), where all the

spacetime indices are projected onto frame indices by the vielbein fields on the torus.
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3.2. Anisotropy from Blowing Up the Torus

We are ready to perform the membrane limit introduced in section 2.1. The reparameter-

izations in Eq. (2.10) of the vielbein fields in the target space membrane Newton-Cartan

geometry imply that, on the compactified torus,

v̂ = ω2/3 v , ê = ω−1/3 e , (3.23)

where v = vm dxm, e = em dxm and

vm =
1

√
τ2

(
1

−τ1

)
, em =

√
τ2

(
0

1

)
. (3.24)

Moreover, compare Eqs. (2.5) and (3.7), we find

τ̂1 = τ1 , τ̂2 = ω−1 τ2 , (3.25)

where τ = τ1 + i τ2 will be the modulus of the anisotropic torus after performing the ω → ∞
limit. Matching Eqs. (3.23) and (3.25) requires

x̂m = ω1/6 xm . (3.26)

In terms of the prescriptions (3.23) ∼ (3.26), we find that the SL(2 ,Z) transformations of v̂

and ê in Eq. (3.11) now become(
v

e

)
→

sgn
(
γ τ1 + δ

)√
1 + κ2/ω2

(
1 −κ/ω2

κ 1

)(
v

e

)
, κ =

γ τ2
γ τ1 + δ

. (3.27)

In the case where γ τ1 + δ ̸= 0 , we are allowed to perform the limit ω → ∞ directly,

which leads to the following SL(2 ,Z) transformation of vielbein fields v and e :(
v

e

)
→ sgn

(
γ τ1 + δ

)(1 0

κ 1

)(
v

e

)
. (3.28)

The torus after performing the ω → ∞ limit as an anisotropic torus, which does not admit

any metric description. The geometry of the anisotropic torus encodes by the vielbein fields

v and e , which are longitudinal and transverse in the background membrane Newton-Cartan

geometry, respectively. Regarding the vielbein fields to be arbitrary, we will refer to the

transformation (3.28) as a local Galilean rotation. Similarly, for the inverse vielbein fields vm

and em defined via the orthogonality conditions,

vm vm = em em = 1 , vm em = em vm = 0 , vn vm + en em = δnm . (3.29)

we have (
vm

em

)
∂

∂xm
→

(
1 −κ

0 1

)(
vm

em

)
∂

∂xm
. (3.30)
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We will discuss the case where γ τ1 + δ = 0 later in section 3.4.

In order to elucidate the physical meaning of the aforementioned limiting procedure,

certain rewriting in the relativistic case before sending ω to infinity is required. We perform

the following steps:

1. First, note that τ̂2 in Eq. (3.6) transforms as

τ̂2 →
1

1 + κ̂2
τ̂2

(γ τ̂1 + δ)2
. (3.31)

The branching factor sgn(γ τ̂1 + δ) in Eq. (3.11) arises as

√
τ̂2 →

sgn
(
γ τ̂1 + δ

)
√

1 + κ̂2

√
τ̂2

γ τ̂1 + δ
. (3.32)

The sign function in Eq. (3.32) is the origin of the branching factor in Eq. (3.11).

2. Next, we show that this branching factor can be relocated into the choice of branching in

the dilaton field in type IIB superstring theory. This IIB theory arises from compactifying

relativistic M-theory over the torus, where τ̂2 = e−Φ̂ with Φ̂ the dilaton field and τ̂1 = Ĉ(0)

the RR zero-form. The transformation τ̂2 in Eq. (3.31) implies

Φ̂ → Φ̂ + ln
(
1 + κ̂2

)
+ 2 ln

∣∣γ Ĉ(0) + δ
∣∣ . (3.33)

Modify the SL(2 ,Z) transformation of the dilaton field to be [31],

Φ̂ → Φ̂ + ln
(
1 + κ̂2

)
+ 2 ln

(
γ Ĉ(0) + δ

)
, (3.34)

we find that Eq. (3.32) now becomes

√
τ̂2 →

1√
1 + κ̂2

√
τ̂2

γ τ̂1 + δ
. (3.35)

As a result, Eq. (3.11) now simplifies to be(
v̂

ê

)
→ 1√

1 + κ̂2

(
1 −κ̂

κ̂ 1

)(
v̂

ê

)
, (3.36)

where the branching factor is removed. The new transformation (3.34) implies that Φ̂ is

complexified and will generally gain a shift of 2πi when γ Ĉ(1) + δ < 0 , which, however,

does not affect the positivity of the string coupling ĝs = e⟨Φ̂⟩ .

3. Using Eqs. (3.11) and (3.25), we find κ̂ = κ/ω . Finally, we take the redefinition ω = i c

such that Eq. (3.36) becomes(
v

e

)
→ 1√

1 − κ2/c2

(
1 κ/c2

κ 1

)(
v

e

)
, (3.37)
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where we applied the reparametrizations in Eq. (3.23). The above procedure effectively

performs a Wick rotation of the longitudinal direction on the two-torus. As a result, the

expression in Eq. (3.37) is in form the same as a local Lorentz boosts on the two-torus:

the mysterious quantity κ now gains a physical interpretation as an effective Lorentz boost

velocity in the transverse direction, while c , if taken to be real-valued, plays the role of an

effective speed of light.

After the above preparation, it is now straightforward to understand the physical meaning

of Eq. (3.28) in nonrelativistic M-theory. Taking the infinite speed of light limit c → ∞ in

Eq. (3.37), we find the induced transformation(
v

e

)
→

(
1 0

κ 1

)(
v

e

)
(3.38)

that replaces Eq. (3.28). The Galilean rotation Eq. (3.28) on the anisotropic torus now

becomes an effective “Galilean boost” in Eq. (3.38). Effectively, on a local patch of the

toroidal manifold, v can be thought of as the absolute time t in Newton-Cartan geometry,

while e represents a spatial direction x along which a Galilean boost is performed. Then,

Eq. (3.38) becomes

t → t , x → x + κ t , (3.39)

which is genuinely speaking a local Galilean boost transformation, with κ the boost velocity.

Of course, the Galilean boost between a spatial direction and an absolute time direction

is fundamentally different from the Galilean rotation between two spatial directions on the

anisotropic torus, where the latter is what we ultimately care about. We will not keep

emphasizing this distinction throughout the paper but loosely refer to κ as the boost velocity.

This slight abuse of terminology has the benefit of bringing up the more familiar intuition

from Newton-Cartan geometry. Finally, we note that the SL(2 ,Z) transformation of the

dilaton field in the resulting nonrelativistic IIB string theory after the anisotropic toroidal

reduction is

Φ → Φ + 2 ln
(
γ C(0) + δ

)
, (3.40)

which matches the c → ∞ limit of the dilaton transformation (3.34) in relativistic IIB string

theory.

The procedure of complexifying ω = i c has an interesting effect on the nonrelativistic

string limit defined by Eqs. (2.3) and (2.5), which we transcribe as below:

B̂(2) = −ω2 eΦ/2 ℓ(2) + B(2) , ĜMN = ω3/2 τMN + ω−1/2EMN , (3.41a)

Ĉ(q) = ω2 eΦ/2 ℓ(2) ∧ C(q−2) + C(q) , Φ̂ = Φ + lnω . (3.41b)

In terms of ω = i c , and redefining ĜMN and Φ̂ such that the T-duality invariant quantity

eΦ̂ Ĝ in the Einstein frame is unchanged, we find the following reparametrizations:

B̂(2) = c2 eΦ/2 ℓ(2) + B(2) , ĜMN = c3/2 τMN + c−1/2EMN , (3.42a)
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Ĉ(q) = −c2 eΦ/2 ℓ(2) ∧ C(q−2) + C(q) , Φ̂ = Φ + ln c . (3.42b)

Shown in [30], these two limiting prescriptions lead to different sectors in nonrelativistic

IIB string theory, which are related to each other via SL(2 ,Z) transformations satisfying

γ C(0) + δ < 0 . On the other hand, when γ C(0) + δ > 0 , each of these sectors is mapped to

itself.

3.3. M-Theory Origin of Polynomial Realization of SL(2 ,Z)

We are ready to apply the machinery developed to the anisotropic toroidal compactification

of nonrelativistic M-theory. This compactification will give rise to a natural set of variables in

nonrelativistic IIB superstring theory and provide a geometrical interpretation of the exotic

polynomial realization of SL(2 ,R) in nonrelativistic IIB supergravity [31]. We start with

a geometrical derivation of the SL(2 ,Z) transformations of various fundamental fields in

nonrelativistic IIB superstring theory, namely, the vielbein, dilaton, Kalb-Ramond, and RR

fields. In the Einstein frame, the vielbein fields are automatically invariant under the SL(2 ,Z)

transformations. Therefore, we only need to focus on how the dilaton and higher-form gauge

fields transform under the action of SL(2 ,R).

We first derive the SL(2 ,Z) transformations of the dilaton Φ and zero-form C(0) in

nonrelativistic IIB string theory. From Eq. (3.38) , we learned that v = vm dxm is invariant

under the local Galilean boost on the anisotropic torus. Since the toroidal coordinates xm

transform linearly under the SL(2 ,Z) isometry, xm → Λm
n x

n , we find

vm → Λm
n vn , vm =

1
√
τ2

(
1

−τ1

)
, Λm

n =

(
δ −γ

−β α

)
. (3.43)

Similarly, em ∂m is also invariant under the local Galilean boost. Therefore,

em → Λm
n e

n , em =
1

√
τ2

(
τ1

1

)
, Λm

n =

(
α β

γ δ

)
. (3.44)

Since τ = C(0) + i e−Φ , both Eqs. (3.43) and (3.44) imply the following SL(2 ,Z) transforma-

tions:

Φ → Φ + 2 ln
(
γ C(0) + δ

)
, C(0) → αC(0) + β

γ C(0) + δ
. (3.45)

Next, we focus on the SL(2 ,Z) transformations of the two-forms B(2) and C(2) . In terms

of the reparametrizations in Eq. (2.5), we find the following induced reparametrizations of

B̂(2) and Ĉ(2) defined in Eq. (3.22):

B̂(2) = −ω3/2 ℓ(2) + ω−1/2 B(2) , Ĉ(2) = ω1/2 C(2) . (3.46)

Here, analogous to Eq. (3.22), B(2) and C(2) arise from projecting the three-form gauge field

C(3) in nonrelativistic M-theory, with(
B(2)

C(2)

)
=

vm C(3)
m

em C(3)
m

 =

(
e−Φ/2B(2)

eΦ/2
(
C(2) + C(0)B(2)

)) . (3.47)
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The quantities B̂(2) (Ĉ(2)) transform in the same way as v̂ (ê). Therefore, Eqs. (3.11) and

(3.46) imply(
−ω2 ℓ(2) + B(2)

C(2)

)
→ 1√

1 + κ2/ω2

(
1 −κ

κ/ω2 1

)(
−ω2 ℓ(2) + B(2)

C(2)

)
, (3.48)

In the ω → ∞ limit, we obtain

B(2) → B(2) − κ C(2) + 1
2 κ

2 ℓ(2) , C(2) → C(2) − κ ℓ(2) , (3.49)

which shows explicitly that B(2) and C(2) transform as polynomials in κ .

Finally, we turn to the SL(2 ,Z) transformation of the RR four-form C(4) in nonrelativistic

string theory. In the relativistic IIB superstring theory, the four-form field

Ĉ(4) ≡ Ĉ(4) +
1

2
B̂(2) ∧ Ĉ(2) (3.50)

forms an SL(2 ,Z) singlet. Uplifting to M-theory, the four-form in Eq. (3.50) arises from the

six-form gauge potential C(6) , i.e.,

Ĉ(4) =
1

2
Ĉ(6)
mn v̂

m êm , (3.51)

where the toroidal indices m and n in Ĉ(6)
mn are projected to be the frame indices using the

inverse vielbein fields vm and em . The quantity in Eq. (3.51) is manifestly invariant under

the local rotation transformation (3.14) on the torus. Plugging Eq. (2.5) into Eq. (3.50), we

find

Ĉ(4) =
1

2
ω2 C(2) ∧ ℓ(2) + C(4) , C(4) = C(4) +

1

2
B(2) ∧ C(2) . (3.52)

From Eq. (3.48), we read off the SL(2 ,Z) transformation

Ĉ(2) → 1√
1 + κ2/ω2

(
−κ ℓ(2) +

κ

ω2
B(2) + C(2)

)
. (3.53)

Together with the SL(2 ,Z) transformation Ĉ(4) → Ĉ(4) and Eq. (3.52), the ω → ∞ limit gives

C(4) → C(4) − 1

2
κB(2) ∧ ℓ(2) +

1

4
κ2 C(2) ∧ ℓ(2) . (3.54)

We summarize what we have derived so far. while (3.45) of Φ and C(0) form an SL(2 ,Z)

doublet,

eΦ/2

(
C(0)

1

)
→

(
α β

γ δ

)(
C(0)

1

)
, (3.55)

which has the geometric interpretation as the inverse transverse vielbein denoted as em on

the torus. Note Eq. (3.55) is simply a rewriting of Eq. (3.44) in IIB string variables. The

– 20 –



SL(2 ,Z) transformations (3.49) and (3.54) of the higher-form potential fields are polynomials

in κ , which form two three-dimensional polynomial realizations of SL(2 ,Z),

S
(2)
3 =


ℓ(2)

C(2)

B(2)

 , S
(4)
3 =


C(2) ∧ ℓ(2)

B(2) ∧ ℓ(2)

2 C(4)

 . (3.56)

Explicitly, the SL(2 ,Z) transformations of the two three-vectors in Eq. (3.56) take the form

S3 → U3 S3 , with

U3 =


1 0 0

−κ 1 0

1
2 κ

2 −κ 1

 . (3.57)

These polynomial realizations of SL(2 ,Z) have the geometric interpretation as local Galilean

boosts on the compactified torus, with κ the boost velocity.

3.4. S-Duality and One-Brane Limit

The discussions in sections 3.2 and 3.3 only apply to γ τ1 + δ ̸= 0 . When γ τ1 + δ = 0 , we

have to revisit Eq. (3.6) before taking the ω → ∞ limit. Using Eq. (3.25), we find

τ̂ ′1 =
α

γ
, τ̂ ′2 =

ω

γ2 τ2
. (3.58)

Under the condition γ τ1 + δ = 0 , the SL(2 ,Z) transformation (3.15) becomes(
v̂′m

ê′m

)
∂

∂x̂m
→

(
0 1

−1 0

)(
v̂m

êm

)
∂

∂x̂m
. (3.59)

We have introduced the primed notation to denote the variables after the SL(2 ,Z) transfor-

mation. We already learned around Eq. (3.21) that (B̂(2), Ĉ(2))⊺ transform in the same way

as in Eq. (3.59). Therefore,

B̂′(2) = Ĉ(2) , Ĉ′(2) = −B̂(2) . (3.60)

Plugging Eq. (3.46) into Eq. (3.60), we find

B̂′(2) = ω1/2 C(2) , Ĉ′(2) = ω3/2 ℓ(2) − ω−1/2 B(2) . (3.61)

From Eqs. (3.58) and (3.61), we find the dual theory described by the primed notation is

defined by the following reparametrizations of the background fields in relativistic IIB string

theory:

τ̂ ′1 = τ ′1 , B̂′(2) = ω1/2 B′(2) , (3.62a)

τ̂ ′2 = ω τ ′2 , Ĉ′(2) = ω3/2 ℓ′(2) + ω−1/2 C′(2) . (3.62b)

– 21 –



The reparametrizations of the vielbein fields remain the same as in Eq. (2.3), with

Ê′A = ω3/4 τ ′A , Ê′A′
= ω−1/4E′A′

. (3.62c)

These reparametrizations of the relativistic background fields are different from Eqs. (3.25)

and (3.46) associated with the nonrelativistic string limit: instead of tuning the Kalb-Ramond

field B̂′(2) to its critical value to cancel the fundamental string tension, we are now in the

dual frame where the RR two-form Ĉ′(2) is fine-tuned to cancel the D1-string tension. This

execution is the one-brane limit of relativistic IIB string theory.

To make the above observation manifest, we apply the reparametrizations in Eq. (3.62)

to the SL(2 ,Z)-invariant action describing the (p , q)-string in relativistic IIB string theory,

which is a bound state of p fundamental strings and q D1-strings. For simplicity’s sake, we

drop the primes in Eq. (3.62) and in the rest of this subsection. Note that the notation

here without the primes is for the one-brane limit, and they should not be confused with

the notation in nonrelativistic string theory. In terms of the new variables in Eq. (3.22), the

(p , q)-string action can be written as

Ŝstring = −T

∫
d2σ

√
−
(
P̂ 2 + Q̂2

)
det Ĝαβ + T

∫ (
P̂ B̂(2) + Q̂ Ĉ(2)

)
, (3.63)

where

P̂ = wm v̂m , Q̂ = wm êm , wm =

(
p

q

)
. (3.64)

Note that wm transforms as an SL(2 ,Z) doublet. The action (3.63) is manifestly SL(2 ,Z)

invariant. Note that τ̂1 = τ1 . Plugging Eq. (3.62) into (3.63), we find the one-brane ω → ∞
limit of Eq. (3.63) is

Sstring =
T Q

2

∫
d2σ

√
−τ ταβ Eαβ + T Q

∫ (
C(2) − χ−1 B(2) − 1

2 χ
−2 ℓ(2)

)
, (3.65)

where

Q = wm em = q
√
τ2 > 0 , χ = − q τ2

p− q τ1
. (3.66)

It is clear from Eq. (3.65) that the (p , q)-states in the one-brane limit have to contain D1-

strings. In contrast, because there is no state left when q = 0 , there is no independent

fundamental string state anymore. Under the SL(2 ,Z) transformations, the action (3.65) is

invariant if γ = 0 , but is mapped to the (p , q)-string action in nonrelativistic string theory if

γ ̸= 0 . See [15] for further discussions on the complete SL(2 ,Z) transformations relating the

nonrelativistic string and one-brane limits of type IIB superstring theory and its connection

to Matrix string theory.

4. Application: M5-Brane on Anisotropic Torus

We apply the general theory of anisotropic compactification to study the anisotropic compact-

ification of the M5-brane, i.e., the magnetic dual of the M2-brane in nonrelativistic M-theory.
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We start with an application from the zweibein formalism for the toroidal compactification

introduced in section 3.1 to relativistic M-theory. We will review compactifying relativistic

M5-brane over a torus and revisit its relation to the SL(2 ,Z)-invariant D3-brane action [34].

In terms of the variables whose indices are projected by the zweibeine fields as in section 3.1,

we construct a convenient way of writing the manifestly SL(2 ,Z)-invariant Dp-branes. We

will then study the nonrelativistic membrane limit of the M5-brane in nonrelativistic M-theory

and its anisotropic toroidal compactification. We will relate the compactified M5-brane ac-

tion to the manifestly SL(2 ,Z)-invariant D3-brane in nonrelativistic IIB string theory, which

provides an M-theory explanation for the intricate branched SL(2 ,Z) structure found in [31].

4.1. Relativistic M5-Brane over a Torus

Before considering the nonrelativistic membrane limit, we first focus on the relativistic M5-

brane, whose formalism is sufficiently involved, and it is worthwhile to sort out the convention

before we move on to the nonrelativistic M5-brane.

4.1.1. The PST Formalism of M5-Brane

We start with reviewing the Pasti-Sorokin-Tonin (PST) formalism of a single M5-brane with

general covariance in relativistic M-theory [36–38]. 6 We will focus on the bosonic contents,

but note that this bosonic sector is part of a supersymmetric theory that enjoys kappa sym-

metry [53]. Just like how an open string is coupled to a one-form gauge field A(1) , an open

M2-brane couples to an antisymmetric two-form gauge potential A(2) . The gauge potential

A(2) is also coupled to the M5-brane when open M2-branes are ending on it, which is similar

to how a D-brane couples to a vector gauge potential when there are open strings ending on it.

In the free field limit, the field strength associated with A(2) is self-dual on the six-dimensional

worldvolume of the M5-brane. The PST formalism is a Born-Infeld-Dirac-like action describ-

ing a single bosonic M5-brane that realizes this self-duality condition at non-linear order,

which is made possible after introducing an auxiliary worldvolume one-form field a(1) .

Consider an embedding of the six-dimensional worldvolume of the M5-brane with coor-

dinates σµ , µ = 0 , 1 , · · · , 5 within eleven-dimensional spacetime. The PST action is 7

ŜM5 = −TM5

∫
d6σ

√
−det

(
Ĝµν + i Θ̂µν

)
−
TM5

4

∫
d6σ

√
−Ĝ Θ̂µν Ĥµνρ N̂ρ −

TM5

2

∫ (
Ĉ(6) + F(3) ∧ Ĉ(3)

)
,

(4.1)

where N̂µ = Ĝµν N̂ν ,

N̂(1) =
a(1)√

aµ Ĝµν aν

, F(3) = dA(2) , Ĥ(3) = Ĉ(3) + F(3) , (4.2)

6Also see [51, 52] that captures the five-dimensional covariance instead of the general covariance of the

six-dimensional M5-brane worldvolume. Historically, these works led up to the discovery of the PST action.
7See [54] for the Hamiltonian formalism of the relativistic M5-brane.
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and

Θ̂µν =
1

3!
√
−Ĝ

ϵµνρσλκ Ĥρσλ N̂κ . (4.3)

Here Ĝµν , Ĥµνρ , Ĉ(3) , and Ĉ(6) have been pulled back from the target space to the worldvol-

ume, e.g., Ĝµν = ∂µx
M ∂νx

N ĜMN . Locally, we require a(1) to be exact, i.e.,

a(1) = da(0) . (4.4)

In the flat limit with Ĝµν = ηµν and Ĉ(3) = Ĉ(6) = 0 , we find the part of the PST action (4.1)

that is quadratic in F(3)

Ŝquad.
M5 = −TM5

∫
d6σ

{
1

24
Fµνρ Fµνρ −

∂ρa ∂
σa

8 ∂λa ∂
λa

[
Fµνρ−

(
⋆F
)µνρ] [

Fµνσ−
(
⋆F
)
µνσ

]}
. (4.5)

This action describes a free field A(2) satisfying the self-dual condition F(3) = ⋆F(3) . Such a

constrained two-form potential is said to be chiral.

Besides the worldvolume diffeomorphisms, the PST action also enjoys rich gauge sym-

metries, which we classify below:

1. One-form gauge symmetry of the chiral two-form only acts non-trivially on A(2), with

δξA
(2) = dξ(1) . (4.6)

2. The PST symmetries parametrized by a zero-form φ and a one-form χ(1) involve the

scalar a and act nontrivially on the chiral two-form A(2), with

δPSTa = φ , δPSTA(2) =
1

2

(
φW(2)

∂µa ∂
µa

+ da(0) ∧ χ(1)

)
, (4.7)

where

Wµν = Θ̂µνρ ∂ρa + 2

√
∂λa ∂

λa√
−Ĝ

δ

δΘ̂µν

√
−det

(
Ĝρσ + i Θ̂ρσ

)
. (4.8)

The PST symmetry parametrized by φ says that the scalar mode a is pure gauge.

3. Higher-form gauge symmetries that involve the three- and six-form gauge potentials,

δĈ(3) = dξ(2) , δA(2) = −ξ(2) , δĈ(6) = dξ(5) + dξ(2) ∧ Ĉ(3) . (4.9)

For example, one may use the PST symmetries to impose gauge fixing ∂µa = δ5µ and Aµ5 = 0 .

This gauge choice recovers the action principle considered in [51].

– 24 –



4.1.2. Double-Dimensional Reduction over a Torus

In [34], the double-dimensional reduction of M5-brane on a two-torus was studied, where

shown that the resulting action on the four-dimensional worldvolume describes the D3-brane

and its SL(2 ,Z) duals under special gauge choices. It is expected that a more general gauge

choice leads to a manifestly SL(2 ,Z)-invariant D3-brane action as in [55]. We now review

the double-dimensional reduction of M5-brane in [34] and present a calculation that makes

the SL(2 ,Z) invariance manifest. We will recast this calculation in the zweibein formalism

on the torus developed in section 3.1. A solid understanding of this construction in the

relativistic framework will provide useful guidance for our later discussion on the anisotropic

compactification of the M5-brane in nonrelativistic M-theory.

We review [34] in the following. We will start with introducing the reduction ansatz for

the metric field in item (a). Then, we will discuss about the gauge fixing in item (b). To

make contact with the D3-brane action directly, we must perform an electromagnetic duality

transformation of the dimensionally reduced chiral field on the four-dimensional worldvolume

as in item (c), with the dual field being the Nambu-Goldstone boson that perturbs the shape

of the D3-brane. Finally, we provide a list of mappings between the ingredients on the M5-

and D3-brane in item (d), which will eventually lead us to the manifestly SL(2 ,Z)-invariant

D3-brane action in item (e).

(a) Metric reduction. We consider a dimensional reduction over a two-torus whose cycles

extend in x9 and x10 , and adopt the following ansatz for the target space metric:

ĜMN =

(
ĜMN 0

0 ĝmn

)
, ĝmn =

Γ

τ̂2

(
1 −τ̂1

−τ̂1 τ̂21 + τ̂22

)
, (4.10)

where ĝmn is the metric on the torus as given in Eq. (3.3) and Γ is the surface area. Moreover,

ĜMN is the metric in the Einstein frame, M ,N = 0 , 1 , · · · , 8 and m,n = 9 , 10 . Now, we

consider a double-dimensional reduction of the M5-brane over the torus extending in the

x9 and x10 directions in the target space. We require that the M5-brane wrap around this

two-torus such that x9 = σ4 and x10 = σ5 . The pullback metric on the worldvolume also

factorizes,

Ĝµν =

(
Ĝαβ 0

0 ĝmn

)
. (4.11)

Here, α = 0 , 1 , 2 , 3 , m ,n = 4 , 5 , and

Ĝαβ = ∂αx
M ∂βx

N ĜMN , ĝmn = ∂mx
m ∂nx

n ĝmn . (4.12)

Recall that the inverse vielbein fields on the target space torus defined in Eq. (3.16), whose

pullbacks to the worldvolume torus give the following frame fields:

v̂m =

√
τ̂2
Γ

(
1

0

)
, êm =

1√
Γ τ̂2

(
τ̂1

1

)
, (4.13)
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with

ĝmn = êma ê
n
b δ

ab, êma =

(
v̂m

êm

)
. (4.14)

Here, we recover the dependence on the two-torus area Γ.

By writing Eq. (4.10), we have truncated the Kaluza-Klein excitations from the toroidal

compactification [34]. Including these excitations would give rise to (p , q)-string states in IIB

string theory, which implies that the Kaluza-Klein vectors correspond to the reductions of

the two-form Kalb-Ramond and RR potential over a circle. The origin of the (p , q)-string

states can be explained by the following argument: compactifying M-theory over the torus

gives rise to IIA string theory on a circle, T-dualizing which gives rise to IIB string theory. In

IIA, the Kaluza-Klein states correspond to the D0-brane states, which become (p , q)-string

states after the T-duality transformation. The Kaluza-Klein momentum corresponds to the

winding number of these (p , q)-strings. Therefore, the compactification of the M5-brane over

the torus is, in fact, a bound state of a D3-brane and wrapped (p , q)-strings. The reduction

map in Eq. (4.10) allows us to focus only on the D3-brane dynamics. 8

(b) Fixing the PST gauge. We gauge fix the one-form a(1) to be an element in the first

de Rham cohomology group on the torus, with

a(1) = q dσ4 − p dσ5 , p , q ∈ Z . (4.15)

Under the action of the SL(2 ,Z) isometry group on the torus, we have(
p

q

)
→

(
α β

γ δ

)(
p

q

)
. (4.16)

Note that p and q label the number of the fundamental and D1-strings in a (p , q)-string

state, respectively. It follows that aα = 0 . Using the PST symmetry parametrized by χ(1) in

Eq. (4.7), we gauge fix A(2)
mn = 0 . It follows that Fαmn = 0 . Using the above prescriptions,

and projecting the “m” index to the frame index “a” using Eq. (4.13), we find the following

reduced action on the four-dimensional worldvolume M4 :

Sd.d. = − TM5 Γ

∫
M4

d4σ

√
−det

[
Ĝαβ − i ϵab Na

(
⋆Ĥ(3)

b

)
αβ

−
(
⋆Ĥ(3)

)
α

(
⋆Ĥ(3)

)
β

]
(4.17)

−
TM5

2

∫
M4

[
Ĉ(6)
45 +

(
Ĉ(3) + 2 F(3)

)
∧ Ĉ(3)

45 − Γ ϵab
(

N̂a Ĥ(3)
b ∧ Ĥ(3)

c N̂c − F(3)
a ∧ Ĉ(3)

b

)]
.

It is understood that all the differential forms and the Hodge star are defined on M4 . E.g.,

Ĥ(3)
a = 1

2 Ĥ(3)
αβa dσ

α ∧ dσβ is a two-form on M4 .

8We thank Johannes Lahnsteiner for valuable discussions on compactifications in supergravity.

– 26 –



(c) Electromagnetic duality. The four-dimensional action (4.17) is not yet the D3-brane

in the target space compactified over a circle: We still need to dualize the two-form gauge

potential A(2)
αβ on M4 . Implementing this duality transformation amounts to adding to the

action (4.17) a generating functional, which leads to the parent action,

Sparent = Sd.d. −
TM5

3!

∫
M4

d4σ F̃αβγ
(
F(3) − dA(2)

)
αβγ

. (4.18)

Integrating out F̃αβγ enforces F(3) = dA(2) and leads us back to the original action (4.17).

Instead, we now integrate out A(2) , which imposes the constraint ∂αF̃αβγ = 0 . This constraint

is solved locally by

F̃αβγ = ϵαβγδ πδ , π(1) = dπ , (4.19)

i.e., the two-form A(2) is dual to a scalar mode π . Note that the Levi-Civita symbol ϵαβγδ

with curved worldvolume indices is defined via ϵ01234 = 1 . Upon performing integration over

F(3), now regarded as an independent field, it leads to the emergence of the dual action,

Sdual = − TM5 Γ

∫
M4

d4σ

√√√√−det

[
Ĝαβ + ϵab N̂a

(
Ĥ(3)
b

)
αβ

+
Π̂α Π̂β

Γ2

]
+ TM5

∫
Ĉ(3) ∧ π(1)

−
TM5

2

∫
M4

[(
Ĉ(6)
45 − Ĉ(3) ∧ Ĉ(3)

45

)
− Γ ϵab

(
N̂a Ĥ(3)

b ∧ Ĥ(3)
c N̂c − F(3)

a ∧ Ĉ(3)
b

)]
, (4.20)

where

Π̂(1) = π(1) + Γ Ĉ(1) . (4.21)

The action (4.20) is manifestly invariant under the SL(2 ,Z) duality, which acts on the frame

index “a” as an SO(2) rotation. The scalar π is the Nambu-Goldstone boson from the

spontaneous breaking of the isometry direction where the D3-brane is localized.

(d) Dictionary between M5 and D3 data. To make the relation between Eq. (4.20)

and the D3-brane action manifest, we need to re-express the action written in terms of the

stringy ingredients. From the string-theoretical perspective, we have the following dictionary

between quantities on the M5- and D3-brane:

(d1) The modulus τ̂ = τ̂1 + i τ̂2 on the torus corresponds to the string dilaton and RR

zero-form, respectively, with τ̂1 = Ĉ(0) , τ̂2 = e−Φ̂ .

(d2) The Born-Infeld vectors AB and AC on the D3-brane, which are associated with the

Kalb-Ramond and RR two-form, are related to the two-form gauge potential coupled to

open membranes via A(2)
m =

(
AB, AC

)⊺
. The associated field strengths F B and F C are

given by F(3)
m =

(
F B, F C

)⊺
.

(d3) The higher-form RR potentials Ĉ(2) and Ĉ(4) in IIB string theory and Ĉ(1) and Ĉ(3) in

IIA string theory on a circle are associated with the higher-form gauge potentials Ĉ(3)
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and Ĉ(6) in M-theory, with

Ĉ(6)
45 = Γ

(
2 Ĉ(4) + Ĉ(3) ∧ Ĉ(1)

)
, Ĉ(4) = Ĉ(4) +

1

2
B̂(2) ∧ Ĉ(2) , (4.22a)

and

Ĉ(3)
45 = Γ e−Φ̂/4 Ĉ(1) , Ĉ(3)

m =

(
B̂(2)

Ĉ(2)

)
, Ĉ(3) = eΦ̂/4 Ĉ(3) . (4.22b)

Here, B̂(2) is the Kalb-Ramond field and Ĉ(q) are the RR potentials. Note that the

odd forms, Ĉ(1) and Ĉ(3) , also appear since the D3-brane lives in an effectively nine-

dimensional target space, as the tenth dimension compactifies over a circle.

(d4) The gauge-fixing condition (4.15) of a(1) contains the integers p and q , corresponding

to the number of the fundamental strings and of the D1-strings in a (p , q)-string bound

state, respectively. These (p , q)-strings are smeared over the D3-brane.

(e) Manifestly SL(2 ,Z)-invariant D3-brane action. In terms of the string-theoretical

ingredients in item (d), we find the quantities in Eq. (4.20) take the following form:

N̂a = −
sgn
(
p− q Ĉ(0)

)√
1 + χ̂2

(
χ̂

1

)
, χ̂ = − q e−Φ̂

p− q Ĉ(0)
, (4.23a)

Ĥ(3)
a =

1√
Γ

(
F̂ B

F̂ C

)
=

1√
Γ

(
B̂(2) + F̂B

Ĉ(2) + F̂C

)
. (4.23b)

Here, B̂(2) and Ĉ(2) are defined in Eq. (3.22) and F̂B and F̂B are defined in Eq. (3.20). Using

the above prescriptions, together with the rescalings,{
B̂(2) , Ĉ(2) , F̂B , F̂C

}
→

√
Γ
{
B̂(2) , Ĉ(2) , F̂B , F̂C

}
, (4.24)

we find Eq. (4.20) becomes

Ŝdual = − TD3

∫
M4

d4σ

√
−det

[
Ĝαβ + e−

Φ̂
2

(
R∂απ + Ĉα

)(
R∂βπ + Ĉβ

)
+ F̂αβ

]
− TD3

∫
M4

[(
Ĉ(4) + Rπ(1) ∧ Ĉ(3)

)
+ 1

2

(
F̂B ∧ Ĉ(2) − F̂C ∧ B̂(2)

)]
− TD3

∫
M4

(
χ̂ F̂ B + F̂ C

)
∧ F̂ (2)

2
√

1 + χ̂2
, (4.25)

where

F̂ (2) =
F̂ B − χ̂ F̂ C√

1 + χ̂2
. (4.26)
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Moreover, TD3 = ΓTM5 is the effective D3-brane tension, and R = e
Φ
4 Γ−1 is the radius of

the circle over which type IIB superstring theory compactifies. In the limit where the torus

shrinks to zero, i.e., Γ → 0 , we have R → ∞ and thus ten-dimensional IIB superstring theory.

The action (4.25) now describes D3-brane in the non-compact ten-dimensional target space

and takes the following form:

ŜD3 = − TD3

∫
d4σ

√
−det

(
Ĝαβ + F̂αβ

)
(4.27)

− TD3

∫ [
Ĉ(4) +

(
χ̂ F̂ B + F̂ C

)
∧ F̂ (2)

2
√

1 + χ̂2
+

1

2

(
F̂B ∧ Ĉ(2) − F̂C ∧ B̂(2)

)]
,

It is understood that all the ingredients are pullbacks from the ten-dimensional target space

to M4 . Since we focus on the D3-brane action, it is clear that the final expression (4.27)

can already be derived in a concrete way by setting R = 1 and Ĉ(1) = Ĉ(3) = 0 . We will

take advantage of these simplifications when we move on to the analogous calculation in

nonrelativistic string/M-theory later in this section.

The manifestly SL(2 ,Z)-invariant D3-brane action matches the SL(2 ,Z)-invariant action

in [55], where, in addition to the SL(2 ,Z) doublet wm = (p , q)⊺ in Eq. (4.16), a second

SL(2 ,Z) doublet w̃m = (p̃ , q̃ )⊺ is introduced, which satisfies

p q̃ − q p̃ = 1 . (4.28)

In terms of w̃m , the D3-brane action in [55] can be written as (also see [56])

Ŝ′
D3 = − TD3

∫
M4

d4σ

√√√√−det

(
Ĝαβ +

wmF̂m√
wnwn

)
− TD3

∫ [
Ĉ(4) − 1

2

(
wmΣ̂m

)
∧
(
w̃nΣ̂n

)]

− TD3

∫
M4

[(
w̃mΣ̂m

)
∧
(
wnF̂n

)
− 1

2

w̃mwm

wnwn

(
wkF̂k

)
∧
(
wrF̂r

)]
, (4.29)

where wnwn = wm gmnw
n , and

Σ̂m =

(
B̂(2)

Ĉ(2)

)
, F̂m =

(
B̂(2) + dAB

Ĉ(2) + dAC

)
(4.30)

Using Eq. (4.28), we find that Ŝ′
D3 = ŜD3 up to a boundary term. Therefore, the action (4.27)

provides an alternative formalism of Eq. (4.29), but now without introducing w̃m .

When p = 1 and q = 0 , the action (4.27) reduces to the conventional D3-brane action in

the Einstein frame

ŜD3 → −TD3

∫
M4

[
d4σ

√
−det

(
Ĝαβ + e−Φ̂/2 F̂αβ

)
+ Ĉ(4) + Ĉ(2)∧ F̂ + 1

2 Ĉ
(0)F̂ ∧ F̂

]
,

where F̂ = B̂(2) + dAB .
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4.2. Nonrelativistic M5-Brane over an Anisotropic Torus

We are now ready to consider the nonrelativistic membrane limit of the M5-brane action (4.1).

This membrane limit has been introduced in section 2.1, where we have reparametrized the

vielbein fields as in Eq. (2.10) and the gauge potentials Ĉ(3) and Ĉ(6) as in Eq. (2.12), and

the limit is defined by sending ω to infinity.

4.2.1. M5-Brane Action in Nonrelativistic M-Theory

For simplicity, we consider a special configuration of M5-brane embedded in the curved

eleven-dimensional spacetime, where the transverse sector divides into two sectors with A′ =

(u′ , 4 , · · · , 8) and u′ = (2 , 3 , 10) . We require

Eµ
A′

=
(

Eµ
u′

0
)
. (4.31)

It follows from Eq. (2.10) that

Ĝµν = Ω2 γµν + Ω−1 Eµν , (4.32)

where Ω = ω2/3 , γµν = γµ
u γµ

v ηuv , and Eµν = Eµ
u′

Eν
v′ δu′v′ . The index u = 0 , 1 , 9

is the longitudinal frame index. This restriction will greatly simplify the derivation of the

nonrelativistic M5-brane action from taking the membrane limit of Eq. (4.1). To further

facilitate the large Ω expansion, we note the large Ω expansion

Θ̂µ
ν =

(
Θ0

)
µ
ν + Ω−3

(
Θ3

)
µ
ν + O(Ω−6) , (4.33)

where (
Θ0

)
µ
ν = Θµρ γρν − Γ̃µρ Eρν ,

(
Θ3

)
µ
ν = Θµρ Eρν − 1

2 Nu Nu
(
Θ0

)µ
ν . (4.34)

We have defined and

Γ̃µν =
1

3! E
ϵµνρσλκΓρσλ Nκ , N(1) =

a(1)√
au′ au′

, (4.35a)

Θµν =
1

3! E
ϵµνρσλκHρσλ Nκ , H(3) = C(3) + F(3) . (4.35b)

Recall that Γ(3) = γ0 ∧ γ1 ∧ γ9 is defined in Eq. (2.13). Here,

E = det
(
γµ

u Eµ
u′
)
. (4.36)

Using the above ingredients and the identity from the Cayley-Hamilton theorem

det
(
δµν + i Θ̂µ

ν

)
= 1 + 1

2 tr
(
Θ̂2
)

+ 1
8

[
tr
(
Θ̂2
)]2

− 1
4 tr
(
Θ̂4
)
, (4.37)

we find

−
√
−det

(
Ĝµν + i Θ̂µν

)
= −E

√
Ω3 det

(
1 + iΘ0

)
+ M + O

(
Ω−3

)
, (4.38a)
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−1

4

∫
d6σ

√
−Ĝ Θ̂µν Ĥµνρ N̂ρ = −1

4

∫
d6σ E

[
Θµν Hµνu′ Nu′ −

(
Γ̃µν Hµνu + Θµν Γµνu

)
Nu
]

− Ω3

2

∫
H(3) ∧ Γ(3)

(
1 − Ω−3 Nu Nu

)
+ O

(
Ω−3

)
, (4.38b)

−1

2

(
Ĉ(6) + F(3) ∧ Ĉ(3)

)
=

Ω3

2
H(3) ∧ Γ(3) − 1

2

(
C(6) + F(3) ∧ C(3)

)
, (4.38c)

where

M = tr
(
Θ0 Θ3

)[
1 + 1

2 tr
(
Θ2
0

)]
− tr

(
Θ3
0 Θ3

)
. (4.39)

Note that Nu = γµu Nµ and Nu′
= Eµ

u′ Nµ , where the inverse vielbein fields γµu and Eµ
u′

satisfy the orthogonality conditions

γµu γµ
v = δvu , γµu Eµ

u′
= Eµ

u′ γµ
u = 0 , (4.40a)

Eµ
u′ Eµ

v′ = δv
′

u′ , γµu γν
u + Eµ

u′ Eν
u′

= δµν . (4.40b)

Using the vielbein fields γµ
u and Eµ

u′
to project the curved indices of Eq. (4.34) gives

Θ0 =

(
Θu

v 0

Θu′
v ϵu

′
v′w′ Nw′

)
, Θ3 =

(
0 Θu

v′

0 Θu′
v′

)
− 1

2 Nu Nu Θ0 . (4.41)

Together with the condition Nu′ Nu′
= 1 , we obtain

det
(
1 + iΘ0

)
=
(
1 − Nu′ Nu′)

det
(
δuv + iΘu

v

)
= 0 . (4.42)

Therefore, Eq. (4.38a) is free of divergence in Ω . Moreover, the Ω3 divergences in Eqs. (4.38b)

and (4.38c) cancel each other. Assembling the expressions above, we find that the Ω → ∞
limit of the relativistic M5-brane action (4.1) is

SM5 = −TM5

∫
d3σ E

√
M− TM5

4

∫
d6σ E

[
Θµν Hµνρ Eρσ Nσ −

(
Γ̃µν Hµνρ + Θµν Γµνρ

)
γρσ Nσ

]
−

TM5

2

∫ (
C(6) + F(3) ∧ C(3) − Nu Nu H(3) ∧ Γ(3)

)
. (4.43)

Note that we have written the action (4.43) in a covariant way with respect to general back-

ground fields, such that the condition in Eq. (4.31) is not necessary anymore. Therefore

Eµν = Eµ
A′

Eν
A′

and Eµν = Eµ
A′ Eν

A′ , where the transverse vielbein EM
A′

is kept general and

orthogonality conditions defined in the target space to be

γM
u γM

v = δvu , γM
u EM

A′
= EM

A′ γM
u = 0 , (4.44a)

EM
A′ EM

v′ = δv
′

A′ , γM
u γN

u + EM
A′ EN

A′
= δM

N . (4.44b)

The definition for the determinant E =
√
−G in Eq. (4.36) can be covariantized to be

G =
1

(3!)2
ϵα1···α6 ϵβ1···β6 γα1β1

· · · γα3β3
Eα4β4

· · ·Eα6β6
. (4.45)

The action (4.43), together with the definition of M in Eqs. (4.34) and (4.39), describes a

single nonrelativistic M5-brane coupled to the spacetime membrane Newton-Cartan geometry.
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4.2.2. Double-Dimensional Reduction over an Anisotropic Torus

Next, we consider the compactification of the M5-brane action (4.43) over an anisotropic

torus. In the upcoming subsection, we will demonstrate that the resulting four-dimensional

worldvolume action exhibits duality with nonrelativistic IIB string theory’s D3-brane, which

possesses a manifest SL(2, ,Z) symmetry, a subject studied in [30]. This match will provide

a strong crosscheck of the action principle derived in Eq. (4.43).

We consider the following dimensional reduction over an anisotropic two-torus whose

cycles are along the x9 and x10 directions. The reduction ansatz for the vielbein fields γM
u

and EM
A′

are taken to be

γM
u =

(
γM

A 0

0 em

)
, EM

A′
=

(
EM

Ã′
0

0 vm

)
, (4.46)

where

vm =

√
Γ

τ2

(
1

−τ1

)
, em =

√
Γ τ2

(
0

1

)
(4.47)

with u = 0 , 1 , 9 and A′ = 2 , · · · , 8 , 10 in eleven-dimensional membrane Newton-Cartan ge-

ometry, and A = 0 , 1 and Ã′ = 2 , · · · , 8 in nine-dimensional string Newton-Cartan geometry

after dimensionally reducing over the anisotropic two-torus.

In order to perform a double-dimensional reduction of the M5-brane over the anisotropic

torus, we require that the brane wraps around the torus such that x9 = σ4 and x10 = σ5 .

The pullback vielbein fields factorize as

γµ
u =

(
τα

A 0

0 vm

)
, Eµ

A′
=

(
Eα

Ã′
0

0 em

)
. (4.48)

Here, µ = 0 , · · · , 5 is the curved index on the six-dimensional M5-brane worldvolume and

α = 0 , · · · , 3 is the curved index on the four-dimensional D3-brane worldvolume. The

pullbacks of the inverse vielbein fields on the target space torus are given by

vm =

√
τ2
Γ

(
1

0

)
, em =

1√
Γ τ2

(
τ1

1

)
. (4.49)

We truncated the Kaluza-Klein excitations as in section 4.1.2. This simplification will not

affect our comparison between the compactified M5-brane and D3-brane action.

We use the same gauge-fixing of the one-form a(1) as in section 4.1.2, i.e.,

a(1) = q dσ4 − p dσ5 , p , q ∈ Z , (4.50)

and gauge fix A(2)
mn = 0 , which implies that Fαmn = 0 . Moreover, Nµ is only non-vanishing

on the torus, with 9

Nm vm = − sgn
(
p− q C(0)

)
χ , Nm em = − sgn

(
p− q C(0)

)
, (4.51)

9Note that we are not complexifying the dilaton as in section 3.2.
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where

χ = − q e−Φ

p− q C(0)
. (4.52)

Note that χ transforms under the SL(2 ,Z) group as

χ → χ− κ . (4.53)

For simplicity, the IIA fields are set to zero and using the following dimensional reduction

prescriptions:

C(6)
45 = 2 C(4) , A(2)

m =

(
AB

AC

)
, C(3)

m =

(
B(2)

C(2)

)
, (4.54)

Based on the above ingredients, we find that the dimensionally reduced action is 10

S4D = − TD3

∫
d4σ

√√√√√√√−det

(
0 τβ

τ̄α Eαβ + Fαβ

)
+ det


0 Jβ 0

Jα ταβ + i F̃αβ Eα

0 E∗
β 0

+ SCS , (4.55)

where

SCS = −TD3

∫ [
C(4) +

1

2
F (2) ∧ F C − χF (2) ∧ ℓ(2) − 1

4
χ2 F C ∧ ℓ(2)

+
1

2

(
FB ∧ C(2) −FC ∧ B(2)

)]
,

(4.56)

and

Jα =
eΦ/4

2
√
−G

hαβ ε
βγδλ ∂γAδλ , Eα = Eα

2 + i Eα
3 , (4.57a)

F̃αβ =
1

2
√
−G

hαγ hβδ ε
γδλκ Fλκ , E∗

α = Eα
2 − i Eα

3 . (4.57b)

Note that the cursive ε denotes the Levi-Civita tensor, distinguishing it from the normal ϵ

that denotes the Levi-Civita symbol. The quantity hαβ is defined to be

hαβ = τα
A τβ

B ηAB + Eα
A′

Eβ
A′

(4.58)

and the measure G is given by

G =
1

4
ϵα1α2α3α4 ϵβ1β2β3β4 τα1β1

τα2β2
Eα3β3

Eα4β4
. (4.59)

10For simplicity, we focus on the IIB sector and assume C(1) = C(3) = 0 . Moreover, we set R = 1 , where R

is the circle’s radius over which the resulting type II superstring theory compactifies.
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Moreover, FB = e−Φ/2 dAB , FC = eΦ/2
(
dAC + C(0) dAB

)
, and

F (2) = F B − χF C + 1
2 χ

2 ℓ(2) , F B = B(2) + FB , F C = C(2) + FC . (4.60)

Note that the four-dimensional action (4.55) is independent of sgn(p − q C(0)) appearing in

Eq. (4.51). The above formalism is only valid when p − q τ1 ̸= 0 . We will discuss the case

where p − q τ1 = 0 later in section 4.4. In the next subsection, we will show that the novel

action (4.55) is indeed dual to the D3-brane action in nonrelativistic string theory.

4.3. D3-Brane Action in Nonrelativistic IIB Superstring Theory

We now show that the action (4.55) is dual to the manifestly SL(2 ,Z)-invariant D3-brane

action in nonrelativistic string theory. We start with the D3-brane action (4.27) and use the

reparametrizations of B̂(2) and Ĉ(2) as in Eqs. (3.46), with B(2) and C(2) defined in Eq. (3.47).

Moreover, we use the reparametrization of the RR four-form Ĉ(4) in Eq. (3.52). Note that

Ĝαβ = ω3/2 ταβ + ω−1/2Eαβ , F̂ (2) = −ω3/2 ℓ(2) + ω−1/2 F (2) , (4.61)

where F̂ (2) and F (2) are defined in Eq. (4.26) and (4.60), respectively. In the Einstein frame,

the D3-brane action (4.27) in relativistic IIB superstring theory gives rise to the following

D3-brane action in nonrelativistic IIB superstring theory:

SD3 = − TD3

∫
d4σ

√√√√−det

(
0 τβ

τ̄α Eαβ + Fαβ

)
+ SCS , (4.62)

where the Chern-Simons term SCS is the same as in Eq. (4.56). Up to a boundary term,

Eq (4.62) is equivalent to the D3-brane action in nonrelativistic IIB theory found in [30],

except that the Chern-Simons terms in Eq. (4.62) take a much simpler form and is manifestly

independent of the auxiliary SL(2 ,Z) doublet (p̃ , q̃ )⊺ .

Next, we consider the action of a single D3-brane localized in a circle of radius R . For

simplicity, we assume R = 1 and Ĉ(1) = Ĉ(3) = 0 . The D3-brane action (4.27) in relativistic

IIB superstring theory now becomes

ŜD3 = − TD3

∫
d4σ

√
−det

(
Ĝαβ + f̂α f̂β + F̂αβ

)
(4.63)

− TD3

∫ [
Ĉ(4) +

(
χ̂ F̂ B + F̂ C

)
∧ F̂

2
√

1 + χ̂2
+ 1

2

(
F̂B ∧ Ĉ(2) − F̂C ∧ B̂(2)

)]
,

where f̂α = e−Φ̂/4 ∂απ is related to the Nambu-Goldstone boson perturbing the shape of the

D3-brane along the circle . We dualize π by introducing the generating functional

Ŝg.f. = −
TD3

3!

∫
d4σ Jα

(
πα − ∂απ

)
. (4.64)
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Integrating out Jα gives back the original action (4.63). Instead, integrating out π imposes

∂αJ
α = 0 , which is solved locally by Jα = 1

2 ϵ
αβγδ ∂βAγδ . In terms of the quantity

Ĵ α ≡ eΦ̂/4√
−Ĝ

Jα , (4.65)

we find the dual action

Ŝdual = − TD3

∫
d4σ

√
−det

[
Ĝαβ + i

(
⋆F̂
)
αβ

− Ĵα Ĵβ

]
− TD3

∫ [
Ĉ(4) +

(
χ̂ F̂ B + F̂ C

)
∧ F̂

2
√

1 + χ̂2
+ 1

2

(
F̂B ∧ Ĉ(2) − F̂C ∧ B̂(2)

)]
.

(4.66)

In the ω → ∞ limit, the action (4.66) gives rise to Eq. (4.55), where the latter is derived from

dimensionally reducing nonrelativistic M5-brane described by Eq. (4.43) over the anisotropic

two-torus. See Appendix C for a derivation. Since the nonrelativistic D3-brane action (4.62)

arises from the same ω → ∞ limit of the relativistic D3-brane action (4.63), it implies that the

exotic action (4.55) comes from dualizing the Nambu-Goldstone boson perturbing the shape

of the D3-brane described by the action (4.62) along a circle in nonrelativistic string theory.

In this sense, compactifying the nonrelativistic M5-brane action (4.43) over an anisotropic

torus gives rise to the nonrelativistic D3-brane action (4.62).

4.4. Inter-Branched D3-Brane Revisited

Throughout this section, the case p− q τ1 ̸= 0 was of interest. In this subsection, we focus on

the case where p− q τ1 = 0 , i.e., χ → ∞ .

We have learned in section 3.4 that the SL(2 ,Z) transformations satisfying γ τ1 + δ = 0

map nonrelativistic string theory to the one-brane limit of relativistic IIB string theory. Note

that, under the SL(2 ,Z) transformation, we have

p′ − q′ τ ′1 =
(
γ τ1 + δ

) (
p− q τ1

)
. (4.67)

When γ τ1 + δ = 0 , the dual of p − q τ1 vanishes in the one-brane limit of relativistic IIB

string theory. Therefore, the p − q τ1 → 0 limit, i.e., the χ → ∞ limit of Eq. (4.62) defines

the D3-brane action in the one-brane limit, which takes the following form:

SD3 →
TD3

2

∫
d4σ

√
−G

1 +
(
⋆F C

)αβ
τβγ
(
⋆F C

)γδ
Eδα − 1

16

[(
⋆F C

)αβ
F C

αβ

]2
(
⋆ℓ
)αβ

F C
αβ

− TD3

∫ [
C(4) − 1

2 F B ∧ F C + 1
2

(
FB ∧ C(2) −FC ∧ B(2)

)]
.

(4.68)

Here, G is the measure defined in Eq. (4.59). Note that cancelling the large χ divergences

in Eq. (4.62) to derive Eq. (4.68) requires
(
⋆ℓ
)αβ

F C
αβ < 0 . This theory is equivalent to the

inter-branched D3-brane action in [30], which is closely related to noncommutative Yang-

Mills (NCYM) theory [57]. Under the Seiberg-Witten map [58], the quantity
∣∣(⋆ℓ)αβF C

αβ

∣∣ in

Eq. (4.68) plays the role of the NCYM gauge coupling.
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5. Conclusions

We studied the anisotropic toroidal compactification of nonrelativistic M-theory and its ap-

plication to a single M5-brane. We established a geometrical interpretation of the polynomial

realization of the SL(2 ,Z) duality in nonrelativistic type IIB superstring theory, where the

IIB background fields transform as polynomials of the parameter κ defined in Eq. (3.27). 11

We have shown that κ receives a physical interpretation as an effective Galilean boost veloc-

ity on the anisotropic two-torus over which nonrelativistic M-theory compactifies. We then

reviewed the relativistic M5-brane over a torus [34], where we found a new expression for the

manifestly SL(2 ,Z)-invariant D3-brane action, without introducing the auxiliary SL(2 ,Z)

doublet (p̃ , q̃) as in [55]. Next, we constructed the covariant M5-brane action (4.43) in non-

relativistic M-theory. Compactifying this M5-brane over the anisotropic torus gives rise to

a manifestly SL(2,Z)-invariant D3-brane action (4.62) in nonrelativistic IIB string theory,

which significantly simplifies the previous result in [30].

This paper is a first step towards understanding the U-duality unifying nonrelativistic

and DLCQ M-theory, which bears intriguing connections to the Matrix theory description of

M-theory [15]. We conclude with an outlook for future research directions.

U-duality and polynomial realizations. The moduli space of M-theory compactified on

R11−n×Tn is invariant under an infinite discrete U-duality group. The U-duality group is the

exceptional group En(n)(Z) generated by SL(n,Z) and SO(n− 1, n− 1,Z). In this paper, we

studied E2(2)(Z) in nonrelativistic M-theory. It would be interesting to explore the realization

of these exceptional groups in nonrelativistic M-theory. We expect an interesting interplay

between the exceptional groups and polynomial realizations. 12 Moreover, these novel U-

duality relations reveal a fascinating duality web that unifies different decoupling couplings

of string/M-theory, containing Matrix gauge theories, DLCQ, and nonrelativistic string/M-

theory and beyond. Detailed constructions of this duality web will appear in [15, 26].

Self-duality condition. Understanding the action principle of (non)relativistic quantum

field theories with self-dual field strength and general covariance is a crucial yet subtle facet

of string theory and supergravity. For example, a fundamental property of the M5-brane

effective action is the self-duality of the field strength F(3) = ⋆F(3) on the six-dimensional

worldvolume. The PST formalism provides an elegant way to incorporate this self-duality

condition at the level of the action by introducing an auxiliary scalar. However, the analog of

this self-duality condition on the M5-brane worldvolume in nonrelativistic M-theory appears

elusive. Even at the quadratic order of the field strength F(3) , the nonrelativistic M5-brane

action still takes a rather complicated form, which makes it arduous to identify the self-duality

11As a side remark, it is also natural to construct the F-theory [59] associated with nonrelativistic type

IIB superstring theory. This line of inquiry could offer insights for understanding the compactifications of

nonrelativistic IIB string theory to lower dimensions.
12The exceptional groups E3(3)(Z) and E4(4)(Z) have been considered in [9], which provides useful ingredients

for future studies of their interplay with polynomial realizations.
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condition in any simple form. We will present this quadratic action in Appendix B, which still

requires further studies to reveal the underlying structure. A proper understanding of the

self-duality condition on the nonrelativistic M5-brane will, for example, facilitate the study

of nonrelativistic one-brane solitons carrying self-dual charge, where it will be interesting to

compute the associated tension as in [51].

Anisotropic Calabi-Yau manifolds. We focused on anisotropic toroidal compactifications

in this paper. It would also be natural to consider compactifications over general Calabi-Yau

manifolds with similar anisotropic twists in the future, which plays a crucial role in further

advancing the string/M-theory duality web. For example, in [60], wrapping the relativistic

M5-brane on a Calabi-Yau K3 surface leads to heterotic string theory in a seven-dimensional

target spacetime. This computation does not explicitly rely on the existence of the K3 metric

but instead uses the 22 harmonic representatives of K3’s integral second cohomology classes

H2(K3 ,Z) . This construction has been supersymmetrized in [61]. Studying the compactifi-

cation of nonrelativistic M5-brane over an anisotropic K3 manifold would provide a powerful

tool for understanding nonrelativistic heterotic string theory, which remains unexplored, and

possibly also the DLCQ of relativistic heterotic string theory [62–64].

Membrane scattering amplitudes. Another interesting future direction would be to

construct brane amplitudes in nonrelativistic M-theory, using the techniques developed in

[65], which computed tree-level scattering amplitudes for n-particles involving D3-, D5-, and

M5-branes using twistor-like spinor-helicity coordinates. Regarding the equivalence between

nonrelativistic and DLCQ string scattering amplitudes studied in [17, 66], the study of the

brane amplitudes could potentially provide insights into resolving some of the long-standing

ambiguities and discrepancies between Matrix theory and supergravity computation as dis-

cussed in previous works [67, 68].
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A. Iwasawa Decomposition of Local SL(2 ,R)

In section 3, we discussed the realization of SL(2 ,Z) in terms of the variables κ in relativistic

M-theory and κ̂ in nonrelativistic M-theory on a two-torus. In this appendix, we reveal a nat-

ural relation between this unconventional SL(2 ,Z) realization and the Iwasawa decomposition

of G = SL(2 ,R) , which takes the following form [69]: 13

G = K ·A ·N (A.1)

where

K =

{(
cos θ − sin θ

sin θ cos θ

)
: θ ∈ R

}
, (A.2a)

A =

{(
r 0

0 r−1

)
: r > 0

}
, N =

{(
1 0

x 1

)
: x ∈ R

}
. (A.2b)

Here, K are the SO(2 ,R) matrices associated (rotations), A are positive diagonal matrices

of determinant one (dilatations), and N are unipotent matrices (translations).

In relativistic M-theory, the κ̂ representation induces an embedding of SL(2 ,Z) within

SL(2 ,R). In Eq. (3.14), we showed that SL(2 ,Z) acts on the zweibein one-form êa = êm
a dx̂m

on the two-torus as

êa → k̂ab ê
b , k̂ =

(
cos θ − sin θ

sin θ cos θ

)
∈ K , (A.3)

where θ is defined in Eq. (3.12). This expression is the same as a SO(2 ,R) transformation, if

one regards θ in Eq. (A.3) as the group parameter. This group action maps to the subgroup

K in the Iwasawa decomposition. Moreover, the SL(2 ,Z) transformations of the component

êm
a in the one-form field êa are given by

êm
a →

(
â · n̂

)
m

n ên
a , (A.4)

where

â =

(
r̂ 0

0 r̂−1

)
∈ A , n̂ =

(
1 0

x̂ 1

)
∈ N , (A.5)

with r̂ =
∣∣γ τ̂1 + δ

∣∣√1 + κ̂2 and x̂ = −
(
β r̂2 + γ

∣∣τ̂ ∣∣2)/δ . Note that the matrices in K act on

the frame index a of the zweibein êm
a , while A and N act on the curved index m .

Next, we investigate the embedding of SL(2 ,Z) within SL(2 ,R) on the anisotropic torus

in nonrelativistic M-theory by performing an ω → ∞ limit of the above results. Complexifying

13See [70] for a review of applications of the Iwasawa decomposition in U-duality. We thank Niels Obers

for pointing out the connection to the Iwasawa decomposition. Here, we choose to represent N as a lower

triangular matrix, aligning with the notation used in the paper, as opposed to the more common practice of

representing it as an upper triangular matrix.
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the dilaton field as in section 3.2, we find the following embedding of SL(2 ,Z) within SL(2 ,R) :

ea → ña
b e

b , ñ =

(
1 0

κ 1

)
∈ N , (A.6a)

em
a →

(
a · n

)
m

n en
a , a =

(
r 0

0 r−1

)
∈ A , n =

(
1 0

x 1

)
∈ N , (A.6b)

where r = |γ τ1 + δ| and x = −
(
β r2 + γ τ21

)
/δ . Note that the realization of SL(2 ,Z) on the

anisotropic torus embeds SL(2 ,Z) within A ·N but not within the SO(2) subgroup K .

B. A Quadratic Gauge Nonrelativistic M5-Brane Action

This appendix presents the quadratic part of nonrelativistic M5-brane action (4.43) expanded

with respect to the three-form field strength F(3) on the worldvolume. In analog with Eq. (4.5),

we also work in a flat spacetime with the M5-brane extending in the three-dimensional lon-

gitudinal sector and C(3) = C(6) = 0 . Furthermore, we make the extra assumption that the

norm n ≡
√

Nu Nu is nonzero. Keeping only the quadratic F(3) terms from the nonrelativistic

M5-brane action (4.43) gives rise to the following free gauge theory in six-dimensions:

Squad.= −
TM5

12

∫
d6σ

n3

{[
Fuvw Fuvw − 6 Nu Nu′

(
Fuvw Fvwu′

+ Fu
wu′

Fvwv′ Nv Nv′
)]

+ 3n2
[
Fuvu′Fuvu′ − 2 Nu Nv′

(
2 Fuvu′ Fvu′

v′ + Fuu′w′ Fvv′
w′

Nu′
Nv
)]

+ 3n4 Fuu′v′
(
Fuu′v′ − 2 Fu′v′w′

Nu Nw′
)

+ n6 Fu′v′w′Fu′v′w′
}

− TM5

24

∫
d6σ ϵuvw ϵu

′v′w′
Ns′
[
6 Nw

(
Fuu′s′ Fvv′w′ − Fuvw′Fu′v′s′

)
+ Nw′

(
Fuvw Fu′v′s′ + 6 Fvwv′Fuu′s′ + 3 Fwu′v′Fuvs′

)]
.

(B.1)

The action up to quadratic order also contains a constant and linear piece in F(3) , namely,

−TM5

∫
d6σ
[
n +

1

6n
ϵuvw

(
Fuvw − 3 Fuvw′ Nw′

Nw

)
+

n2

6
ϵu

′v′w′
Fu′v′w′ − 1

2
ϵu

′v′w′
Fuv′w′NuNu′

]
.

Note that we have split the Levi-Civita symbol ϵαβγδκλ into a product of a longitudinal piece

ϵuvw defined via ϵ012 = 1 and a transverse piece ϵu
′v′w′

defined via ϵ345 = 1 . In principle,

this action should help us understand the analogs of the PST gauge symmetries and self-

duality constraint of F(3) that we have reviewed in section 4.1.1 for relativistic M5-brane.

Unfortunately, in its current form, extracting useful insights directly from the rather involved

expression (B.1) is challenging. Further studies of the free theory still await. For example,

it might be useful to consider the expansion with respect to a small F(3) around a different

background field configuration. To derive Eq. (B.1), we had to assume that n ̸= 0 . This

condition can be relaxed if a nonzero longitudinal C(3) is turned on, with Cuvw ̸= 0 .
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C. Dual D3-Brane in Nonrelativistic IIB Superstring Theory

In this appendix, we derive the dual D3-brane action (4.55) by taking the nonrelativistic

string limit of Eq. (4.66). We focus on the Dirac-Born-Infeld (DBI) Lagrangian in the first

line of Eq. (4.66), i.e.,

L̂ = −
√

−det
[
Ĝαβ + i

(
⋆F̂
)
αβ

− Ĵα Ĵβ

]
. (C.1)

For simplicity, we focus on flat spacetime with τM
A = δAM and EM

A′
= δA

′
M and covariantize

the resulting action at the end of the derivation. Plugging Eqs. (4.61) and (4.65), we find

L̂ = −ω−1

√
−det

(
Ô − Ĵ Ĵ ⊺

)
= −ω−1

√√√√−det Ô − det

(
0 Ĵ ⊺

Ĵ Ô

)
, (C.2)

where

Ô =

(
ω2
(
ηAB + i F̃AB

)
i F̃Aj

i F̃iB δij − i ϵij + i ω−2 F̃ij

)
, Ĵ =

(
ωJA

ω−1 Ji

)
, (C.3)

with A = 0 , 1 and i = 2 , 3 . Note that

det Ô = ω2 det

(
0 τβ

τ̄α Eαβ + Fαβ

)
+ O(ω0) , (C.4a)

det

(
0 Ĵ ⊺

Ĵ Ô

)
= det

(
ω2 E E† + N

)
= −ω2 det

(
N E

E† 0

)
+ O(ω0) . (C.4b)

We have covariantized the determinant in Eq. (C.4a). Moreover, E = (0 , 0 , 0 , 1 , i)⊺ and

N =


0 JB Jj

JA ηAB + i F̃AB i F̃Aj

Ji i F̃iB i F̃ij

 . (C.5)

These ingredients covariantized are

E =

(
0

Eα

)
, N =

(
0 Jβ

Jα ταβ + i F̃αβ

)
, (C.6)

where Eα = Eα
2 + i Eα

3 and Jα = (ταβ + Eαβ)J β . Plugging Eq. (C.4) into Eq. (C.2) and

taking the ω → ∞ limit derives the DBI part of the desired action (4.55). The ω → ∞ limit

of the Chern-Simons terms in (4.66) reproduces the Chern-Simons terms in the action (4.55)

in a straightforward way, which we do not elaborate further here.
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